搜档网
当前位置:搜档网 › 土壤易氧化有机碳测定方法

土壤易氧化有机碳测定方法

土壤易氧化有机碳测定方法
土壤易氧化有机碳测定方法

土壤易氧化性有机碳

1 原理

2设备及试剂

2.1 设备

分光光度计

离心机

摇床

2.2 试剂

333mM KMnO4:52.614g KMnO4溶于1L蒸馏水,定容;

标准33.3mM KMnO4溶液:5.2614 g KMnO4溶于1L蒸馏水,定容;

标准3.33mM KMnO4溶液:吸取上述标准33.3mM KMnO4溶液100ml定容于1L。

3 步骤

3.1 标准系列浓度的KMnO4溶液:分别用微量移液器吸取33、34、35、

36、37、38、39、40ml的标准3.33mM KMnO4溶液转入100ml容量

瓶,用蒸馏水定容至100ml,则该系列浓度为:1.099、1.132、

1.166、1.199、1.232、1.265、1.299、1.332mM;

3.2 称取过500μm土壤筛的含碳15mg的风干土(土样重g =1.5 ÷ 100 g土样含的总碳);

3.3将上述土放入100ml离心管中,加入25ml 的333mmol.L-1KMnO4,拧

紧盖子,然后在200rpm下震荡1h,空白实验同时进行(不含土样,其它操作一样);

3.4 震荡后在4000rpm离心5min,每一离心管中用微量移液器吸取0.4ml滤

液转入100ml容量瓶,用蒸馏水定容至100ml(稀释250倍);

3.5 稀释液在565nm波长处进行比色,同时标准系列浓度的KMnO4溶液也

比色,使样品浓度在标准系列范围内。

4 计算

土壤C氧化量用mg.g-1C表示(1mmolKMnO4氧化0.75mmolC),根据消耗的KMnO4量求出样品易氧化性碳含量。

5 注意事项

5.1 MnO2和光能使KMnO4分解,为避免浸提液和标准液KMnO4浓度改变,溶液需小心准备和储存;

5.2 土样碳量及土壤与提取液接触时间对氧化量有显著影响,统一为

15mg碳且在提取过程中执行严格程序能显著减小误差。

参考文献:

1 Loginow. W, Wisniewski.W., Gonet, S.S., and Ciescinska,B. (1987).Fractionation of organic

carbon based on susceptibility to oxidation. Polish Journal of Soil Science,20,47-52.(未找到)

2 Blair. G. J., R.D.B.Lefroy, and L.Lisle. Soil carbon fractions based on

their degree of oxidation, and the developments of a carbon management index for agricultural systems. Aust. J. Agric. Res., 1995,46:1456-1466.(主要参考)

3 Lefroy, R.D.B., Blair, G.J., Strong, W.M. (1993) Changes in soil

organic matter with cropping as measured by organic carbon fractions

and 13C natural isotope abundance. Plant Soil 155/156:399–402.

4 Shrestra RK, Ladha JK, Lefroy RDB, Carbon management for

sustainability of an intensively managed rice-based cropping

system, Biol Fertil Soils (2002) 36:215–223

5 刘艳丽,格氏栲天然林与人工林碳库及土壤碳形态,2003,福建农林大学硕士论文

总抗氧化能力检测试剂盒(FRAP法)

总抗氧化能力检测试剂盒(FRAP法) 产品编号产品名称包装 S0116 总抗氧化能力检测试剂盒(FRAP法) 100次 产品简介: 总抗氧化能力检测试剂盒(FRAP法),即Total Antioxidant Capacity Assay Kit with FRAP method,简称T-AOC Assay Kit,是一种采用Ferric Reducing Ability of Plasma (FRAP)方法,可以对血浆、血清、唾液、尿液等各种体液,细胞或组织等裂解液、植物或中草药抽提液、或各种抗氧化物(antioxidant)溶液的总抗氧化能力进行检测的试剂盒。 活性氧(Reactive oxygen species, ROS)主要包括羟基自由基、超氧自由基和过氧化氢。在细胞或组织的正常生理代谢过程中会产生活性氧,同时一些环境因子例如紫外照射、γ射线照射、吸烟、环境污染等也可以诱导活性氧的产生。活性氧产生后,可以导致细胞内脂、蛋白和DNA等的氧化损伤,诱发氧化应激(Oxidative stress),继而导致各种肿瘤、动脉粥样硬化、风湿性关节炎、糖尿病、肝损伤、以及中枢神经系统疾病等。 机体中存在多种抗氧化物,包括抗氧化大分子、抗氧化小分子和酶等,可以清除体内产生的各种活性氧,以阻止活性氧诱导的氧化应激(oxidative stress)的产生。一个体系内的各种抗氧化大分子、抗氧化小分子和酶的总的水平即体现了该体系内的总抗氧化能力。因此测定血浆、血清、尿液、唾液等各种体液,细胞或组织等裂解液中的总抗氧化能力具有非常重要的生物学意义。 植物或中草药抽提液、或各种抗氧化物溶液的总抗氧化能力的检测可以用于检测各种溶液的抗氧化能力的强弱,可以用于筛选强抗氧化能力的药物。 FRAP法测定总抗氧化能力的原理是酸性条件下抗氧化物可以还原Ferric-tripyridyltriazine (Fe3+-TPTZ)产生蓝色的Fe2+-TPTZ,随后在593nm测定蓝色的Fe2+-TPTZ即可获得样品中的总抗氧化能力。由于反应在酸性条件下进行,可以抑制内源性的一些干扰因素。并且由于血浆等样品中的铁离子或亚铁离子的总浓度通常低于10μM,因此血浆等样品中的铁离子或亚铁离子不会显著干扰FRAP法的检测反应。由于反应体系中的铁离子或亚铁离子是和TPTZ螯合的,样品本身含有的少量金属离子螯合剂通常也不会显著影响检测反应。 Antioxidant Fe3+-TPTZ ——————> Fe2+-TPTZ (蓝色) 提供了抗氧化物Trolox作为对照。Trolox是一种维生素E的类似物,水溶性较好,抗氧化能力和维生素E相近。 本试剂盒方便快捷,加入待测样品后3-5分钟即可进行吸光度测定,通常10-20个样品可以在十多分钟内检测完毕。 本试剂盒可以检测100个样品。 包装清单: 产品编号产品名称包装 S0116-1 TPTZ稀释液 15ml S0116-2 TPTZ溶液 1.5ml S0116-3 检测缓冲液 1.5ml S0116-4 FeSO4·7H2O 200mg S0116-5 Trolox溶液 (10mM) 0.1ml —说明书1份 保存条件: -20℃保存,一年有效。其中S0116-2 TPTZ溶液,S0116-3 检测缓冲液和S0116-5 Trolox溶液 (10mM)需避光保存。 注意事项: 在酸性条件下呈蓝色或接近蓝色的试剂会对本试剂盒的检测产生干扰,需尽量避免。 如果样品中含有外加的较高浓度的铁盐或亚铁盐,会干扰测定。但血浆、血清、细胞或组织裂解液等样品中含有的微量的铁盐或亚铁盐不会干扰测定。 样品中不能添加DTT、巯基乙醇等影响氧化还原反应的物质,也不宜添加Tween、Triton和NP-40等去垢剂。 测定时需可以测定A593的酶标仪一台(测585-605nm也可以)或可以测定微量样品的分光光度计一台。 TPTZ对人体有刺激性,请注意适当防护。 为了您的安全和健康,请穿实验服并戴一次性手套操作。

土壤有机碳分类及其研究进展1

土壤有机碳( SOC)是土壤学和环境科学研究的热点问题之一,土壤有机碳库的动态平衡直接影响着土壤肥力的保持与提高,进而影响土壤质量的优劣和作物产量的高低,因而土壤有机碳的变化最终会影响土壤乃至整个陆地生态系统的可持续性。土壤有机碳包括活性有机碳和非活性有机碳。土壤活性有机碳是指在一定的时空条件下,受环境条件影响强烈的、易氧化分解的、对植物和微生物活性影响比较高的那一部分土壤碳素。根据测定方法和有机碳组分不同,土壤活性有机碳又表述为溶解性有机碳(DOC:dissolved organic carbon)、水溶性有机碳(water-soluble organic carbon)、微生物生物量碳(MBC:Microbial biomass carbon)、轻组有机碳和易氧化有机碳,可在不同程度上反映土壤有机碳的有效性和土壤质量。 国外研究进展 国外对土壤有机碳的研究开始较早, 在20世纪60年代, 就有学者开始进行全球土壤有机碳总库存量研究。但早期对土壤有机碳库存量的估算大都是根据少数土壤剖面资料进行的。如1951年Rubey根据不同研究者发表的关于美国9个土壤剖面的有机碳含量, 推算出全球土壤有机碳库存量为710 Pg。1976年Bohn利用土壤分布图及相关土组( soil association)的有机碳含量, 估计出全球土壤有机碳库存量为2946Pg。这两个估计值成为当前对全球土壤有机碳库存量的上下限值。20世纪80年代,由于研究全球碳循环与气候、植被及人类活动等因素之间相互关系的需要,统计方法开始被应用于土壤有机碳库存量

的估算。如Post等在Holdridge生命带模型基础上,估算了全球土壤碳密度的地理分布与植被及气候因子之间的相互关系,提出全球1m 厚度土壤有机碳库存量为1 395 Pg。 20世纪90年代以来, 随着遥感(RS)、地理信息系统(GIS) 和全球定位系统(GPS) 技术的发展, 为土壤有机碳研究提供了新的方法和手段。3S技术被应用于区域或全球土壤有机碳库存量大小、有机碳密度的空间分布差异等方面的研究。发达国家已在区域尺度上开展了相关研究工作。如俄罗斯在1B250万土壤分布图上建立了土壤碳空间数据库,计算出俄罗斯0~ 20 cm、0~ 50 cm和0~100 cm等不同土层有机碳库存量,估计出俄罗斯土壤有机碳库存总量为34211 Pg,无机碳库存总量为11113 Pg,土壤总碳库存量为45314 Pg,并绘制了俄罗斯0~ 100 cm土层无机碳库存量分布图。加拿大建立了1B100万的数字化土壤分布图及土壤碳数据库,并计算出加拿大0 ~ 30 cm 土层和0 ~100 cm土层土壤有机碳库存量分别为7011 Pg和249 Pg。 世界各国不同研究者对全球土壤有机碳库存量的估算方法并无本质区别,但由于所用资料来源与土壤分类方式不同,土壤有机碳库存量的估计值有较大差异。全球土壤1 m内土壤有机碳库大约是植被碳库的115~ 3倍,如此巨大的土壤有机碳库,即使其发生很轻微变动,都会引起大气中CO2浓度变化,进而影响全球气候变化。因此,土壤有机碳库存量研究成为全球变化的研究热点之一。 国内研究进展 我国学者非常关注土壤碳循环研究,并在土壤有机碳库存量研究

土壤微生物量碳测定方法

土壤微生物量碳测定方法及应用 土壤微生物量碳(Soil microbial biomass)不仅对土壤有机质和养分的循环起着主要作用,同时是一个重要活性养分库,直接调控着土壤养分(如氮、磷和硫等)的保持和释放及其植物有效性。近40年来,土壤微生物生物量的研究已成为土壤学研究热点之一。由于土壤微生物的碳含量通常是恒定的,因此采用土壤微生物碳(Microbial biomass carbon, Bc)来表示土壤微生物生物量的大小。测定土壤微生物碳的主要方法为熏蒸培养法(Fumigation-incubation, FI)和熏蒸提取法(Fumigation-extraction, FE)。 熏蒸提取法(FE法) 由于熏蒸培养法测定土壤微生物量碳不仅需要较长的时间而且不适合于强酸性土壤、加 入新鲜有机底物的土壤以及水田土壤。Voroney (1983)发现熏蒸土壤用·L-1K 2SO 4 提取液提取 的碳量与生物微生物量有很好的相关性。Vance等(1987)建立了熏蒸提取法测定土壤微生物 碳的基本方法:该方法用·L-1K 2SO 4 提取剂(水土比1:4)直接提取熏蒸和不熏蒸土壤,提取 液中有机碳含量用重铬酸钾氧化法测定;以熏蒸与不熏蒸土壤提取的有机碳增加量除以转换 系数K EC (取值来计算土壤微生物碳。 Wu等(1990)通过采用熏蒸培养法和熏蒸提取法比较研究,建立了熏蒸提取——碳自动一起法测定土壤微生物碳。该方法大幅度提高提取液中有机碳的测定速度和测定结果的准确度。 林启美等(1999)对熏蒸提取-重铬酸钾氧化法中提取液的水土比以及氧化剂进行了改进,以提高该方法的测定结果的重复性和准确性。 对于熏蒸提取法测定土壤微生物生物碳的转换系数K EC 的取值,有很多研究进行了大量的 研究。测定K EC 值的实验方法有:直接法(加入培养微生物、用14C底物标记土壤微生物)和间接法(与熏蒸培养法、显微镜观测法、ATP法及底物诱导呼吸法比较)。提取液中有机碳的 测定方法不同(如氧化法和仪器法),那么转换系数K EC 取值也不同,如采用氧化法和一起法 K EC 值分别为(Vance等,1987)和(Wu等,1990)。不同类型土壤(表层)的K EC 值有较大不 同,其值变化为(Sparling等,1988,1990;Bremer等,1990)。Dictor等(1998)研究表 明同一土壤剖面中不同浓度土层土壤的转换系数K EC 有较大的差异,从表层0-20cm土壤的K EC 为,逐步降低到180-220cm土壤的K EC 为。 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破 坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4 溶液可提取 成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数K EC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(·L-1):取分析纯硫酸钾溶解于蒸馏水中,定溶至10L。由于硫酸钾较难溶解,配制时可用20L塑料桶密闭后置于苗床上(60-100rev·min-1)12小时即可完全溶解。 (2) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:称取130℃烘2-3小时的K 2 Cr 2 O 7 (分析纯)9.806g 于1L大烧杯中,加去离子水使其溶解,定溶至1L。K 2Cr 2 O 7 较难溶解,可加热加快其溶 解。 (3) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾4.903g, 用蒸馏水溶解并定溶至1L。

有机碳测定及方法

1.活性有机碳(CL) 土壤活性有机质是土壤有机质的活性部分,是指土壤中有效性较高、易被土壤微生物分解利用、对植物养分供应有最直接作用的那部分有机质。土壤活性有机质在指示土壤质量和土壤肥力的变化时比总有机质更灵敏,能够更准确、更实际的反映土壤肥力和土壤物理性质的变化、综合评价各种管理措施对土壤质量的影响。土壤活性有机质还可以表征土壤物质循环特征,作为土壤潜在生产力和由土壤管理措施变化而引起土壤有机质变化的早期预测指标。 (1)活性有机碳(CL):高锰酸钾氧化法。秤取过0.25mm筛的风干土样1.59于l00ml离心管中,加入333mM(或167mM、33mM)高锰酸钾25ml(易氧化态碳),振荡1小时,离心5分钟(转速2000次/min),取上清液用去离子水按1:250稀释,然后将稀释液在565nm比色。根据高锰酸钾浓度的变化求出样品的活性有机碳。 (2)总有机碳:重铬酸钾氧化法。 (3)非活性有机碳(CNL):总有机碳与活性有机碳的差值为非活性有机碳(CNL) (4)碳库活度(L):土壤碳的不稳定性,即碳库活度(L)等于土壤中的CL与CNL之比:L=样本中的活性有机碳CL/样本中的非活性有机碳CNL。 (5)碳库指数(CPI)=样品总有机碳含量(mg/g)/参考土壤总有机碳含量(mg/g) (6)活度指数(LI):碳损失及其对稳定性的影响,LI=样本的不稳定性(L)/对照的不稳定性(L) (7)基于以上指标可以得到碳库管理指数(CMI):CMI=CPI*LI*100 2.水溶性碳水化合物 碳水化合物是土壤中最重要、最易降解的有机成分之一,其对气候变化、耕作、生物处理等外界影响的敏感程度高于有机质总量。而且作为土壤微生物细胞必需的组成物质和主要能源,碳水化合物与土壤微生物存在密切的关系。 按Grandy 等的方法测定,操作过程为:称取一定量的风干土(根据有机质含量而定) 加入去离子水(水土比为10:1) ,在85℃下培养24 h 后用孔径为0.45μm的玻璃纤维滤纸过滤,将虑液按1:4的比例进行稀释,然后吸取5 ml 稀释液放入比色管中,再加入10 ml 蒽酮溶液,最后在625 nm 处进行比色测定,其含量用葡萄糖表示。 Grandy AS , Erich MS , Porter GA. 2000. Suitability of the anthrone-sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts [J]. Soil Biol . Biochem. ,32 :725~727.

小鼠总抗氧化能力的测定

小鼠总抗氧化能力的测定 刘小美宋菊敏 (2006-10-24) 一、原理 机体中有许多抗氧化物质,能使Fe3+还原成Fe2+,后者可与菲啉类物质形成稳固的络合物,通过比色可测出其抗氧化能力的高低。 二、目的 1.掌握总抗氧化能力的测定方法。 2.观察血虚小鼠模型总抗氧化能力的变化。 3.观察中药对血虚小鼠模型总抗氧化能力的影响。 三、材料和方法 1.试剂:总抗氧化能力测定试剂盒(南京建成生物工程研究所) 2.材料:EF管(1.5ml)120支,一次性试管(10ml)60支,移液器(P20ul、P100ul 、P1000ul)各2把及配套枪头各200支,玻璃比色皿(3ml,1cm光径)4只,温浴箱,分光光度计,漩涡混匀器1台,普通离心机大管、小管各1台,试剂瓶(125ml)1个,烧杯(150ml)2个,吸管(10ml)2支,吸球1支,量筒(200ml)1个,标签纸2张。 3.测定方法 (1)样本处理:取全血3500转/分离心15分钟得血清待测。 (2)试剂盒组成及配制:(50T) 试剂一:液体60ml×2瓶,40C保存。 试剂二:粉剂×2支,用时每支加双蒸水至120ml,室温保存。 试剂三:黄色贮备液10ml×1瓶,避光冷藏保存。贮备液得稀释液60ml×1瓶。 试剂三应用液的配制:临用前取贮备液以稀释液稀释,比例为1:19。需多少配制多少。 试剂四:溶液24ml×1瓶 试剂五:溶液24ml×1瓶,室温保存(天冷时会凝固,每次测试前适当加温以加速溶解,直至透明方可使用)。——测组织中总抗氧化能力时用到,测血清时不用。 处测各管吸光度。(370C时,每分钟每毫升血清使反应体系的吸光度(OD)值每增加0.01时,为一个总抗氧化能力单位)。 4)计算: 总抗氧化能力(单位/毫升血清)=(测定管OD-对照管OD)÷0.01÷30×19 四、注意事项 1.室温放置10分钟后必须立即测定吸光度,否则吸光度会增加。 2.实验试剂用量较少,所以加量一定要仔细、准确。 3.每次加样后都必须在漩涡器上充分混匀。 4.难吸难打的试剂必须做到慢吸慢打。 五.思考题 1.小鼠血虚模型总抗氧化能力会出现什么样的变化?为什么会出现这样的变化? 2.怎样用本实验的结果解释模型动物的某些主要症状? 1

土壤有机质测定

土壤有机质测定 5.2.1重铬酸钾容量法——外加热法 5.2.1.1方法原理在外加热的条件下(油浴的温度为180,沸腾5分钟),用一定浓度的重铬酸钾——硫酸溶液氧化土壤有机质(碳),剩余的重铬酸钾用硫酸亚铁来滴定,从所消耗的重铬酸钾量,计算有机碳的含量。本方法测得的结果,与干烧法对比,只能氧化90%的有机碳,因此将得的有机碳乘以校正系数,以计算有机碳量。在氧化滴定过程中化学反应如下: 2K2Cr2O7+8H2SO4+3C→2K2SO4+2Cr2(SO4)3+3CO2+8H2O K2Cr2O7+6FeSO4→K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H20 在1mol·L-1H2SO4溶液中用Fe2+滴定Cr2O72-时,其滴定曲线的突跃范围为1.22~0.85V。 从表5—4中,可以看出每种氧化还原指示剂都有自己的标准电位(E0),邻啡罗啉(E0=1.11V),2-羧基代二苯胺(E0=1.08V),以上两种氧化还原指示剂的标准电位(E0),正落在滴定曲线突跃范围之内,因此,不需加磷酸而终点容易掌握,可得到准确的结果。 例如:以邻啡罗啉亚铁溶液(邻二氮啡亚铁)为指示剂,三个邻啡罗啉(C2H8N2)分子与一个亚铁离子络合,形成红色的邻啡罗啉亚铁络合物,遇强氧化剂,则变为淡蓝色的正铁络合物,其反应如下: [(C12H8N2)3Fe]3++e [(C12H8N2)3Fe]2+ 淡蓝色红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr3+的绿色,快到终点变为灰绿色,如标准亚铁溶液过量半滴,即变成红色,表示终点已到。 但用邻啡罗啉的一个问题是指示剂往往被某些悬浮土粒吸附,到终点时颜色变化不清楚,所以常常在滴定前将悬浊液在玻璃滤器上过滤。 从表5-4中也可以看出,二苯胺、二苯胺磺酸钠指示剂变色的氧化还原标准电位(E0)分别为0.76V、0.85V。指示剂变色在重铬酸钾与亚铁滴定曲线突跃范围之外。因此使终点后移,为此,在实际测定过程中加入NaF或H3PO4络合Fe3+,

土壤活性有机碳的测定

土壤活性有机碳的测定 (高锰酸钾氧化法) 土壤样品经粘磨过0.5mm筛,根据土壤全有机碳含量,计算含有15mg碳的土壤样品量作为待测样品的称样重,然后将样品转移至50ml带盖的塑料离心管中,以不加土样作为空白。 向离心管中加入25ml浓度为333mmol/L的高锰酸钾溶液,在25℃左右,将离心管振荡(常规震荡即可)1小时,然后在转速2000rpm 下离心5分钟,将上清液用去离子水以1:250倍稀释,吸取1ml上清液转移至250ml容量瓶中,加去离子水至250ml即可。稀释样品用分光光度计在565纳米处测定吸光值。 配制不同浓度梯度的高锰酸钾的标准溶液,同样于分光光度计上测定吸光值,建立高锰酸钾的浓度和吸光值的线性直线方程,将稀释好的待测样品的吸光值代入方程得到氧化有机碳后剩余高锰酸钾的浓度,同样得到空白的高锰酸钾浓度,前后二者之差即为氧化活性有机碳后高锰酸钾溶液的浓度变化值,根据假设,氧化过程中高锰酸钾浓度变化1mmol/L消耗0.75mM或9mg碳。其中能被333mmol/L高锰酸钾氧化的碳是活性有机碳,不能被氧化的碳上非活性有机碳。 高锰酸钾标准曲线配制:首先配制0(去离子水)、15、30、60、100、150、300mmol/L的高锰酸钾标准梯度溶液,从每个浓度的标准溶液中吸取1ml标准溶液转移至250ml容量瓶中定容(既稀释250倍),这样能够就得到浓度梯度为0、0.06、0.12、0.24、0.4、0.6、1.0、1.2mmol/L的标准高锰酸钾梯度溶液,然后同样用分光光度计在565纳米处测定吸光值,绘制高锰酸钾的浓度与吸光值间的标准曲线。注意标准曲线配制过程中尽量避光,以防高锰酸钾氧化消耗,可以将容量瓶套上信封袋以避光,还有容量瓶等一定要清洗干净,以防高锰酸钾氧化杂质而消耗,影响测定结果。 活性有机碳(mg/g) =高锰酸钾浓度变化值×25×250×9 称样重×1000

抗氧化活性测定方法的比较

抗氧化活性测定方法的比较 人体衰老和多种疾病均与自由基有关,寻找天然抗氧化剂具有重要意义。黄酮、多糖、多肽、酚类等生物活性成分均具有抗氧化活性,抗氧化活性的筛选方法可分为体外和体内2种测试体系。 体外:抗氧化活性可以用在特定条件下,样品对检测体系中自由基的清除能力、抗油脂过氧化能力及样品的还原能力、总抗氧化能力等来衡量和表征。常用的方法有羟基自由基(·OH)清除能力法、1,1-二苯基苦基苯肼(DPPH法)、2,2-联氮基-双-(3-乙基苯并噻唑啉-6-磺酸)二氨盐(ABTS 法)、超氧阴离子自由基法(O2-·)、邻苯三酚自氧化法、β-胡萝卜素漂白法、硫代巴比妥酸法、铁离子还原能力测定(FRAP法)、总酚测定法、ORAC法等方法。体内:主要有DNA氧化损伤法、蛋白质氧化损伤法、线粒体氧化损伤法。 其中DPPH法和ABTS法操作较简单便捷,不需要特殊的检测设备,只在需固定时间下记下其紫外分光光度测量值后计算其自由基清除率,缺点是不同物质具有组成和结构的差异,与DPPH·、ABTS+·的反应速率不同,反应到达平衡的时间不同,将反应时间固定在某一值时,可能对抗氧化剂的抗氧化性评价带来错误的判断,且DPPH自由基会和其他自由基发生反应。邻苯三酚自氧化法缺点是检测波长、缓冲液的组成及pH值、邻苯三酚浓度等关键测定条件存在

着较大差异。β-胡萝卜素漂白法的缺点是β-胡萝卜素本身有抗氧化活性,对样品活性的测定结果有影响。FRAP法主要用于食品业,优点是简单易操作、可以重复,缺点是无法测定硫醇化合物的还原能力。ORAC法是国际上通用的评价食品氧化的标准方法,缺点是仪器成分较复杂,检测成本较高。 目前普遍使用的体外抗氧化活性指标一般都采用分光光度法,使用分光光度计测量各种颜色成分含量的变化。分光光度法操作较简单、便捷,不需要特殊的检测设备,只在需固定时间下记下其紫外-可见分光光度测量值后计算其活性大小,具有成本低、效率高、样品量少等优点。分光光度法缺点是会受到样本自身颜色和浑浊度的影响和限制,颜色深的样品测得的数据误差大,甚至得到错误的结果;不同物质组成和结构存在差异,与各种自由基的反应速率不同,反应到达平衡的时间不同,将反应时间固定在某一值时,可能对抗氧化剂的抗氧化性评价带来错误的判断。外界环境因素对实验结果也存在一定程度的影响,有些抗氧化活性实验在冬天低温时不易成功,测得的数据往往没有规律。 我觉得在测定样品的抗氧化活性时,各种方法都有自己的优缺点,要根据需测物质来决定用什么方法,比如DPPH 法的自由基选择性强,不和只有一个羟基的芳香酸、无羟基的类黄酮反应,这类物质需用其他方法测定。若对检测结果

土壤活性有机碳的测定及其影响因素概述

Hans Journal of Soil Science 土壤科学, 2018, 6(4), 125-132 Published Online October 2018 in Hans. https://www.sodocs.net/doc/ee14415310.html,/journal/hjss https://https://www.sodocs.net/doc/ee14415310.html,/10.12677/hjss.2018.64016 Determination of Soil Active Organic Carbon Content and Its Influence Factors Xingkai Wang1, Xiaoli Wang1*, Jianjun Duan2, Shihua An1 1Agricultural College, Guizhou University, Guiyang Guizhou 2College of Tobacco, Guizhou University, Guiyang Guizhou Received: Sep. 29th, 2018; accepted: Oct. 16th, 2018; published: Oct. 23rd, 2018 Abstract Soil active organic carbon is an important component of terrestrial ecosystems and an active chemical component in soil. It is of great significance in the study of terrestrial carbon cycle. Many studies have shown that soil active organic carbon can reflect the existence of soil organic carbon and soil quality change sensitively, accurately and realistically. In recent years, soil ac-tive organic carbon has become the focus and hot spot of research on soil, environment and ecological science. Soil active organic carbon can be characterized by dissolved organic carbon (DOC), microbial biomass carbon (SMBC), mineralizable carbon (PMC), light organic carbon (LFC) and easily oxidized organic carbon (LOC). This paper reviews the determination methods and influencing factors of these five active organic carbons, and looks forward to the future research focus, laying the foundation for the scientific management of land and the effective use of soil nutrients. Keywords Soil Organic Carbon, Determination Methods, Influencing Factors 土壤活性有机碳的测定及其影响因素概述 王兴凯1,王小利1*,段建军2,安世花1 1贵州大学农学院,贵州贵阳 2贵州大学烟草学院,贵州贵阳 收稿日期:2018年9月29日;录用日期:2018年10月16日;发布日期:2018年10月23日 *通讯作者。

森林生态系统土壤碳库与碳吸存对氮沉降的响应

森林生态系统土壤碳库与碳吸存对氮沉降的响应 1引言 近几十年来石化燃料燃烧、化肥使用及畜牧业发展等向大气中排放的含氮化合物激增并引起大气 N 沉降成比例增加。并且全球 N 沉降水平预计在未来 25 a 内会加倍,目前人类对全球 N 循环的干扰已经远远超过对地球上其它主要生物地球化学循环的影响。从 20 世纪 80 年代起,欧洲和北美的生态学家就开始在温带森林开展了 N 沉降对森林结构和功能影响的研究。目前,N 沉降研究已成为国际上生态和环境研究的热点内容之一。 土壤碳库是陆地生态系统碳库中最大的贮库,并且是其中非常活跃的部分[10]。全球约有 1.4×1018 ~ 1.5×1018g 碳是以有机质形态储存于地球土壤中,是陆地植被碳库(0.5×1018 ~ 0.6×1018 g)的 2 ~ 3 倍,是大气碳库(0.7×1018 g)的 2 倍[10]。土壤碳库在维持全球碳平衡中的巨大作用使土壤碳库对人类活动的响应已成为国内外研究的热点[11]。由于土壤碳库巨大,它的波动对大气 CO2 浓度产生重要的影响。同时,增加土壤有机碳存储可有效促进陆地生态系统对大气 CO2 固定和延缓温室效应。土壤碳周转速率慢,受各种干扰影响小,能维持较长时期的碳储藏。影响森林生态系统土壤碳库的因素很多,如森林的采伐、开垦、火烧以及在全球变化背景下的全球变暖、UVB 辐射增强、N 沉降等,在这些方面已相继展开了大量研究。目前国内外对土壤碳库的研究多是针对当前环境下某种生态系统的土壤碳含量、碳储量的估算,不能很好的预测全球环境变化对土壤碳库的影响。大气 N 沉降借助其对凋落物分解和土壤呼吸的直接或间接作用,极大地影响了生态系统土壤碳蓄积过程,并且大部分沉降到森林生态系统中的 N 都被固定在土壤中,直接与土壤碳库相互作用[17]。全球存在 116PgC/yr 的碳失汇,部分是由于大气中 N 沉降增加及其与碳循环相互作用的结果[18]。所以深入探讨大气 N 沉降对土壤碳库的影响具有重要的价值,已经成为 2006 年 IGBP 计划第二期中陆地生态系统与大气过程相互作用的研究重点。虽然国内已有了很多关于 N 沉降对凋落物分解和土壤呼吸、根系周转方面的论述,但全面反映N 沉降对土壤碳库影响的研究尚未见报道。本文对国内外在土壤碳库如凋落物分解、土壤呼吸、根系周转等方面对 N 沉降响应的研究进展进行了综述,为进一步开展相关研究作参考。

植物总抗氧化能力(TAC)比色法(ABTS)定量检测试剂盒

植物总抗氧化能力(TAC)比色法(ABTS)定量检测试剂盒产品说明书(中文版)
主要用途
植物总抗氧化能力 (TAC) 比色法 (ABTS) 定量检测试剂盒是一种旨在通过过硫酸钾的参与, 使染料 ABTS 氧化,在抗氧化剂的存在下,通过分光光度仪,观察其峰值下降的变化,来定量检测对应于标准水溶性生 育酚 Trolox 的总抗氧化能力,即抑制氧化等值浓度的权威而经典的技术方法。该技术经过精心研制、成功 实验证明的。适用于各种体液包括血浆、血清、尿液、脑脊液、唾液、精液等各种体液的总抗氧化能力检 测。产品严格无菌,即到即用,操作简易,性能稳定。b5E2RGbCb5E2RGbC
技术背景
超氧自由基阴离子(superoxide radical;O2-) 、过氧化氢(hydrogen peroxide;H2O2) 、羟自由基或氢氧基 (hydroxyl radical;OH-) 、过氧化基(peroxyl radical;ROO-) 、氢过氧自由基(hydroperoxyl;HOO) 、烷 氧自由基(alcoxyl radical) 、氮氧基(nitric Oxide;NO-) 、过氧亚硝基阴离子(peroxynitrite anion;ONOO-) 次氯酸(hypochlorous acid;HOCl) 、半醌自由基(semiquinone radical) 、单线态氧气(singlet oxygen)等 细胞内活性氧族(Reactive Oxygen Species;ROS)的产生和增多,将导致细胞衰老或凋亡,甚而导致诸如 冠心病、风湿性关节炎、肿瘤、退行性病变等各种病理状况。在生物系统内,通过抗氧化酶例如超氧化物 歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶等,大分子,例如白蛋白、铜蓝蛋白(ceruloplasmin;CER) 、 铁蛋白(ferritin)和抗氧化因子,例如生育醇、类胡萝卜素、抗坏血酸、还原性谷胱甘肽和尿酸胆红素 (bilirubin)等,产生抗氧化能力,即捕获自由基的能力,达到消除或降低ROS的损害。通过过硫酸钾 (potassium persulfate)氧化2,2’-连氮-双(3-乙基苯并噻唑-6-磺酸) (2,2'-Azino-bis(3-ethylbenzthiazoline6-sulfonic acid),diammonium salt;ABTS)产生的ABTS自由基,衡量体系中抗氧化剂捕获自由基或者消耗 抗氧化剂的能力,在分光光度仪(730nm波长)的帮助下,观察其峰值下降的变化,并与标准化抗氧化剂 水溶性生育酚Trolox对照。p1EanqFDp1EanqFD
产品内容
1 / 13

土壤学实验报告3

实验报告 课程名称: 土壤学实验 指导老师: 谢晓梅 成绩:__________________ 实验名称: 土壤有机质的测定 同组学生姓名: 金璐 一、实验目的和要求 二、实验内容和原理 三、实验材料与方法 四、实验步骤 五、实验数据记录和处理 六、实验结果与分析 七、讨论、心得 八、参考文献 一、实验目的和要求 1、了解土壤有机质测定对于农业生产的意义; 2、 掌握土壤有机质含量的测定方法。 二、实验内容和原理 1、实验内容:用稀释热法测定土壤有机质的含量。 2、实验原理: ①土壤有机质是指存在于土壤中的所以含碳有机物质,包括各种动植物残体,微生物及其分解和合成的各种有机物质(生命体和非生命体)。它是土壤的重要组成部分。并且土壤有机质的作用巨大,它是土壤肥力高低的一个重要指标,对生态环境中有机污染及全球碳平衡方面也有重要意义。 分析测定土壤有机质含量,包括部分分解很少的动植物残体、动植物残体的半分解产物及微生物代谢物和腐殖质类物质。并且不同土壤中有机质含量差异很大,低的不足0.5%,高的可达20-30%。其中,>20%称有机质土壤,<20%称矿质土壤。一般的,耕作土壤有机质含量<5%。 ②稀释热法是利用浓重铬酸钾迅速混合所产生的热来氧化有机质,剩余重铬酸钾用硫酸亚铁滴定,从所消耗的重铬酸钾量,计算有机碳的含量。但由于热量较低,对有机质的氧化程度较低,只有77%。 氧化过程: K 2Cr 2O 7 + C + H 2SO 4→K 2SO 4 + Cr 2(SO 4)3 + CO 2 + H 2O 橙色 绿色 滴定过程: K 2Cr 2O 7 + FeSO 4 + H 2SO 4→K 2SO 4 + Cr 2(SO 4)3 + Fe 2(SO 4)3 + H 2O 橙色 浅绿色 绿色 浅黄色 实验使用邻啡啰啉试剂作为指示剂,显示氧化还原状态。邻啡啰啉试剂与不同价态的铁形成不同颜色的络合物。 [(C 2H 8N 2)3Fe]3+?[(C 2H 8N 2)3Fe]2+ 淡蓝色 红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr 3+的绿色,快到终点时变为灰绿色,如果标准亚铁溶液过量半滴,即变成红色,说明终点已到。 三、实验材料与方法 1、实验材料

第三章 土壤有机质的测定

土壤有机质是土壤中各种营养元素特别是氮、磷的重要来源。它还含有刺激植物生长的胡敏酸类等物质。由于它具有胶体特性,能吸附较多的阳离子,因而使土壤具有保肥力和缓冲性。它还能使土壤疏松和形成结构,从而可改善土壤的物理性状。它也是土壤微生物必不可少的碳源和能源。因此,除低洼地土壤外,一般来说,土壤有机质含量的多少,是土壤肥力高低的一个重要指标。 本章介绍了有机质的形态、含量与分布,土壤有机质测定各种方法的方法原理、适用范围、试剂的配制、操作步骤、结果计算、方法要点等内容。

3.1.1 土壤有机质含量及其在肥力上的意义 土壤有机质是土壤中各种营养元素特别是氮、磷的重要来源。它还含有刺激植物生长的胡敏酸类等物质。由于它具有胶体特性,能吸附较多的阳离子,因而使土壤具有保肥力和缓冲性。它还能使土壤疏松和形成结构,从而可改善土壤的物理性状。它也是土壤微生物必不可少的碳源和能源。因此,除低洼地土壤外,一般来说,土壤有机质含量的多少,是土壤肥力高低的一个重要指标。 华北地区不同肥力等级的土壤有机质含量约为:高肥力地>15.0g·kg-1 ,中等肥力地10~14g·kg-1,低肥力地5.0-10.0g·kg-1,薄砂地<5.0g·kg-1。 南方水稻土肥力高低与有机质含量也有密切关系。据浙江省农业科学院土壤肥料研究所水稻高产土壤研究组报道:浙江省高产水稻土的有机质含量大部分多在23.6~48g·kg-1,均较其邻近的一般田高。上海郊区高产水稻土的有机质含量也在25.0~40g·kg-1范围之内。 我国东北地区雨水充足,有利于植物生长,而气温较低有利土壤有机质的积累,因此东北的黑土有机质含量高达40~50g·kg-1以上。由此向西北,雨水减少,植物生长量逐渐减少,土壤有机质含量亦逐渐减少,如栗钙土为20~30g·kg-1,棕钙土为20g·kg-1 左右,灰钙土只有10~20g·kg-1。向南雨水多、温度高,虽然植物生长茂盛,但土壤中有机质的分解作用增强,黄壤和红壤有机质含量一般为20~30g·kg-1。对耕种土壤来讲,人为的耕作活动则起着更重要的影响,因此在同一地区耕种土壤有机质含量比未耕种土壤要低得多。影响土壤有机质含量的另一重要因素是土壤质地,砂土有机质含量低于粘土。 土壤有机质的组成很复杂,包括三类物质: 1.分解很少,仍保持原来形态学特徵的动植物残体。 2.动植物残体的半分解产物及微生物代谢产物。 3.有机质的分解和合成而形成的较稳定的高分子化合物——腐殖酸类物质。

抗氧化剂抗氧化活性的测定方法

1.抗氧化剂是指在低浓度下能有效延缓或阻止底物氧化的物质。被氧化的底物包括蛋白质、脂质、糖和DNA。 2.初始型抗氧化剂(AH)可通过与脂质自由基L.、过氧自由基LOO.或烷氧自由基LO.反应抑制脂质氧化链反应。 L.+ AH--- LH + A. LOO.+ AH--- LOOH + A. LO.+ AH--- LOH + A. 抗氧化剂自由基A.也能与过氧自由基、烷氧自由基反应从而终止脂质氧化反应。 LOO.+ A.---LOOA LO.+ A.---LOA 次级型抗氧化剂可通过各种机理延缓脂质氧化,如螯合过渡金属、给初始型抗氧化剂补充氢、清除氧以及使活性物质失活等。 抗氧化剂的活性分为在生物体外(如食品中)的活性和在生物体内的活性。本文综述了体外测定抗氧化剂抗氧化活性的方法,不包括在生物体中测定生物活性的方法。 3.评价或表征抗氧化活性的方法为了说明在特定条件下被测物抑制底物氧化的效力或清除自由基的能力 实际测定时至少要说明在测试条件下被测物是抗氧化剂还是促氧化剂;在指定浓度下比较不同测试材料(如被测物与标准抗氧化剂或添加有被测物的测试体系与空白体系)对底物的作用。 评价或表征抗氧化活性的方法有: (1)在指定的时间测量氧化产物或官能团的浓度或吸光度值;( 2)测量反应的速率;

( 3)测量诱导期(延滞期)或氧化达到一定程度所需的时间;( 4)测量速度的积分(即动力学曲线下的面积) ; ( 5)测量被测物产生与标准抗氧化剂相当作用的浓度。4.参数 4.1诱导期( induction period) 诱导期tIND(也叫延滞期, lag period)常定义为化学反应的速度。诱导期是一个相当不确定的值,受检测方法、使用仪器的灵敏性以及一些其他因素的影响。对于脂质氧化,诱导期通常是指链增长阶段动力学曲线的切线和时间轴的交点。 4.2抑制率( percentag e of inhibition)和IC50 抑制率和IC50 (抗氧化剂提供50%抑制作用时的浓度,也可用EC50表示的)常用来表征抗氧化能力。它们不仅与被测抗氧化剂的反应性能和氧化的底物有关,而且受其他因素的影响,如脂质氧化链反应的长度和抑制速率等。此外,用IC50表征抗氧化剂 的活性与比较活性的时间点有关。只有在其他参数相同的情况下,在某一研究中测得的抑制率和IC50才可以与另一研究中测得的值进行直接比较。TEC50是指抗氧化剂提供50%抑制作用所需的时间,也常用来表征抗氧化活性 5.对测定方法的要求 测定抗氧化剂抗氧化活性的方法应满足如下要 求: ( 1)能说明测试体系中发生的反应,并能用明确的动力学图解描述;( 2)测试要有再现性; ( 3)测试效率要足够高; ( 4)方法要相对简单; ( 5)能连续检测; ( 6)应使用与体内或食品有关的活性自由基;

土壤有机碳检测方法介绍与自我总结

土壤有机碳检测方法介绍 土壤有机碳是以有机物形式存在于土壤中的C元素的一种存在形式,作为土壤碳库中的重要组成部分,一方面在土壤品质监测中是一项重要的检测项目,另一方面对研究空气中二氧化碳来源也有很大的作用。 土壤有机碳根据其稳定性可分为活性有机碳、慢性有机碳和惰性有机碳三种,其中活性有机碳是反映土壤肥力和土壤管理措施的较好指标。而根据土壤中有机碳的溶解性质又可分为溶解性有机碳和非溶解性有机碳。非溶解性有机碳属于惰性有机碳,由于不能溶解不能被植物吸收也不易产生迁移,所以在土壤质量监控和环境监测方面没有实际意义,而活性有机碳和慢性有机碳大多属于溶解性有机碳。 目前土壤有机碳的检测方法主要是干烧法和湿氧化法。常用的重铬酸钾和浓硫酸湿氧化滴定技术由于不能确保样品完全氧化,检测效果较差检测结果必须进行修正。而干烧法目前又有土壤直接高温燃烧和土壤经溶液萃取后高温燃烧溶液两种方法。 土壤直接燃烧法大多需在样品燃烧前使用磷酸溶液或盐酸溶液去除土壤中的无机碳。磷酸酸性较弱不易将土壤中的难溶碳酸盐氧化(西南地区广布卡斯特地貌,碳酸岩形成的土壤比重较高),而直接燃烧需要在900℃以上的温度才能保证燃烧完全,碳酸盐在800℃左右就会分解,所以检测结果受无机碳干扰明显。盐酸溶液虽然可将大部分碳酸盐去除,但是残留的盐酸会对催化剂和检测器的寿命造成严重影响,使用时必须将样品再次淋洗、烘干才能上机检测,冲洗过程中又会造成溶解性有机碳的损失,所以检测结果也不是很准确。这正是Tekmar在第6带产品设计生产时取消固体进样器的一个主要原因。所以相对来说检测更准确的则是溶液萃取法。 溶液萃取法是通过一定浓度的盐溶液将土壤中的有机碳转移至液相后再对溶液进行检测的方法。一方面该方法只将溶液中的溶解性碳转移至溶液,溶液再上仪器进行检测,检测过程中仪器会自动清除无机碳,所以检测结果准确可靠;而不溶解性碳(包括难溶性碳酸岩和不溶性有机碳)不是土壤的有效养分或污染物所以实际监测意义不大,这也是为什么中国农科院和中科院下属单位长期将溶液萃取法作为土壤有机碳检测手段的根本原因。

中国土壤有机碳研究综述.kdh

中国土壤有机碳研究综述 刘敏 (中国林业科学研究院热带林业研究所,广东省,广州市,510520) 摘要 本文介绍了目前为止中国土壤有机碳的研究现状和进展,主要从有机碳库的计算和研究方法、有机碳库的影响因子和有机碳运动及转化等方面的研究进行了述论,为土壤有机碳,特别是森林土壤的固碳研究提供了科学的依据,为对照国外土壤有机碳的研究水平提供了参考依据,也为全球碳库的统计研究提供了数据理论基础。 关键词:土壤有机碳 影响因子 动态 方法 引言 碳是生命物质中的主要元素之一,是有机质的重要组成部分。总的来说,地球上主要有四大碳库,即大气碳库、海洋碳库、陆地生态系统碳库和岩石圈碳库,碳元素在大气、陆地和海洋等各大碳库之间不断地循环变化。陆地生态系统碳库主要由植被和土壤两个分碳库组成,内部组成和各种反馈机制最为复杂,是受人类活动影响最大的碳库。土壤在全球的碳排放和隔离潜能中被认为是一个活跃和重要的角色。研究土壤可持续利用的核心问题是土壤有机质,有机质数量的耗竭和质量的恶化可直接导致土壤生态功能的衰退。土壤有机质在微生物分解过程中,大部分的碳以CO2形式释放到空气中,迅速与大气进行交换,对大气碳库有重要的调节作用,其他部分以土壤有机碳或碳酸盐的形式储藏在土壤碳库中。于东升[1]等计算出中国的土壤面积共有928.10×104 km2,有机碳储量(SOC)为89.14Pg(1 Pg = 1015g),土壤平均碳密度为9.60 kg·m-2。植物有机质进入土壤后经过腐解,生成成复杂的土壤有机碳。李晓阳[2]等认为土壤有机碳的变化与土壤特性、土壤管理方式及土壤有机碳检测方法有关。周莉[3]等认为理解土壤有机碳蓄积过程对生物、物理和人为因素的响应和把握关键的控制因子是准确预测土壤有机碳在全球变化情景下对大气 CO2的源、汇方向及准确评估碳收支的关键。 1 土壤有机碳库的计算方法 土壤有机碳库计算方法主要有5种:土壤类型法、生命带研究方法、GIS估算土壤有机碳储量、相关关系估算法、统计估算法等。根据研究对象的不同主要有4种类型:根据植被类型推算、根据土壤类型推算、根据生命气候带推算、利用模型计算。于东升[1],王义祥[4]用土壤类型推算法进行了研究,数据结果的准确性与数据基础有很大的关系。甘海华[5],邱建军[6]运用模型也作了这方面的研究;童成立[7]等比较了有机碳计算机模拟模型(SCNC)模型和英国洛桑模型(ROTHC-26.3),结果显示了SCNC的接近真值的效果,他们认为输入量的要求成为了取得研究的成功的关键。赵永存[8]等认为回归克里格预测土壤有机碳的空间分布效果最好,能更好地反映碳密度与地形的关系以及局部变异。 2 土壤有机碳库的影响因子 2.1土壤化学性质对土壤有机碳影响 土壤的化学性质是影响土壤有机碳库的关键因子。李明锋[9]等研究表明SOC和TN的含量直接或间接地决定生态系统CO2排放通量,并且姜勇[10]认为自然生态系统的SOC与TN的相关性略高与农田生态系统。郭胜利[11]认为Q m(P素的最大吸附量),DPS(土壤磷素吸附饱和度)和EPC o(零净吸附磷浓度)变化与SOC存在显著或极显著的线性相关关系(P<0.001)。根据不同林分有机碳、氮组分的不同,徐秋芳[12]认为灌木林和阔叶林土壤表层的微生物生物碳(C MB)、易氧化态碳(C R)与土壤总有机碳(C T)含量间相关性均达显著水平,而灌木林水溶性有机碳(C WS)与C T的相关性达到极显著水平;阔叶林土壤蔗糖酶、脲酶、蛋白酶及磷酸酶活性与C T、C MB及C R含量间均存在显著相关性,而灌木林只有蔗糖酶活性与各类碳有机碳有显著相关性。姜培坤[13]认为雷竹土壤的C T与活性碳含量(C A)、C WS之间,C A与C WS之间以及C T、C A、C WS与土壤(TN)、水解氮、有效磷(AvP)、速效钾(AvK)之间相关性均达极显著水平(P<0.01),而雷竹C MB与C T、C A、C WS、TN、水解氮、AvP、AvK之间相关性均不显著。彭佩钦[14]认为湿地土壤C MB 作者简介 刘敏,女,1974年出生,硕士,工程师。主要从事森林生态(群落基本特征分析);植物水分生理(耐旱、耐水研究);土壤(基本理化性状及有机碳研究);3S技术的应用。 Email:liumin27@https://www.sodocs.net/doc/ee14415310.html,。

相关主题