搜档网
当前位置:搜档网 › 概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理
概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点

第二章知识点:

1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。

2.常用离散型分布:

(1)两点分布(0-1分布):

若一个随机变量X只有两个可能取值,且其分布为

则称X服从处参数为p的两点分布。

两点分布的概率分布:

两点分布的期望:;两点分布的方差:

(2)二项分布:

若一个随机变量X的概率分布由式

给出,则称X服从参数为n,p的二项分布。记为X~b(n,p)(或B(n,p)).

两点分布的概率分布:

二项分布的期望:;二项分布的方差:

(3)泊松分布:

若一个随机变量X的概率分布为,则称X服从参数为的泊松分布,记为X~P ()

泊松分布的概率分布:

泊松分布的期望:;泊松分布的方差:

4.连续型随机变量:

如果对随机变量X的分布函数F(x),存在非负可积函数,使得对于任意实

数,有,则称X为连续型随机变量,称为X的概率密度函数,简称为概率密度函数。

5.常用的连续型分布:

(1)均匀分布:

若连续型随机变量X的概率密度为,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)

均匀分布的概率密度:

均匀分布的期望:;均匀分布的方差:

(2)指数分布:

若连续型随机变量X的概率密度为,则称X服从参数为的指数分布,记为X~e ()

指数分布的概率密度:

指数分布的期望:;指数分布的方差:

(3)正态分布:

若连续型随机变量X的概率密度为

则称X服从参数为和的正态分布,记为X~N(,)

正态分布的概率密度:

正态分布的期望:;正态分布的方差:

(4)标准正态分布:,

标准正态分布表的使用:

(1)

(2)

(3)故

定理1:设X~N(,),则

6.随机变量的分布函数:

设X是一个随机变量,称为X的分布函数。

分布函数的重要性质:

7.求离散型的随机变量函数、连续型随机变量函数的分布

(1)由X的概率分布导出Y的概率分布步骤:

①根据X写出Y的所有可能取值;

②对Y的每一个可能取值确定相应的概率取值;

③常用表格的形式把Y的概率分布写出

(2)由X的概率密度函数(分布函数)求Y的概率密度函数(分布函数)的步骤:

①由X的概率密度函数随机变量函数Y=g(X)的分布函数

②由求导可得Y的概率密度函数

(3)对单调函数,计算Y=g(X)的概率密度简单方法:

定理1 设随机变量X具有概率密度,又设y=g(x)处处可

导且恒有(或恒有),则Y=g(X)是一个连续型随机变量,其概率密度为

;其中是y=g(x)的反函数,且

练习题:

2.4 第7、13、14

总习题第3、6、9、10、11、13、14、17、18、19

第三章重要知识点:

1.离散型二维随机变量X与Y的联合概率分布表:

Y

……

X

……

……

. . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

……

. . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(1)

(1)要会由X与Y的联合概率分布,求出X与Y各自概率分布或反过来;类似P63 例2

(2)要会在X与Y独立的情况下,根据联合概率分布表的部分数据,求解其余数据;

类似 P71 例3

(3)要会根据联合概率分布表求形如的概率;

(4)要会根据联合概率分布律之类求出相应的期望、方差、协方差、相关系数等。

2. 二维连续型随机变量X与Y的联合概率密度:

设(X,Y)为二维随机变量,F(x,y)为其分布函数,若存在一个非负可积的二元函

数f(x,y),使对任意实数(x,y),有,则称(X,Y)为二维连续型随机变量。

(1) 要会画出积分区域使得能正确确定二重积分的上下限;

(2) 要会根据联合概率密度求出相应的分布函数F(x,y),以及形如

等联合概率值;P64 例3

(3) 要会根据联合概率密度求出的边缘密度;类似 P64 例4

(4) 要会根据联合概率密度求出相应的期望、方差、协方差、相关系数等。

3.联合概率分布以及联合密度函数的一些性质:

(1);(2)

要会根据这些性质解类似P68 第5,6题。

4.常用的连续型二维随机变量分布

二维均匀分布:设G是平面上的有界区域,其面积为A。若二维随机变量(X,Y)

具有概率密度函数,则称(X,Y)在G上服从均匀分布。

5.独立性的判断:

定义:设随机变量(X,Y)的联合分布函数为F(x,y),边缘分布函数为,

,若对任意实数x,y,有

(1)离散型随机变量的独立性:

①由独立性的定义进行判断;

②所有可能取值,有,

则X与Y相互独立。

(2)连续型随机变量的独立性:

①由独立性的定义进行判断;

②联合概率密度,边缘密度,

有几乎处处成立, 则X 与Y相互独立。

(3)注意与第四章知识的结合

X与Y相互独立

因此 X与Y不独立。

6.相互独立的两个重要定理

定理1随机变量X与Y相互独立的充要条件是X所生成的任何事件与Y生成的任何事件独立,即,对任意实数集A,B,有

定理2 如果随机变量X与Y独立,则对任意函数,相互独立。

(1)要求会使用这两个定理解决计算问题

练习题:

习题2-3 第3、4题

习题2-4 第2题

习题3.2 第5,7,8题

总习题三第4,9(1)-(4), 12,13

第四、五章知识点

设总体密度函数如下,是样本,试求未知参数的矩估计值,最大似然估计值。

(1)

,由此可推出,

从而参数,的矩估计值为

(2)似然函数为:

其对数似然函数为:

由上式可以看出,是的单调增函数,要使其最大,的取值应该尽可

能的大,由于限制,这给出的最大似然估计值为

将关于求导并令其为0得到关于的似然方程

,解得

第四章重要知识点:

1.随机变量X数学期望的求法:

(1)离散型;(2)连续型

2.随机变量函数g(X) 数学期望的求法:

(1)离散型;(2)连续型

3.二维随机向量期望的求法:

(1)离散型;

(2)连续型

4.随机变量X方差的求法:

(1)简明公式

(2)离散型

(3)连续型

5. 随机变量X协方差与相关系数的求法:

(1)简明公式

(2)离散型

(3)连续型

(4)

6.数学期望、方差、协方差重要的性质:

(1)

(2) 设X与Y相互独立,则

(3)

若X与Y相互独立,则

(4)

(5)

(6)

若X与Y相互独立,则

(7) 若(X,Y)服从二维正态分布,则X与Y相互独立,当且仅当

7. n维正态分布的几个重要性质:

(1)n维正态变量()的每个分量()都是正态变量,反之,若都是正态变量,且相互独立,则()是n维正态变量。

(2)n维随机向量()服从n维正态分布的充分必要条件是的任意线性组合均服从一维正态分布均服从一维正态分布(其中不全为零)。

(3)若()服从n维正态分布,设是的线性函数,则()服从k维正态分布。

(4)设()服从n维正态分布,则“相互独立”等价于“两两不相关”

练习题:

1. 设(X,Y)的联合密度函数为,求

解:

同理

又因

从而

2. 习题4.3第10题

8.中心极限定理

(1)定理4(棣莫佛—拉普拉斯定理)

设随机变量相互独立,并且都服从参数为的两点分布,则对任意

实数,有

(2)定理3(独立同分布的中心极限定理)

设随机变量相互独立,服从同一分布,且

练习题:习题4-4 11题 12题总习题四 24,25,26题

第五章重要知识点

确定或求证统计量所服从的分布

1.三大分布

(1)分布::设是取自总体N(0,1)的样本,称统计量

服从自由度为n的分布。

(2)t分布:设X~N(0,1), ,且X与Y相互独立,则称服从自由度为n的t分布。

(3)F分布:设,且X与Y相互独立,则称服从自由度为(m,n)的F分布。

2.三大抽样分布

(1)设总体是取自X的一个样本,为该样本的样本

均值,则有,

(2)定理2设总体,是取自X的一个样本,与为该样本的样本均值与样本方差,则有

与相互独立

(3)定理3设总体,是取自X的一个样本,与为该样本的样本均值与样本方差,则有,

练习题:

1.设是来自正态总体的样本,求统计量

的分布。

解:因为,故

由样本的独立性及分布的定义,有

再由样本的独立性以及t分布的定义,有

2.总习题五 14题

3.求样本函数相关的概率问题

练习题:习题5-3 2 总习题五 16、17

第六章重要知识点:

1.矩估计的求法:

设总体X的分布函数中含有k个未知参数的函数,则(1)求总体X的k阶矩它们一般都是

是这k个未知参数的函数,记为

(2)从(1)中解得

(3)再用的估计量分别代替上式中的,即可得的估计量:

注:求,类似于上述步骤,最后用,代替,求出矩估

2.最大似然估计的求法:

求最大似然估计的一般方法:

(1)写出似然函数

(2)令或,求出驻点

(3)判断并求出最大值点,在最大值点的表达式中,用样本值代入就得参数的最大似然估计值。比如P154 例4—6。

3. 估计量的优良性准则

(1)无偏性

定义 1 设是未知参数的估计量,若,则称为的无偏估计量。

(2)有效性

定义 2 设和都是参数的无偏估计量,若

,则称较有效。

4 置信区间

(1)双侧置信区间:

设为总体分布的未知参数,是取自总体X的一个样本,对给定的数,,若存在统计量,

,使得,则称随机区间为的

双侧置信区间,称为置信度,又分别称与为的双侧置信下限与双侧置信上限。

(2)单侧置信区间:

设为总体分布的未知参数,是取自总体X的一个样本,对给定的数,,若存在统计量,

满足,则称为的置信度为的单侧置信区间,称为的单侧置信下限;若存在统计量,满足

则称为的置信度为的单侧置信区间,称为的单侧置信上限。

5.寻求置信区间的方法:

一般步骤:

(1)选取未知参数的某个较优估计量

(2)围绕构造一个依赖于样本与参数的函数

(3)对给定的置信水平,确定与,使

通常可选取满足与的与,在常用分布情况下,这可由分位数表查得。

(4)对不等式作恒等变形后化为

则就是的置信度为的双侧置信区间。

6.置信区间的公式:

(1)0-1分布参数的置信区间:

(2)设总体,其中已知,而为未知参数,是取自总体X的一个样本。

均值的置信区间为:(,)

(3)设总体,其中,未知,是取自总体X的一个样本。

均值的置信区间为:(,)

(4)设总体,其中,未知,是取自总体X 的一个样本。

方差的置信区间为:

的置信区间为:

练习题:

习题6-2 第1,2,5,6题

习题6-3 第3,4,5,6题

习题6-4 第4题

总习题六第7,8,9,10,16,17,18,20,21题

第1章随机事件及其概率

(1)排列

组合公式

从m个人中挑出n个人进行排列的可能数。

从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n

某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n

某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)

顺序问题

(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:

①每进行一次试验,必须发生且只能发生这一组中的一个事件;

②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用

基本事件的全体,称为试验的样本空间,用

一个事件就是由)组成的集合。通常用大

写字母

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事

件;同理,必然事件(Ω)的概率为的事件也不一定

是必然事件。

(6)事件

的关系与运

①关系:

如果事件A的组成部分也是事件B的组成部分,(A发生必有事件

B发生):

如果同时有,,则称事件A与事件B等价,或称A等

于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为

A-B,也可表示为A-AB或者,它表示A发生而B不发生的事

件。

A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同

时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相

容的。

-A称为事件A的逆事件,或称A的对立事件,记为。它表示A 不发生的事件。互斥未必对立。

②运算:

结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C

分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)

德摩根率:,

(7)概率

的公理化定

设为样本空间,为事件,对每一个事件都有一个实数P(A),若满足下列三个条件:

1° 0≤P(A)≤1,

2° P(Ω) =1

3°对于两两互不相容的事件,,…有

常称为可列(完全)可加性。

则称P(A)为事件的概率。

(8)古典

概型

1°,

(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,

。其中L为几何度量(长度、面积、体积)。

(10)加法公式P(A+B)=P(A)+P(B)-P(AB)

当P(AB)=0时,P(A+B)=P(A)+P(B)

(11)减法公式P(A-B)=P(A)-P(AB)

当B A时,P(A-B)=P(A)-P(B) 当A=Ω时,P()=1- P(B)

(12)条件概率定义设A、B是两个事件,且P(A)>0,则称为事件A发生条

件下,事件B发生的条件概率,记为。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1P(/A)=1-P(B/A)

(13)乘法公式乘法公式:

更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有…………

(14)独立性①两个事件的独立性

设事件、满足,则称事件、是相互独立的。

若事件、相互独立,且,则有

若事件、相互独立,则可得到与、与、与也都相互独立。

必然事件和不可能事件?与任何事件都相互独立。

?与任何事件都互斥。

②多个事件的独立性

P(AB)=P(A)P(B)

并且同时满足

那么

对于

(15)全概

公式

设事件满足

1°两两互不相容,,

2°,

则有

(16)贝叶

斯公式

设事件,,…,及满足

1°,,…,两两互不相容,>0,1,2,…,

2°,,

,i=1,2,…n。

此公式即为贝叶斯公式。

,(,,…,),通常叫先验概率。,(,,…,),通常称为后验概率。贝叶斯公式反映了“因

果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努

利概型

我们作了次试验,且满足

◆ 每次试验只有两种可能结果,发生或不发生;

◆ 次试验是重复进行的,即发生的概率每次均一样;

◆ 每次试验是独立的,即每次试验发生与否与其他次试验

发生与否是互不影响的。

这种试验称为伯努利概型,或称为重伯努利试验。

用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率,

,。

第二章随机变量及其分布

(1)离散型随机变量的分布律

设离散型随机变量的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为

P(X=xk)=pk,k=1,2,…,

则称上式为离散型随机变量的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:

(1),,(2)。

(2)连续型随机变量的分布密度设是随机变量的分布函数,若存在非负函数,对任意实数,有

则称为连续型随机变量。称为的概率密度函数或密度函数,简称概率密度。

密度函数具有下面4个性质:

1°。

2°。

(3)

离散与连续型随机变量的关系积分元在连续型随机变量理论中所起的作用与在离散型随机变量理论中所起的作用相类似。

(4)分布函数

设为随机变量,是任意实数,则函数

称为随机变量X的分布函数,本质上是一个累积函数。

可以得到X落入区间的概率。分布

函数表示随机变量落入区间(–∞,x]内的概率。

分布函数具有如下性质:

1°;

2°是单调不减的函数,即时,有;

3°,;

4°,即是右连续的;

5°。

对于离散型随机变量,;

对于连续型随机变量,。

(5)八大分布0-1

分布

P(X=1)=p, P(X=0)=q

二项

分布

在重贝努里试验中,设事件发生的概率为。事件发生的次数是随机变量,设为,则可能取值为。

,其中

则称随机变量服从参数为,的二项分布。记为。

当时,,,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。

泊松

分布

设随机变量的分布律为

,,,

则称随机变量服从参数为的泊松分布,记为或者P()。

泊松分布为二项分布的极限分布(np=λ,n→∞)。

超几

何分

布随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。

几何

分布

,其中p≥0,q=1-p。

随机变量X服从参数为p的几何分布,记为G(p)。

均匀

分布

设随机变量的值只落在[a,b]内,其密度函数在[a,b]上为常数,即

a≤x≤b

其他,

则称随机变量在[a,b]上服从均匀分布,记为X~U(a,b)。

分布函数为

a≤x≤b

0, x

1, x>b。

当a≤x1

指数

分布

,

0, ,

其中,则称随机变量X服从参数为的指数分布。

X的分布函数为

,

x<0。

记住积分公式:

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

高中物理公式大全一览表

高中物理公式大全一览表 高中物理有很多公式,经过高中三年的学习相信大家都有很多物理知识点需要总结,为了方便大家学习物理,小编为大家整理了高中物理公式,希望对大家有帮助。 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a0;反向则a0} 8.实验用推论s=aT2 {s为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。 2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s210m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s210m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

三角函数公式大全关系

三角函数公式大全关系: 倒数 tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么 i=h/l=tan a. 锐角三角函数公式 正弦: sin α=∠α的对边/∠α的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)

高中物理公式知识点总结大全资料

高中物理公式知识点 总结大全

高中物理公式、知识点、规律汇编表 一、力学公式 1、 胡克定律: F = kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: F=θCOS F F F F 2122212++ 合力的方向与F 1成α角: tg α=F F F 212sin cos θθ+ 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0 或∑F x =0 ∑F y =0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= ρVg (注意单位) 7、 万有引力: F=G m m r 12 2 (1). 适用条件 (2) .G 为万有引力恒量 (3) .在天体上的应用:(M 一天体质量 R 一天体半径 g 一天体表面重力 加速度) a 、万有引力=向心力 1

概率论与数理统计(经管类)公式

概率论与数理统计必考知识点 一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 A B B A +=+ BA AB = 结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()( 分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+ 德摩根律 B A B A =+ B A AB += 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+ 条件概率公式 ) () ()(A P AB P A B P = 乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P = 全概率公式 ∑== n i i i A B P A P B P 1 )()()( 贝叶斯公式 (逆概率公式) ∑∞ == 1 ) ()() ()()(i i j j j j A B P A P A B P A P B A P 伯努利概型公式 n k p p C k P k n k k n n ,1,0,)1()(=-=- 两件事件相互独立相应 公式 )()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P 二、随机变量及其分布 1、分布函数性质 )()(b F b X P =≤ )()()(a F b F b X a P -=≤< 2、离散型随机变量 分布名称 分布律 0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k 二项分布),(p n B n k p p C k X P k n k k n ,,1,0,)1()( =-==-

概率论与数理统计公式定理整理汇编

概率论与数理统计公式集锦 一、随机事件与概率

二、随机变量及其分布 1、分布函数性质 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt 2、离散型随机变量及其分布 3、连续型随机变量及其分布

4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j i i j g x y P Y y p i L , 连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y 单调 三、多维随机变量及其分布 1、离散型二维随机变量及其分布 分布律:(,),,1,2,i j ij P X x Y y p i j L 分布函数(,)i i ij x x y y F X Y p 边缘分布律:()i i ij j p P X x p ()j j ij i p P Y y p 条件分布律:(),1,2,ij i j j p P X x Y y i p L ,(),1,2,ij j i i p P Y y X x j p L 2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数: x y dudv v u f y x F ),(),( 性质:2(,) (,)1,(,),F x y F f x y x y ((,))(,)G P x y G f x y dxdy ②边缘分布函数与边缘密度函数 分布函数: x X dvdu v u f x F ),()(密度函数: dv v x f x f X ),()( y Y dudv v u f y F ),()( du y u f y f Y ),()( ③条件概率密度 y x f y x f x y f X X Y ,)(),()(, x y f y x f y x f Y Y X ,) () ,()(

三角函数公式大全

两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin( 2A )=2cos 1A -cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式:sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a -

数学三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|ο ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180|οοββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

高一与高二物理知识点的总结

高一和高二物理知识点的总结 高一 力 定义:力是物体之间的相互作用。 理解要点 (1)力具有物质性:力不能离开物体而存在。 说明:①对某物体而言,可能有一个或多个施力物体。②并非先有施力物体, 后有受力物体 (2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。 说明:①相互作用的物体可以直接接触,也可以不接触。②力的大小用测力计测量 (3)力具有矢量性:力不仅有大小,也有方向。 (4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。(5)力的种类: ①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。 ②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。 说明:根据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。 重力 定义:由于受到地球的吸引而使物体受到的力叫重力。 说明:①地球附近的物体都受到重力作用。 ②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。 ③重力的施力物体是地球。 ④在两极时重力等于物体所受的万有引力,在其它位置时不相等。 (1)重力的大小:G=mg 说明:①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。 ②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。 ③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。 (2)重力的方向:竖直向下(即垂直于水平面) 说明:①在两极与在赤道上的物体,所受重力的方向指向地心。 ②重力的方向不受其它作用力的影响,与运动状态也没有关系。 (3)重心:物体所受重力的作用点。 重心的确定:①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。 ②质量分布不均匀的物体的重心与物体的形状、质量分布有关。 ③薄板形物体的重心,可用悬挂法确定。

三角函数计算公式大全

三角函数计算公式大全-CAL-FENGHAI.-(YICAI)-Company One1

三角函数公式 三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 定义式 锐角三角函数任意角三角函数 图形 直角三角形 任意角三角函数 正弦(sin) 余弦(cos) 正切(tan或t g) 余切(cot或ct g) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典[1]. 函数关系 倒数关系:①;②;③ 商数关系:①;②. 平方关系:①;②;③.

诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限[2].即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

高二物理知识点总结

电场 库仑定律、电场强度、电势能、电势、电势差、电场中的导体、导体 知识要点: 1、电荷及电荷守恒定律 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间 的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷 e =?-1610 19 .C 。 ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带 电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 2、库仑定律 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距 离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =122 , 其中比例常数K 叫静电力常量,K =?90109.N m C 22·。 库仑定律的适用条件是(a)真空,(b)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时, 可以使用库仑定律,否则不能使用。例如半径均为r 的金属球如 图9—1所示放置,使两球边缘相距为r ,今使两球带上等量的异种电荷Q ,设两电荷Q 间的库仑力大小为F ,比较F 与K Q r 22 3() 的大小关系,显然,如果电荷 能全部集中在球心处,则两者相等。依题设条件,球心间距离3r 不是远大于r ,故不能把两带电体当作点电荷处理。实际上,由于异种电荷的相互吸引,使电荷分布在两球较靠近的球面处,这样电荷间距离小于3r ,故F K Q r >22 3() 。同理, 若两球带同种电荷Q ,则F K Q r <22 3() 。 3、电场强度 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力 F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是E F q = ,场强 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。 由场强度E 的大小,方向是由电场本身决定的,是客观存在的,与放不放检

高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结 高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍;

五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质 六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)3、该公式适用于一切电场;4、点电荷的电场强度公式:E=kQ/r2 七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强; 八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。1、电场线不是客观存在的线;2、电场线的形状:电场线起于正电荷终于负电荷;G:\用锯木屑观测电场线.DAT(1)只有一个正电荷:电场线起于正电荷终于无穷 远;(2)只有一个负电荷:起于无穷远,终于负电荷;(3)既有正电荷又有负电荷:起于正电荷终于负电荷;3、电场线的作用:1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;4、电场线的特点:1、电场线不是封闭曲线;2、同一电场中的电场线不向交; 九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;1、匀强电场的电场线是一簇等间距的平行线;2、平行板电容器间的电是匀强电场;场

概率论与数理统计 重要公式

一、随机事件与概率 公式名称 公式表达式 德摩根公式 B A B A =,B A B A = 古典概型 ()m A P A n = =包含的基本事件数基本事件总数 几何概型 () ()()A P A μμ= Ω,其中μ为几何度量(长度、面积、体积) 求逆公式 )(1)(A P A P -= 加法公式 P(A ∪B)= P(A+B)=P(A)+P(B)-P(AB) 当P(AB)=0(A 、B 互斥)时,P(A ∪B)=P(A)+P(B) 减法公式 P(A-B)=P(A)-P(AB),B A ?时P(A-B)=P(A)-P(B) 条件概率公式 乘法公式 )() ()(A P AB P A B P = ()()()()()P AB P A P B A P B P A B == ()()()()P ABC P A P B A P C AB = 全概率公式 1 ()()()n i i i P A P B P A B ==∑ 从原因计算结果 贝叶斯公式 (逆概率公式) 1 ()() ()()() i i i n i i i P B P A B P B A P B P A B == ∑ 从结果找原因 两个事件 相互独立 ()()()P AB P A P B =;()()P B A P B =;)()(A B P A B P =;

二、随机变量及其分布 1、分布函数 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt ≤-∞ ?=?=≤=<≤=-???∑? 概率密度函数 计算概率: 2、离散型随机变量及其分布 分布名称 分布律 0-1分布 X ~b(1,p) 1,0,)1()(1=-==-k p p k X P k k 二项分布(贝努利分布) X ~B(n,p) n k p p C k X P k n k k n ,,1,0,)1()( =-==- 泊松分布 X ~p(λ) (),0,1,2,! k P X k e k k λλ-== = 3、续型型随机变量及其分布 分布名称 密度函数 分布函数 均匀分布 x ~U(a,b) ?? ?? ?<<-=其他,0,1 )(b x a a b x f 0, (),1, =-0 , 00,)(x x e x f x λλ ???? ?≤>-=-0 , 00 , 1)(x x e x F x λ 正态分布 x ~N(2,σμ) 2 2 ()21()2μσπσ -- = -∞<<+∞ x f x e x 22 ()21 ()d 2μσπσ -- -∞ = ?t x F x e t 标准正态分布 x ~N(0,1) 2 2 1()2?π - = -∞<<+∞ x x e x 212 1 ()2t x x e dt π --∞ Φ= ? 1 )(=? +∞ ∞ -dx x f ?=≤≤b a dx x f b X a P )()(

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

概率论与数理统计知识点汇总(详细)

概率论与数理统计知识点汇总(详细)

————————————————————————————————作者:————————————————————————————————日期:

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

高中物理公式知识点总结大全

高中物理公式、知识点、规律汇编表 一、力学公式 1、 胡克定律: F = kx (x 为伸长量或压缩量,K 为倔强系数,只与 弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: F=θCOS F F F F 2122212++ 合力的方向与F 1成α角: tg α=F F F 212 sin cos θθ+ 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0 或∑F x =0 ∑F y =0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= ρVg (注意单位) F 1

高中数学三角函数公式大全

高中数学三角函数公式大全三角函数和差化积公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 三角函数积化和差公式 sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] 三角函数万能公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 三角函数半角公式 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三角函数三倍角公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα

三角函数倍角公式 sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三角函数两角和与差公式 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

相关主题