搜档网
当前位置:搜档网 › 2009年中国第六届东南地区数学奥林匹克竞赛试题及解答

2009年中国第六届东南地区数学奥林匹克竞赛试题及解答

2009年中国第六届东南地区数学奥林匹克竞赛试题及解答
2009年中国第六届东南地区数学奥林匹克竞赛试题及解答

第六届中国东南地区数学奥林匹克竞赛试题

第一天

1.试求满足方程2221262009x xy y -+=的所有整数对(,)x y .

2.在凸五边形ABCDE 中,已知,,AB DE BC EA AB EA ==≠,且,,,B C D E 四点共圆.

证明:,,,A B C D 四点共圆的充分必要条件是AC AD =.

3.设,,x y z R +

∈222(),(),()x y z y z x z x y =-=-=-;

求证: 2222()a b c ab bc ca ++≥++.

4.在一个圆周上给定十二个红点;求n 的最小值,使得存在以红点为顶点的n 个三角形,满 足:以红点为端点的每条弦,都是其中某个三角形的一条边.

第二天

5.设1,2,,9 的所有排列129(,,,)X x x x = 的集合为A ;X A ?∈,记212)(x x X f += 9393x x ???++,{()}M f X X A =∈;求M .(其中M 表示集合M 的元素个数)

6.已知O 、I 分别是ABC ?的外接圆和内切圆;证明:过O 上的任意一点D ,都可 以作一个三角形DEF ,使得O 、I 分别是DEF ?的外接圆和内切圆.

7. 设(2)(2)(2)

(,,)131313x y z y z x z x y f x y z x y y z z x

---=

++++++++, 其中,,0x y z ≥ ,且1x y z ++=.

求(,,)f x y z 的最大值和最小值.

8.在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一 片形状如下完整的T 型五方连块?

第六届中国东南地区数学奥林匹克试题与解答

第一天

1.试求满足方程2221262009x xy y -+=的所有整数对(,)x y .

解: 设整数对(,)x y 满足方程22212620090x xy y -+-= …(1),将其看作

关于x 的一元二次方程,其判别式()

2222

441262009500(4)36y y y ?=-?-=-+的

值应为一完全平方数; 若224y >,则0?<;

若224y <,则2y 可取2220,1,2,3,相应的?值分别为8036,7536,6036和3536 ,

它们皆不为平方数;

因此,仅当22

4y =时,()

2225004366y ?=-+=为完全平方数.

若4=y ,方程(1)化为2

870x x -+=, 解得1=x 或7x =;

若4-=y ,方程(1)化为 2

870x x ++=,解得1-=x 或7x =-.

综上可知,满足原方程的全部整数对为:()()()()(),1,4,7,4,1,4,7,4x y =----.

2.在凸五边形ABCDE 中,已知,,AB DE BC EA AB EA ==≠,且,,,B C D E 四点共圆.

证明:,,,A B C D 四点共圆的充分必要条件是AC AD =. 证明:必要性:若,,,A B C D 共圆,则由

,AB DE BC EA ==,得BAC EDA ∠=∠,ACB DAE ∠=∠,,

故得AC AD =;

充分性:记BCDE 所共的圆为O ,若A C A D =,则圆心O 在CD 的中垂线AH 上,设点B 关于AH 的对称点为F ,则F 在O 上,且因AB EA ≠,即DE DF ≠,

所以,E F 不共点,且AFD ?≌ABC ?,又由,AB DE BC EA ==,知AED ?≌CBA ?,因此,

AED ?≌DFA ?,故由AED DFA ∠=∠

,得AEFD 共圆,即点A 在

DEF 上,也即

点A 在

O 上,从而,,,A B C D 共圆. 3.设,,x y z R +∈222(),

(),()x y z y z x

z x y =

-=-=-

求证: 2222()a b

c ab bc ca ++

≥++.

()()(),y z z x x y =-+--

()()()z x x y y z =-+--,

()()(

)x y y z z x

=-+-

-.

所以

[]2

()()()()()()0y z z x x y y z z x x y =-+++

---≤,

于是

2

2

22()(

)a b b c

c a a b c

++-+

+=

0≤, 故 2

2

2

2()a b c a b b c c a

++≥++. 4. 在一个圆周上给定十二个红点;求n 的最小值,使得存在以红点为顶点的n 个三角形,满 足:以红点为端点的每条弦,都是其中某个三角形的一条边.

解:设红点集为:{}

1212,,,A A A A = ,过点1A 的弦有11条,而任一个含顶点1A 的三角形,恰含两条过点1A 的弦,故这11条过点1A 的弦,至少要分布于6个含顶点1A 的三角形中;

同理知,过点(2,3,,12)i A i = 的弦,也各要分布于6个含顶]

点i A 的三角形中,这样就需要12672?=个三角形,而每个三

角形有三个顶点,故都被重复计算了三次,因此至少需要

72

243

=个三角形. 再说明,下界24可以被取到.不失一般性,考虑周长为12的圆周,其十二等分点

为红点,以红点为端点的弦共有2

1266C =条.若某弦所对的劣弧长为k ,就称该弦的刻

度为k ;于是红端点的弦只有6种刻度,其中,刻度为1,2,,5 的弦各12条,刻度为6的弦共6条;

如果刻度为,,a b c (a b c ≤≤)的弦构成三角形的三条边,则必满足以下两条件之一:或者a b c +=;或者12a b c ++=;

于是红点三角形边长的刻度组

()

,,a b c 只有如下12种可能:

()()()1,1,2,2,2,4,3,3,6,

()()()()()()()(

)()2,5,5

,1,2,3,1,3,4,1,4,5,1,56,2,3,5,2,4,6,3,4,5,44,4; 下面是刻度组的一种搭配:取()()()1,2,3,1,5,6,2,3,5型各六个,()4,4,4型四个;这时恰好得到66条弦,且其中含刻度为1,2,,5 的弦各12条,刻度为6的弦共6条;

今构造如下:先作()()()1,2,3,1,5,6,2,3,5型的三角形各六个,()4,4,4型的三角形三个,再用三个()2,4,6型的三角形来补充.

()1,2,3型六个:其顶点标号为:

{}{}{}{}{}{}2,3,5,4,5,7,6,7,9,8,9,11,10,11,1,12,1,3; ()1,5,6型六个:其顶点标号为:

{}{}{}{}{}{}1,2,7,3,4,9,5,6,11,7,8,1,9,10,3,11,12,5; ()2,3,5型六个:其顶点标号为:

{}{}{}{}{}{}2,4,11,4,6,1,6,8,3,8,10,5,10,12,7,12,2,9; ()4,4,4型三个:其顶点标号为:{}{}{}1,5,9,2,6,10,3,7,11;

()2,4,6型三个:其顶点标号为:{}{}{}4,6,12,8,10,4,12,2,8.

(每种情况下的其余三角形都可由其中一个三角形绕圆心适当旋转而得). 这样共得到24个三角形,且满足本题条件,因此,n 的最小值为24.

第六届中国东南地区数学奥林匹克试题解答

第二天

5.设1,2,,9 的所有排列129(,,,)X x x x = 的集合为A ;X A ?∈,记

1239()239f X x x x x =++++ ,{()}M f X X A =∈;求M .(其中M 表示集合M 的元素个数).

解:我们一般地证明,若4n ≥,对于前n 个正整数1,2,,n 的所有排列

12(,,,)n n X x x x = 构成的集合A ,若123()23n n f X x x x nx =++++ ,

{()}n M f X X A =∈,则36

6

n n n M -+=

. 下面用数学归纳法证明:

n M (1)(2)(1)(2)

(1)(21),1,,666n n n n n n n n n ++++++??=+????

当4n =时,由排序不等式知,集合M 中的最小元素是{}()4,3,2,120f =,最大

元素是{}()1,2,3,430f

=.又,

{}(){}(){}()3,4,2,121,3,4,1,222,4,2,1,323f f f ===,

{}(){}(){}(){}()3,2,4,124,2,4,1,325,1,4,3,226,1,4,2,327f f f f ====,

{}(){}()2,1,4,328,1,2,4,329f

f ==,

所以,4M ={}20,21,,30 共有11=3446

6

-+个元素.因此,4n =时命题成立.

假设命题在1n -(5n ≥)时成立;考虑命题在n 时的情况.对于1,2,,1n - 的任一排列1121(,,,)n n X x x x --= ,恒取n x n =,得到1,2,,n 的一个排列121,,,,n x x x n - , 则

1

n

k

k kx

=∑12

1

n k k n kx -==+∑.由归纳假设知,此时1

n

k k kx =∑取遍区间

2

22(1)(1)(1)(21)(5)(1)(21),,6666n n n n n n n n n n n n n ??

-+--+++??++=????????

上所有整数.

再令1n x =,则

11

111(1)(1)2n n n k k k k k k n n kx n kx n k x --===-=+=+-+∑∑∑1

1

(1)(1)2n k k n n k x -=+=+-∑, 再由归纳假设知,

1

n

k

k kx

=∑取遍区间

2

(1)(1)(1)(1)(1)(21)(1)(2)2(2),,262666n n n n n n n n n n n n n n n ??

+-++--+++??++=????????

上的所有整数.

因为222(2)(5)

66n n n n ++≥,所以,1

n

k k kx =∑取遍区间 (1)(2)(1)(21),66n n n n n n ++++??

????

上的所有整数.即命题对n 也成立.由数学归纳法知,命题成立.

由于 3(1)(21)(1)(2)6

666

n n n n n n n n ++++-+-=,从而,集合n M

N F

的元素个数为36

6

n n -+.特别是,当9n =时,9121M M ==.

6.已知O 、I 分别是ABC ?的外接圆和内切圆;证明:过O 上 的任意一点D ,都可作一个三角形DEF ,使得O 、I 分别是 DEF ?的外接圆和内切圆.

证:如图,设OI d =,,R r 分别是ABC ?的外接圆和内切圆半径,延长AI 交O 于K ,则2s i n

2

A

K I K B R ==,sin 2

r AI A =,延长OI 交O 于,M N ;

则()()2R d R d IM IN AI KI Rr +-=?=?=,即2

2

2R d Rr -=;

过D 分别作I 的切线,DE DF ,,E F 在O 上,连

EF ,则DI 平分EDF ∠,只要证,EF 也与I 相切;

设DI O P = ,则P 是 EF

的中点,连PE ,则 2sin

2

D

PE R =,sin

2

r DI D =,

()()22ID IP IM IN R d R d R d ?=?=+-=-,

所以2222sin 2sin 22

R d R d D D

PI R PE DI r --=

=?==, 由于I 在角D 的平分线上,因此点I 是DEF ?的内心, (这是由于,()()00

111801802

22D E PEI PIE P F +∠=∠=

-∠=-∠=,而 2D PEF ∠=

,所以2

E

FEI ∠=,点I 是DEF ?的内心). 即弦EF 与I 相切. 7.设(2)(2)(2)

(,,)131313x y z y z x z x y f x y z x y y z z x

---=

++++++++, 其中,,0x y z ≥ ,且1x y z ++=.

求(,,)f x y z 的最大值和最小值.

解:先证1,7f ≤

当且仅当1

3

x y z ===时等号成立. 因(31)121313x x y x

f x y x y

+-=∑=-∑

++++ … ()* 由哥西不等式:2()1

13(13)(13)

x x x y x x y x x y ∑∑≥=

++∑++∑++,因为7

(13)(24)2.3

x x y x x y z xy ∑++=∑++=+∑≤

从而 3

,137

x x y ∑

≥++3112,77f ≤-?=max 1,7f =当且仅当13x y z ===时等号成立.

再证0,f ≥当1,0x y z ===时等号成立.

事实上,(2)(2)(2)

(,,)131313x y z y z x z x y f x y z x y y z z x

---=

++++++++=

2121()()13131313xy xz x y y z z x x y -+-++++++++21()1313yz y z z x

+-++++ 77(13)(13)(13)(13)xyz xyz x y y z z x x y =+++++++++70(13)(13)xyz

y z z x +≥++++ 故min 0f =,当1,0x y z ===时等号成立.

另证:设{}min ,,z x y z =,若0z =,则

22(,,0)0131242xy xy xy xy

f x y x y y x y x y

=

-=-=+++++;

下设,0x y z ≥>,由()*式,要证0f ≥,只要证,1

132x x y ≤++∑ …①

注意到

12242x y

x y x y =+++,于是①等价于 8()()()

132413213241313z x x y y z x y

z x x y x y x y y z x y x y y z

≤-+-=++++++++++++++ 即 248131313x y x y

z x x y y z

+≤+++++++ …②

而由柯西不等式,可得

22

8(2)1313(13)(13)/2

x y x y x y y z x x y y y z +=+

++++++++

2

22

(2)24(3)(3)/213x y x y

x x xy y y yz z x

++≥

=+++++++ 即②成立,从而0f ≥,故min 0f =,当1,0x y z ===时等号成立.

8.在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格 表中裁剪出一片形状如下完整的T 型五方连块? 答:至少要如下图挖去14个小方格.

如右图,将8×8棋盘切为五个区域.

中央部份的区域至少要挖去2个小方格才能使T 形的五方块放不进去。二个打叉的位置是不等同的位置,一个是在角落位置,另一个是内部位置,只挖去其中一个无法避免T 对于在边界的四个全等的区域,每区域至少要挖去3个 小方格才能使T 形的五方块放不进去.

证明:以右上角的区域为例,下方T 部份必需挖去1个 小方格,上方部份必需挖去打叉的位置的1个小方格. 下方T 部份挖去的1个小方格有五种情况,但无论如何

均可再置入一片T 形的五方块, 因此至少要挖去3个小方格.

综合所有区域,对于T型五方块至少要挖去3×4+2=14个小方格.

高!考★试|题╗库https://www.sodocs.net/doc/f216214077.html,

历届东南数学奥林匹克试题

目录 2004年东南数学奥林匹克 (2) 2005年东南数学奥林匹克 (4) 2006年东南数学奥林匹克 (6) 2007年东南数学奥林匹克 (9) 2008年东南数学奥林匹克 (11) 2009年东南数学奥林匹克 (14) 2010年东南数学奥林匹克 (16) 2011年东南数学奥林匹克 (18) 2012年东南数学奥林匹克 (20)

2004年东南数学奥林匹克 1.设实数a、b、c满足a2+2b2+3c2=32,求证:3?a+9?b+27?c≥1. 2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作 一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN. 3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. (2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. 4.给定大于2004的正整数n,将1,2,3,?,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值. 5.已知不等式√2(2a+3)ccc(θ?π4)+6ssnθ+ccsθ?2csn2θ<3a+ 6对于θ∈?0,π2?恒成立,求a的取值范围. 6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的 圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD?EE+DE?AE=AD?AE. 7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有 一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案 奥数题一 一、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么 ( ) A.a,b都是0 B.a,b之一是0 C.a,b互为相反数 D.a,b互为倒数 答案:C 解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。 2.下面的说法中正确的是 ( ) A.单项式与单项式的和是单项式 B.单项式与单项式的和是多项式 C.多项式与多项式的和是多项式 D.整式与整式的和是整式 答案:D 解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。两个单项式x2,2x2之和为3x2是单项式,排除B。两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。 3.下面说法中不正确的是 ( ) A. 有最小的自然数 B.没有最小的正有理数 C.没有最大的负整数 D.没有最大的非负数 答案:C 解析:最大的负整数是-1,故C错误。 4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>0 答案:D 5.大于-π并且不是自然数的整数有 ( ) A.2个 B.3个 C.4个 D.无数个 答案:C 解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,

-1,0共4个.选C。 6.有四种说法: 甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 丁.负数的立方不一定大于它本身。 这四种说法中,不正确的说法的个数是 ( ) A.0个 B.1个 C.2个 D.3个 答案:B 解析:负数的平方是正数,所以一定大于它本身,故C错误。 7.a代表有理数,那么,a和-a的大小关系是 ( ) A.a大于-a B.a小于-a C.a大于-a或a小于-a D.a不一定大于-a 答案:D 解析:令a=0,马上可以排除A、B、C,应选D。 8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数 B.乘以同一个整式 C.加上同一个代数式 D.都加上1 答案:D 解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一 个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D. 9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ) A.一样多 B.多了 C.少了 D.多少都可能 答案:C 解析:设杯中原有水量为a,依题意可得, 第二天杯中水量为a×(1-10%)=0.9a; 第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a; 第三天杯中水量与第一天杯中水量之比为0.99∶1, 所以第三天杯中水量比第一天杯中水量少了,选C。

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N . 〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; 〔2〕假设 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解〔1〕设Q ,R 分不是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,那么 11 ,22EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,因此 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,因此 ABD ACD ∠=∠, 因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ?=?. 〔2〕答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么 11 ,22 NS OD EQ OB ==, C B

因此 NS OD EQ OB =.①又 11 , 22 ES OA MQ OC ==,因此 ES OA MQ OC =.② 而AD∥BC,因此 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 因此NSE ?~EQM ?, 故 EN SE OA EM QM OC ==〔由②〕.同理可得, FN OA FM OC =, 因此EN FN EM FM =, 从而EM FN EN FM ?=?. C B

第十届中国东南地区数学奥林匹克试题解答

第十届东南数学奥林匹克解答 第一天 (2013年7月27日 上午8:00-12:00) 江西 鹰潭 1. 实数,a b 使得方程3 2 0x ax bx a -+-=有三个正实根.求32331 a a b a b -++的 最小值. (杨晓鸣提供) 解 设方程320x ax bx a -+-=的三个正实根分别为123,,x x x ,则由根与系数的关系可得 123122313123,,x x x a x x x x x x b x x x a ++=++==, 故0,0a b >>. 由2123122313()3()x x x x x x x x x ++≥++知:23a b ≥. 又由123a x x x =++≥= a ≥ 32331a ab a b -++23(3)31 a a b a a b -++= +332333113 a a a a a a b ++≥≥=≥++ 当9a b == 综上所述,所求的最小值为. 2. 如图,在ABC ?中,AB AC >,内切圆I 与BC 边切于点D ,AD 交内切圆I 于另一点E ,圆I 的切线EP 交BC 的延长线于点P ,CF 平行PE 交AD 于点 F ,直线BF 交圆I 于点,M N ,点M 在线段BF 上,线段PM 与圆I 交于另一 点Q .证明:ENP ENQ ∠=∠. (张鹏程提供) 证法1 设圆I 与,AC AB 分别切于点,S T 联结,,ST AI IT ,设ST 与AI 交 于点G ,则,I T A T T G A I ⊥⊥,从而有2AG AI AT AD AE ?==?,所以,,,I G E D 四点共圆. 又,IE PE ID PD ⊥⊥,所以,,,I E P D 四点共圆,从而,,,,I G E P D 五点共圆. 所以90IGP IEP ∠=∠=,即IG PG ⊥ ,

小学二年级数学奥林匹克竞赛题(附答案)

小学二年级数学奥林匹克竞赛题(附答案) 1、用0、1、 2、3能组成多少个不同的三位数?2、小华参加数学竞赛,共有10道赛题。规定答对一题给十分,答错一题扣五分。小华十题全部答完,得了85分。小华答对了几题? 3、2,3,5,8,12,( ),( ) 4、1,3,7,15,( ),63,( ) 5、1,5,2,10,3,15,4,( ) ,( ) 6、○、△、☆分别代表什么数?(1)、○+○+○=18 (2)、△+○=14 (3)、☆+☆+☆+☆=20 7、△+○=9 △+△+○+○+○=25 8、有35颗糖,按淘气-笑笑-丁丁-冬冬的顺序,每人每次发一颗,想一想,谁分到最后一颗? 9、淘气有300元钱,买书用去56元,买文具用去128元,淘气剩下的钱比原来少多少元? 10、5只猫吃5只老鼠用5分钟,20只猫吃20只老鼠用多少分钟? 11. 修花坛要用94块砖,?第一次搬来36块,第二次搬来38,还要搬多少块?(用两种方法计算) 12. 王老师买来一条绳子,长20米剪下5米修理球网,剩下多少米? 13. 食堂买来60棵白菜,吃了56棵,又买来30棵,现在人多少棵? 14、小红有41元钱,在文具店买了3支钢笔,每支6元钱,还剩多少元? 15、二(1)班从书店买来了89本书,第一组同学借了25本,第二组同学借了38本,还剩多少本? 16、果园里有桃树126颗,是梨树棵数的3倍,果园里桃树和梨树一共多少棵? 17、1+2+3+4+5+6+7+8+9+10=( ) 18、11+12+13+14+15+16+17+18+19=( )

19、按规律填数。(1)1,3,5,7,9,( ) (2)1,2,3,5,8,13 ( ) (3)1,4,9,16,( ) ,36 (4)10,1,8,2,6,4,4,7,2,( ) 20、在下面算式适当的位置添上适当的运算符号,使等式成立。 (1)8 8 8 8 8 8 8 8 =1000 (2) 4 4 4 4 4 =16 (3)9 8 7 6 5 4 3 2 1=22 21、30名学生报名参加小组。其中有26人参加了美术组,17人参加了书法组。问两个组都参加的有多少人? 22、用6根短绳连成一条长绳,一共要打( )个结。 23、篮子里有10个红萝卜,小灰兔吃了其中的一半,小白兔吃了2个,还剩下( ) 个。 24、2个苹果之间有2个梨,5个苹果之间有几个梨? 25、用1、2、3三个数字可以组成( ) 个不同的三位数。 26、有两个数,它们的和是9,差是1,这两个数是( ) 和( ) 27、3个小朋友下棋,每人都要与其他两人各下一盘,他们共要下( ) 盘。 28、把4、6、7、8、9、10填下入面的空格里(三行三列的格子) ,使横行、竖行、斜行上三个数的和都是18。

2019年第十六届中国东南地区数学奥林匹克高一年级试题答案及评析

1.求最大的实数k ,使得对任意正数a ,b ,均有2()(1)(1)a b ab b kab +++≥. 2.如图,两圆1Γ,2Γ交于A ,B 两点,C ,D 为1Γ上两点,E ,F 为2Γ上两点,满足A ,B 分别在线段CE ,DF 内,且线段CE ,DF 不相交.设CF 与1Γ,2Γ分别交于点()K C ≠,()L F ≠,DE 与1Γ,2Γ分别交于点()M D ≠,()N E ≠. 证明:若ALM ?的外接圆与BKN ?的外接圆相切,则这两个外接圆的半径相等. 3.函数**:f →N N 满足:对任意正整数a ,b ,均有()f ab 整除(){} max ,f a b .是否一定存在无穷多个正整数k ;使得()1f k =?证明你的结论. 4.将一个25?方格表按照水平方向或者竖直方向放置,然后去掉其四个角上的任意一个小方格,剩下由9个小方格组成的八种不同图形皆称为“五四旌旗”,或“八一旌旗”,简称为“旌旗”,如图所示. 现有一个固定放置的918?方格表.若用18面上述旌旗将其完全覆盖,问共有多少种不同的覆盖方案?说明理由.

5.称集合{1928,1929,1930,,1949}S =的一个子集M 为“红色”的子集,若M 中任意两个不同的元素之和均不被4整除.用x ,y 分别表示S 的红色的四元子集的个数,红色的五元子集的个数.试比较x ,y 的大小,并说明理由. 6.设a ,b ,c 为给定的三角形的三边长.若正实数x ,y ,y 满足1x y z ++=,求axy byz czx ++的最大值. 7.设ABCD 为平面内给定的凸四边形.证明:存在一条直线上的四个不同的点P ,Q ,R ,S 和一个正方形A B C D '''',使得点P 在直线AB 与A B ''上,点Q 在直线BC 与B C ''上,点R 在直线CD 与C D ''上,点S 在直线DA 与D A ''上. 8.对于正整数1x >,定义集合()(){},,,mod 2x p S p p x p x v x αααα=≡为的素因子为非负数且,其中()p v x 表示x 的标准分解式中素因子p 的次数,并记()f x 为x S 中所有元素之和.约定()11f =. 今给定正整数m .设正整数数列1a ,2a ,,n a ,满足:对任意整数n m >,()()(){}11max ,1,,n n n n m a f a f a f a m +??=++. (1)证明:存在常数A ,B ()01A <<, 使得当正整数x 有至少两个不同的素因子时,必有()f x Ax B <+; (2)证明:存在正整数Q ,使得对所有*n ∈N ,n a Q <. 第十六届中国东南地区数学奥林匹克 参考答案 1.原不等式 ()() 2221(1)a b b a b b kab ?++++≥ ()221(1)b ab b b kb a ???++++≥ ?? ? 单独考虑左边,左边可以看成是一个a 的函数、b 为参数,那么关于a 取最小值的时候有 ()()2231(1)1(1)(1)b ab b b b b b a ????++++≥++=+ ? ? ????? 于是我们只需要取32(1)k b b ?≤+即可.

全国小学生数学奥林匹克竞赛真题及答案收集

全国小学生数学奥林匹克竞赛真题及答案收集 目录 2006年小学数学奥林匹克预赛试卷及答案 (1) 2006年小学数学奥林匹克决赛试题 (4) 2007年全国小学数学奥林匹克预赛试卷 (7) 2008年小学数学奥林匹克决赛试题 (8) 2008年小学数学奥林匹克预赛试卷 (10) 2006年小学数学奥林匹克预赛试卷及答案 1、计算4567-3456+1456-1567=__________。 2、计算5×4+3÷4=__________。 3、计算12345×12346-12344×12343=__________。 4、三个连续奇数的乘积为1287,则这三个数之和为__________。 5、定义新运算a※b=a b+a+b (例如3※4=3×4+3+4=19)。 计算(4※5)※(5※6)=__________。 6、在下图中,第一格内放着一个正方体木块,木块六个面上分别写着A、B、C、D、E、 F六个字母,其中A与D,B与E,C与F相对。将木块沿着图中的方格滚动,当木块滚动到第2006个格时,木块向上的面写的那个字母是__________。 7、如图:在三角形ABC中,BD=BC,AE=ED,图中阴影部分的面积为250.75平方 厘米,则三角形ABC面积为__________平方厘米。

8、一个正整数,它与13的和为5的倍数,与13的差为3的倍数。那么这个正整数最小是 __________。 9、若一个自然数中的某个数字等于其它所有数字之和,则称这样的数为“S数”,(例: 561,6=5+1),则最大的三位数“S数”与最小的三位数“S数”之差为__________。 10、某校原有男女同学325人,新学年男生增加25人,女生减少5%,总人数增加16人, 那么该校现有男同学__________人。 11、小李、小王两人骑车同时从甲地出发,向同一方向行进。小李的速度比小王的速 度每小时快4千米,小李比小王早20分钟通过途中乙地。当小王到达乙地时,小李又前进了8千米,那么甲乙两地相距__________千米。 12、下列算式中,不同的汉字代表不同的数字,则:白+衣的可能值的平均数为 __________。 答案: 1、1000 2、22.3 3、49378 4、33 5、1259 6、E 7、2006 8、 7 9、889 10、170 11、40 12、12.25 1.【解】原式=(4567-1567)-(3456-1456)=3000-2000=1000 2.【解】原式==21.5+0.8=22.3 3.【解】原式=12345×(12345+1)-(12343+1)×12343 =+12345--12343 =(12345+12343)×(12345-12343)+2

2009第六届中国东南地区数学奥林匹克试题及解答

第六届中国东南地区数学奥林匹克 第一天 (2009年7月28日 上午8:00-12:00) 江西·南昌 1. 试求满足方程2221262009x xy y -+=的所有整数对(,)x y 。 2. 在凸五边形ABCDE 中,已知AB =DE 、BC =EA 、AB EA ≠,且B 、C 、D 、E 四点共圆。证明:A 、B 、C 、D 四点共圆的充分必要条件是AC =AD 。 3. 设,,x y z R +∈,222(), (), ()a x y z b y z x c z x y =-=-=-。求证: 2222()a b c ab bc ca ++≥++。 4. 在一个圆周上给定十二个红点;求n 的最小值,使得存在以红点为顶点的n 个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边。 第二天 (2009年7月29日 上午8:00-12:00) 江西·南昌 5. 设1、2、3、…、9的所有排列129(,,,)X x x x = 的集合为A ;X A ?∈,记 1239()239f X x x x x =++++ ,{()}M f X X A =∈;求M 。(其中M 表示集合M 的元素个数) 6. 已知O 、I 分别是ABC ?的外接圆和内切圆。证明:过O 上的任意一点D ,都可以作一个三角形DEF ,使得O 、I 分别是DEF ?的外接圆和内切圆。 7. 设(2)(2)(2) (,,)131313x y z y z x z x y f x y z x y y z z x ---= ++++++++, 其中,,0x y z ≥ ,且 1x y z ++=。求(,,)f x y z 的最大值和最小值。 8. 在8×8方格表中,最少需要挖去几个小方格,才能使得无法从剩余的方格表中裁剪出一片形状如下完整的T 型五方连块? F E I O B C A D

2019年英国高中数学奥林匹克竞赛试题

2019-2020英国数学奥林匹克 第一轮 比赛时间:2019年11月29日 1.证明:存在至少3个小于200的素数p ,满足p+2,p+6,p+8,p+12均为素数.同样的,证明有且仅有一个素数q,满足q+2,q+6,q+8,q+12,q+14均为素数. 2.整数数列a 1,a 2,a 3,……满足递推关系:2214410n n n n a a a a +-+-=对任意正整数n 成立. 求a 1的所有可能的值. 3.两个圆S 1,S 2切于点P.一条不经过点P 的公切线分别与S 1,S 2交于点A,B.过P 且在△APB 外的直线CD 与S 1,S 2分别交于点C,D.证明AC ⊥BD. 4.共2019只企鹅摇摆着走向它们最喜欢的饭馆.当企鹅到达时,每只企鹅都得到了一张门票,上面写有1-2019的数字,升序排列,并被告知他们要排队就餐.第一只企鹅站在队伍的最前面.接下来,持有n 号门票的企鹅,需要找到满足m <n 且m 整除n 的最大整数m,然后钻到第持有m 号门票的企鹅后面.随后下一只企鹅加入队伍,直到2019只企鹅都排好队. (1)持2号门票的企鹅前面有多少只企鹅? (2)与持33号门票企鹅相邻的分别是持哪两个号码的企鹅? 5.有6个小孩均匀地围着圆桌坐成一圈.开始时,有一个小孩有n 个糖果,其他人没有糖果.如果有一个小孩有4个以上的糖果,那么他可以进行如下操作:吃掉一个糖果,同时给他相邻的和对面的一个人各一个糖果.如果经过某些步骤之后,每个小孩的糖果数量相同,就称这是一次”完美安排”.求可以实现”完美安排” 的所有 n 的值. 6.若定义域和值域均为整数的二元函数f(m,n)满足,对任意整数对(m,n),都有: 2f(m,n)=f(m-n,n-m)+m+n=f(m+1,n)+f(m,n+1)-1, 就称它是一个“好函数”.求所有的“好函数”. 第二轮 比赛时间:2020年1月30日

新人教版2020-2021三年级上册数学奥林匹克竞赛难题试卷

中心小学三上年级数学竞赛试题 小朋友,经过小学里两年多的学习,你一定掌握了不少本领,相信你一定会有大的收 获。 一、我会填(每题2分,共26分) 1、小华和姐姐踢毽子。姐姐三次一共踢81下,小华第一次和第二次都踢了25下, 要想超过姐姐,小华第三次最少要踢()个。 2、学校有篮球和排球共80个,篮球比排球多4个,篮球有()个。 3、7只猴子一共吃了13个桃,每只大猴吃3个,每只小猴吃1个,请你算一算,大 猴有()只。 4、某学生第一次与第二次数学测验的平均成绩是62分,第三次测验后,三次平均 成绩是68分,他第三次得()分。 5、由0、2、5、8组成的最大四位数是(),最小四位数是()。 6、在()里填上合适的数 2时=()分 8米=()分米=()厘米 5000千克=()吨 60毫米=()厘米 7、下列算式中,□,○,△,☆各代表什么数? (1)□+5=13-6; (2)28-○=15+7;(3)3×△=54; (4) 56÷☆= 7 □=(),○=(),△=(),☆=()。 8、用4个边长是1厘米的正方形,拼成一个长方形,这个长方形的周长是()厘 米,如果拼成一个正方形,这个正方形的周长是()厘米。 9、小惠今年6岁,爸爸今年年龄是她的5倍,()年后,爸爸年龄是小惠的3 倍。 10、四月份有30天,这个月共( )个星期余( )天。 11、在○里填上“>”“<”或“=” 3时○300分60毫米○6分米6千米○5800米6+7+8+9+0○6×7×8×9×0 12、一节课40 分钟,如果10时40分上课,那么( )时( )分下课。 13、在□内填入适当的数字,使下列加法竖式成立: 二、我会判断(每题1分,共6分)

小学四年级数学奥林匹克竞赛试题及答案

小学四年级数学奥林匹克竞赛试题及答案 (每题8分;总共120分) 一、选择.(将正确的答案填在相应的括号内) 1.找规律填数:(在横线上写出你发现的规律) 21 26 19 24 ( ) ( ) 15 20 . (1)15,34 (2)17,18 (3)17,22 (4)23,25 2.甲乙两个数的和是218,如果再加上丙数,这时三个数的平均数比甲乙两数的平均数多 5,丙数是( ). (1)124 (2) 122 (3)140 (4)127 3.设X和Y是选自前500个自然数中的两个不同的数,那么(X+Y)÷(X-Y)的最大值 是( ). (1)1000 (2) 990 (3)999 (4)998 4.选择: 8746×7576 的积的末四位数字是 ( ). (1) 6797 (2) 9696 (3) 7669 (4) 6769 5. 现有1分,2分和5分的硬币各四枚,用其中的一些硬币支付2角3分钱,一共有多少 种不同的支付方法? (1)4 (2) 5 (3)10 (4)8 6.右图中,所有正方形的个数是( )个. (1)10 (2)8 (3)11 (4)9 7.用0--4五个数字组成的最大的五位数与最小的五位数相差( ). (1)30870 (2)32900 (3)32976 (4)10000 8.用0、5、8、7这四个数字;可以组成()个不同的四位数? (1)10 (2)18 (3)11 (4)9

9. 学校进行乒乓球选拔赛;每个参赛选手都要和其他所有选手各赛一场;一共进 行了21场比赛;有多少人参加了选拔赛? (1)7 (2)8 (3)11 (4)9 10 一个长方形的纸对折成三等份后变成了一个正方形;正方形的周长是40厘米;那么 原来长方形的周长是多少? (1)70 (2)80 (3)100 (4)96 11.小明每分钟走50米,小红每分钟走60 米,两人从相距660米的两村同时沿一条公路 相对出发,8分钟后两人相距( )米. (1)75 (2)200 (3)220 (4)90 12甲、乙、丙、丁四位同学的运动衫上印有不同的号码. 赵说:“甲是2号;乙是3号.” 钱说:“丙是4号;乙是2号.” 孙说:“丁是2号;丙是3号.” 李说:“丁是4号;甲是1号.” 又知道赵、钱、孙、李每人都说对了一半;那么丙的号码是几? (1)4 (2)2 (3)3 (4)1 13有一根木材长4米,要把它锯成8段,每锯一段要用3分钟.共锯了( )分钟. (1)21 (2)24 (3)19 (4)20 14有一个两位数,这个两位数十位上的数字是个位上的数字的4倍,如果把它减去5,十位数字就与个数字相同,那么这个两位数减去10后是( ). (1)73 (2)82 (3)83 (4)72 15. 公园要建一个正方形花坛,并在花坛四周铺上2米宽的草坪,草坪的面积是96平方米,花坛和草坪的面积总和是( )平方米. (1)204 (2)190 (3)196(4)100

2018年第十五届东南地区数学奥林匹克试题

The 15th China Southeast Mathematical Olympiad 福建,泉州 第一天(2018年7月30日8:00-12:00) 高一年级试卷 1. 设c 是实数,若存在[]1,2x ∈,使得max ,25c c x x x x ? ?+++≥???? .求c 的取值范围.这里{}max ,a b 表示实数a 、b 中的较大者. 2. 在平面直角坐标系中,若某点的横坐标与纵坐标均为有理数,则称该点为有理点,否则称之为无理点.在平面直角坐标系中任作一个五边形,在它的五个顶点中,有理点和无理点哪个多?请证明你的结论. 3. 锐角ABC △内接于⊙O ()AB AC <,BAC ∠的平分线于BC 相交于点T ,AT 的中点是M ,点P 在ABC △内,满足PB PC ⊥.过P 作AP 的垂线,D 、E 是该垂线上不同于P 的两点,满足BD BP =,CE CP =.若直线AO 平分线段DE .证明:直线AO 与AMP △的外接圆相切. 4. 是否存在集合*A N ?,使得对每个正整数n ,{},2,3,,15A n n n n ?恰含有一个元素?证明你的结论.

The 15th China Southeast Mathematical Olympiad 福建,泉州 第二天(2018年7月31日8:00-12:00) 高一年级试卷 5. 设{}n a 为非负实数列.定义21k k i i X a ==∑,212k k k i i Y a i =??=???? ∑,1,2, k =.证明:对任意正整数n ,有100n n n n i i i i X Y Y X ?==≤? ≤∑∑.这里,[]x 表示不超过实数x 的最大整数. 6. 在ABC △中,AB AC =,⊙O 的圆心是边BC 的中点,且与AB 、AC 分别相切于点E 、F .点G 在⊙O 上,使得AG EG ⊥,过G 作⊙O 的切线,与AC 相交于点K .证明:直线BK 平分线段EF . 7. 一次会议共有24人参加,每两人之间或者握手一次,或者不握手.会议结束后发现,总共出现了216次握手,且任意握过手的两个人P 、Q ,在剩下的22人中,恰与P 、Q 之一握过手的不超过10人.一个朋友圈指的是会议中3个两两之间握过手的人所构成的集合.求这24个人中朋友圈个数的最小可能值. 8. 设m 为给定的正整数,对正整数l ,记()()()()4142451m l A l l l =+?+? ?+.证明:存在无穷多个正整数l ,使得55 m l l A 且515m l +不整除l A .并求出满足条件的l 的最小值.

小学数学奥林匹克竞赛试题 及答案(四年级)

1 小学数学奥林匹克竞赛试题及答案 (四年级) (红色为正确答案) 1、下面的△,○,□各代表一个数,在括号里填出得数: △+△+△=36 □×△=240 ○÷□=6 ○=( ) A 120 B 100 C 130 D 124 2、如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数就称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的数有()个. A 5 B 6 C 7 D 4 3、有100个足球队,两两进行淘汰赛,最后产生一个冠军,共要赛()场. A 97 B98 C 99 D 50 4、七个小队共种树100棵,各小队种的棵数都不同,其中种树最多的小队种了18棵,种树最少的小队至少种了()棵. A 10 B 8 C 9 D 7 5、将一盒饼干平均分给三个小朋友,每人吃了八块后,这时三个小朋友共剩的饼干数正好和开始1个人分到的同样多,问每个小朋友分到()块。 A 24 B 20 C 12 D 16 6、每次考试满分是100分,小明4次考试的平均成绩是89分,为了使用权平均成绩尽快达到94分(或更多),他至少再要考( )次. A 5 B 6 C 3 D 4 7、甲乙丙丁四个人比赛乒乓球,每两人都要赛一场,结果甲胜丁,并且甲乙丙胜的场数相同,那么丁胜的场数是()场。 A 0 B 1 C 2 D 3 8、有一位探险家,用6天时间徒步横穿沙漠。如果一个搬运工人只能运一个人四天的食物和水,那么这个探险家至少要雇用()名工人。 A 2 B 3 C 4 D 5 9、在右图的中间圆圈内填一个数,计算每一线段两 数之差(大减小),然后算出这三个数之和,那么这个 差数之和的最小值是( ). 13 32 41 13

七年级数学奥林匹克竞赛题(一)解析

初中一年级奥赛训练题(一)及解析 一、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么( C) A.a,b都是0 B.a,b之一是0 C.a,b互为相反数D.a,b互为倒数 2.下面的说法中正确的是( D) A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式 3.下面说法中不正确的是( C) A. 有最小的自然数B.没有最小的正有理数 C.没有最大的负整数D.没有最大的非负数 4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( D) A.a,b同号B.a,b异号C.a>0 D.b>0 5.大于-π并且不是自然数的整数有( B) A.2个B.3个C.4个D.无数个 6.有四种说法: 甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。 这四种说法中,不正确的说法的个数是( B) A.0个B.1个C.2个D.3个 解析:负数的平方是正数,所以一定大于它本身,故丙错误。 7.a代表有理数,那么a和-a的大小关系是( D) A.a大于-a B.a小于-a C.a大于-a或a小于-a D.a不一定大于-a 解析:令a=0,马上可以排除A、B、C,应选D。 8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( D) A.乘以同一个数B.乘以同一个整式 C.加上同一个代数式D.都加上1 解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,D所加常数为1,因此选D.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( C) A.一样多B.多了C.少了D.多少都可能 解析:设杯中原有水量为a,依题意可得, 第二天杯中水量为(1-10%)a=0.9a;第三天杯中水量为0.9a(1+10%)=0.9×1.1a;第三天杯中水量与第一天杯中水量之比为0.99∶1, 所以第三天杯中水量比第一天杯中水量少了,选C。

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题 1987第二届年中国数学奥林匹克 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整 除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将 这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 3.放置最大数的点积放置最小数的点之间的最短距离。 4.所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确 定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可 以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们 两两相切。如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m 与n,问3m+4的最大值是多少?请证明你的结论。

中国数学奥林匹克试题及解答

一、 实数12,,,n a a a L 满足120n a a a +++=L ,求证: () 1 2 2 111 max ()3 n k i i k n i n a a a -+≤≤=≤-∑. 证明 只需对任意1k n ≤≤,证明不等式成立即可. 记1,1,2,,1k k k d a a k n +=-=-L ,则 k k a a =, 1k k k a a d +=-,2111,,k k k k n k k k n a a d d a a d d d +++-=--=----L L , 112121121,,,k k k k k k k k k k a a d a a d d a a d d d -------=+=++=++++L L , 把上面这n 个等式相加,并利用120n a a a +++=L 可得 11121()(1)(1)(2)0k k k n k k na n k d n k d d k d k d d +----------+-+-++=L L . 由Cauchy 不等式可得 ()2 211121()()(1)(1)(2)k k k n k k na n k d n k d d k d k d d +---=-+--++------L L 11222111k n k n i i i i i i d ---===???? ≤+ ??????? ∑∑∑ 111222111(1)(21)6n n n i i i i i n n n i d d ---===--?????? ≤= ??? ???????∑∑∑ 31213n i i n d -=??≤ ??? ∑, 所以 ()1 2 211 3 n k i i i n a a a -+=≤-∑. 二、正整数122006,,,a a a L (可以有相同的)使得20051223 2006 ,,,a a a a a a L 两

2019年第十六届中国东南地区数学奥林匹克高一试题

第十六届中国东南地区数学奥林匹克 1. 求最大的实数k ,使得对任意正数a ,b ,均有()()()2 11a b ab b kab +++≥. 2. 如图,两圆1P ,2P 交于A ,B 两点,C ,D 为1P 上两点,E ,F 为2P 上两点,满足A ,B 分别在线段CE ,DF 内,且线段CE ,DF 不相交.设CF 与1P ,2P 分别交于点()K C ≠,()L F ≠,DE 与1P ,2P 分别交于点()M D ≠,()N E ≠. 证明:若ALM ?的外接圆与BKN ?的外接圆相切,则这两个外接圆的半径相等. 3. 函数:f N N **→满足:对任意正整数a ,b 均有()f ab 整除(){} max ,f a b .是否一定存在无穷多个正整数k ;使得()1f k =?证明你的结论. 4. 将一个25?方格表按照水平方向或者竖直方向放置,然后去掉其四个角上的任意一个小方格,剩下由9个小方格组成的八种不同图形皆称为“五四旌旗”,或“八一旌旗”,简称为“旌旗”,如图所示. 现有一个固定放置的918?方格表.若用18面上述旌旗将其完全覆盖,问共有多少种不同的覆盖方案?说明理由. 第十六届中国东南地区数学奥林匹克 江西g 吉安 高二年级 第一天

2019年7月30日 上午8:00-12:00 1. 对任意实数a ,用[]a 表示不超过a 的最大整数,记{}[] a a a =-.是否存在正整数m ,n 及1n +个实数0x ,1x ,…,n x ,使得0428x =,1928n x =, 110105k k k x x x m +????=++???????? (0k =,1,…,1n -)成立?证明你的结论. 2. 如图,在平行四边形中ABCD ,90BAD ∠≠?,以B 为圆心,BA 为半径的圆与AB ,CB 的延长线分别相交于点E ,F ,以D 为圆心,DA 为半径的圆与AD ,CD 的延长线分别相交于点M ,N ,直线EN ,FM 相交于点G ,直线AG ,ME 相交于点T ,直线EN 与圆D 相交于点()P N ≠,直线MF 与圆B 相交于点()Q F ≠.证明:G ,P ,T ,Q 四点共圆. 3. 今有n 人排成一行,自左至右按1,2,…,n 的顺序报数,凡序号为平方数者退出队伍;剩下的人自左至右再次按1,2,3,…的顺序重新报数,凡序号为平方数者退出队伍;如此继续.在此过程中,每个人都将先后从队伍中退出. 用()f n 表示最后一个退出队伍的人在最初报数时的序号.求()f n 的表达式(用n 表示);特别地,给出()2019f 的值. 4. 在55?矩阵X 中,每个元素为0或1.用,i j x 表示中第行第列的元素(,,…,).考虑的所有行、列及对角线上的元有序数组(共个数组): (,1i x ,,2i x ,...,,5i x ),(,5i x ,,4i x ,...,,1i x ,)(1i =,2, (5) (1,j x ,2,j x ,...,5,j x ),(5,j x ,4,j x ,...,1,j x )(1j =,2, (5) (1,1x ,2,2x ,…,5,5x ,),(5,5x ,4,4x ,…,1,1x ), (1,5x ,2,4x ,…,5,1x ),(5,1x ,4,2x ,…,1,5x ). 若这些数组两两不同,求矩阵X 中所有元素之和的可能值.

16高中数学奥林匹克竞赛训练题(2)编辑版

高中数学奥林匹克竞赛训练题(02) 第一试 一、选择题(本题满分30分,每小题5分) 1.(训练题07)十个元素组成的集合.的所有非空子集记为,每一非空子集中所有元素的乘积记为.则(C). (A)0 (B)1 (C) -1 (D)以上都不对 2.(训练题07)△ABC的三个内角依次成等差数列,三条边上的高也依次成等差数列.则为(B) (A)等腰但不等边三角形(B)等边三角形(C)直角三角形(D)钝角非等腰三角形 3.(训练题07)对一切实数,不等式恒成立.则的取值范围是(A) (A)(B) (C) (D) 4.(训练题07)若空间四点满足,则这样的三棱锥共有(A)个. (A)0 (B)1 (C)2 (D)多于2 5.(训练题07)已知不等式时恒成立,则的取值范围是(B) (A)(B) (C) (D) 6.(训练题07)方程在复数集内根的个数为.则(C) (A)最大是2 (B)最大是4 (C)最大是6 (D)最大是8 二、填空题(本题满分30分,每小题5分) 1.(训练题07)函数的值域是________ 2.(训练题07)已知椭圆,焦点为,,为椭圆上任意一点(但点不在x轴上),的内心为,过作平行于轴的直线交于.则________. 3.(训练题07)为的三个内角, 且.则_____. 4.(训练题07)实数满足.则的最小值是____. 5.(训练题07)在一次足球冠军赛中,要求每一队都必须同其余的各个队进行一场比赛,每场比赛胜队得2分,平局各得1分,败队得0分.已知有一队得分最多,但它胜的场次比任何一队都少.若至少有队参赛,则=__6____. 6.(训练题07)若是一个完全平方数,则自然数14 . 三、(训练题07)(本题满分20分)若正三棱锥底面的一个顶点与其所对侧面的重心距离为4,求这个正三棱锥的体积的最大值.(18) 四、(训练题07)(本题满分20分)一个点在轴上运动的速度为2米/秒,在平面其它地方速度为1米/秒.试求该点由原点出发在1秒钟内所能达到的区域的边界线. 五、(训练题07)(本题满分20分)已知为虚数,且是方程的实根.求实数的取值范围.() 第二试 一、(训练题07)(本题满分20分)在中,为边上的任一点,于,于,交于. 求证:. 二、(训练题07)(本题满分35分)用个数(允许重复)组成一个长为的数列,且.证明:可

相关主题