搜档网
当前位置:搜档网 › 简述时程分析法

简述时程分析法

简述时程分析法
简述时程分析法

[转]时程分析法

来源:潘宇翔的日志

时程分析法又称直接动力法,在数学上又称步步积分法。顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。

当用此法进行计算时,系将地震波作为输入。一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。

作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。

时程分析法的主要功能有:

1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。

2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。

3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),

提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。

总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。

时程分析法有关的几个问题:

1、恢复力特性曲线;

恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。

2、结构计算模型及分析方法;

3、地震波的选用;

4、时程分析计算结果的处理。

时程分析要依靠计算机及软件,作为一般的工程设计人员,只需要了解1、2两个问题的内容,为软件的选用及前期数据准备做基础。问题3、4的内容,特别是问题3的内容,设设计人员能够把握的,也是能否得到良好分析结果的重要因素。

目前结构动力时程分析模型主要有三种:三维空间模型、二维平面模型和层模型。从理论上讲,三维空间模型最接近结构的实际情况,是较理想的分析模型,计算精度也高,但由于这种模型计算工作量巨大,在目前的微机硬件资源条件下,大型结构设计中很少采用。

二维平面模型和层模型对结构作了较多的简化处理,二维平面模型是将结构离散

成一系列相互独立的“榀”,这种模型适用于刚度分布均匀、几何布置规则的结构。仅就独立的一榀而言,二维平面模型的弹塑性动力反应分析理论研究比较成熟,计算工作量有限,效率和精度都比较高,但由于建筑造型的多样化,结构不规则布置是经常的,将二维平面模型应用于不规则布置的复杂结构时有一定的局限性。层模型是一种利用力学等效方法的简化模型,它是把结构按层静力等效成质量弹簧串,然后再进行弹塑性动力反应分析。层模型把许多动力计算问题事先用静力方法处理了,所以,分析效率提高了,但计算精度有所损失。

2层模型

它是把结构按层静力等效成质量弹簧串,然后再进行弹塑性动力反应分析。层模型只能通过时程分析找到薄弱层,不能找到具体的薄弱杆件。层模型动力时程分析计算由两部分组成,前一部分是层静力特性计算,这部分实际上就是一个小型的Push- over analysis计算程序,采用增量法和能量法相结合,逐层计算结构的层间全曲线,并拟合成恢复力骨架曲线,为动力响应分析提供三线性骨架曲线的三个控制点,从而完成把结构简化成以集中质量、串联簧形式描述的层模型的层参数统计工作;后一部分是动力时程响应计算,基于集中质量、串联簧形式描述的层模型,采用Wilson-θ法计算结构的动力响应。

3二维平面模型

二维平面模型针对的是结构的一个局部——“榀”,对一棍框架进行时程分析,直接找出薄弱的杆件。这种模型的精度主要取决于把结构离散成“榀”这一模型化过程。若结构的刚度分布比较均匀,几何布置比较规则,正交或接近正交,结构各榀之间影响不大,把结构离散成相互独立的“榀”精度损失不多,可以采用二维平面模型进行弹塑性动力反应分析;反之,若结构的刚度分布不均匀,几何布

置不规则,很难分成“榀”,或即使可以分成“榀”,但各榀之间相互影响较人,把这种结构离散成相互独立的“榀”时可能有较大的精度损失,对于这些结构不宜采用二维平面模型。

现有分析方法综述:

(1)等效剪切型计算程序:这种计算模型是以结构层为计算单元,忽略梁的变形,结构变形集中在竖向抗侧构件上,因此可将各层所有的抗侧构件等效为一个总的层间抗剪构件来进行计算。该模型的优点是计算简单省时,能够快速、扼要地提供工程上所需的层剪力和层间位移。但其缺点也是显而易见的,它仅适用于以剪切变形为主的规则结构,并且采用这种计算方法只能得到结构在地震作用下的宏观反应,无法提供具体构件的内力和变形及由于地震作用引起的竖向荷载变化对构件屈服的变化。

(2)平面杆系计算程序:采用的计算模型是由可带刚域的杆件组成的平面框架结构,它克服了剪切模型的诸多弊端,杆件可同时考虑轴向、弯曲和剪切变形,框架节点有水平、竖向位移和转动三个自由度,杆件恢复力特征曲线有弯曲屈服型和压弯屈服型两种。采用该程序可求得各杆件在地震作用下的内力和变形全过程,判断每根杆件的开裂和屈服与否,以及各杆件屈服的先后顺序,从而了解整个结构的破坏形态。用平面杆系计算程序进行弹塑性分析时,需对原结构进行简化,或是取出一榀框架进行分析或是将整个结构捏合成一榀等效框架进行分析。

(3)空间计算程序:近年来国内外在地震作用空间非线性分析上做了大量的工作,也取得了不少的成果,但由于数据录入与处理较为烦琐,难以使工程界接受。(4)非线性静力分析程序:也称为“静力弹塑性分析法”(push-over),主要用于

进行变形验算,尤其是大震下的抗倒塌验算。通过非线性静力分析计算可以求出塑性铰位置和转角,找到结构薄弱部位。采用非线性静力分析方法的好处是可以花较少的时间和费用达到工程设计所要求的变形验算精度,是值得推荐的方法。

(5)模型振动台试验:建筑科学是一门试验科学,不管当今的力学计算水平如何发展,试验技术仍然是工程设计中不可缺少的辅助工具。特别是当结构非常复杂、现有计算理论又无法圆满解决问题时,我们就只能借助模型振动台试验,用以替代时程分析,直接对结构的地震反应及破坏形态进行观察。模型振动台试验有两点有待做进一步的研究。一是构件应力状态的模拟,二是构件抗力的模拟。原型结构的自重较大,模型材料的弹性模又不能太小.因此棋型结构的自重往往会超过台面允许的最大负荷,一般通过减小模型自重和提高台面加速度来解决,这样模型构件的应力状态与原型结构的应力状态并非完全等效,破坏也较实际结构更为严重。振动台试验时需对地震波的时间轴进行压缩,压缩比例较大;另一方面地震作用下结构的破坏是一个累积的过程。如果振动持续时间太短,构件裂缝内未完全发展振动就结束了,这样就不能很好地模拟地震作用下的震损过程。

选用合适的数字化地震波(即地震地面运动加速度)。选择的原则是使输入地震波的特性和建筑场地的条件相符合。主要参数有:地震烈度、地震强度参数、场地的土壤类别、卓越周期和反应谱等。选择地震波时应选其主要周期与建筑场地卓越周期接近的地震波。要满足地震活动三要素的要求:即频谱特性〔可用地震影响系数曲线表征,依据所处的建筑场地类别和设计地震分组确定〕、有效峰值(按规范所列地震加速度最大值采用)和地震加速度时程曲线持续时间(一般为结构基木周期的5- 10倍),这三者均要符合规定。

规范要求:选用数字化地震波应按建筑场地类别和设计地震分组选用不少于两组

的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。

目前,国内关于时程分析法输入地震记录的选取有两种做法:一种是对实际地震记录进行修正,使其地震影响系数曲线与规范的地震影响系数曲线在统计意义上相符;而另一种是通过一定的方法在大量的实际地震记录中选取一些满足规范要求的地震记录,以供时程分析法使用。

一有关实际地震记录的修正

1强度修正。将地震波的加速度峰值及所有的离散点都按比例放大或缩小以满足场地的烈度要求。

2滤波修正。可按要求设计滤波器,对地震波进行时域或频域的滤波修正。这样修正的地震资料不仅卓越周期满足要求,功率谱的形状和面积也可控制。

3卓越周期修正。将地震波的离散步长按人为比例改变,使波形的主要周期和场地卓越周期一致,然而,在改变离散步长的同时也将改变地震波的频谱特性,在弹塑性反应中有时会产生不安全的后果。因此,修正的幅度不宜过大,在结构构件进人塑性的程度较大时最好不用此种办法。

二有关输入地震波的平均地震影响系数曲线与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符的控制

对于反应谱的控制采用两个频段:一是对地震记录加速度反应谱值在[[0.1, Tg]平台段的均值进行控制,要求所选地震记录加速度谱在该段的均值与设计反应谱相差不超过10%;一是对结构基本周期T1附近〔T1-△T1,T1十△T2〕段加速度反应谱均值进行控制,要求与设计反应谱在该段的均值相差不超过10%。△TI和△T2的取值,由于需进行时程分析的结果其T1多在2SEC以上,以取值△T1≤△

T2=0.5SEC为宜。有些文章没有谈到对第一频段的控制,个人认为可根据计算结果的拟合情况决定。

三有关输入的地震记录应反映抗震建筑所在地的场地特性的控制

根据地震记录的反应谱卓越周期来选择输入的地震波,选择其主要周期与建筑场地卓越周期接近的地震波

对于时程分析计算结果的处理,日前我国尚末提出明确的方法。按G 850011- 2001规范的规定:弹性时程分析时,每条时程曲线的计算所得结构底部剪力小应小于振型分解反应谱法计算结果的65%,多条时程曲线的计算所得结构底部剪力的平均值,小应小于振型分解反应谱法计算结果的80%。

目前可以采用以下3种处理方法:

( 1)经验判定修正法。这是常用的一种方法,就是将时程分析法与SRSS法或CQC 法计算结果进行比较,如果某楼层采用SRSS法或CQC法计算所得的层剪力或层弯矩明显小于采用时程分析法计算所得的层剪力或层弯矩,则对该层的配筋应子以调整,适当加大。

( 2) 平均反应值法。根据所选用的多条地震波的反应结果的平均值,求得相应外力,加在结构进行内力计算,求出构件的配筋,然后和采用SRSS法或CQC法的计算配筋作对比,对构件的整体配筋作适当调整。

( 3)最大包络值法。从所选用的多条地震波的计算反应结果求得其外包络值(即最大值),作为外力加在结构上进行内力计算,求出构件的配筋,这个方法求出的配筋值最大。

若采用时程分析法计算所得的结果小于采用SRSS法或CQC法计算所得的结果,则不必再返回计算配筋,直接采用SRSS法或CQC法的计算结果即可;若采用时程分

析法计算所得的结果大大超过按振型分解反应谱法或考虑扭转藕连影响的CQC法的计算结果,则应重新考虑结构方案。

静力弹塑性分析方法(push-over法)的确切含义及特点

结构弹塑性变形分析方法有动力非线性分析(动力时程分析)和静力非线性分析两大类。动力非线性分析能准确而完整地得出结构在罕遇地震下的反应全过程,但数值计算过程中需要反复迭代,数据量大,分析工作繁琐,且数值结果受到所选用地震波的影响较大,一般只在设计重要结构或高层建筑结构时采用。

我国抗震规范提出“弹塑性变形分析,可根据结构特点采用静力非线性分析或动力非线性分析”,这里的静力非线性分析,主要指push-over分析方法。

静力弹塑性分析方法(push-over法),是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,从本质上说它是一种静力分析方法。具体地说,就是在结构分析模型上施加按某种规定的分布方式模拟地震水平作用惯性力的侧向力,单调加载并逐级加大,一旦构件开裂或屈服即修改其刚度,直到结构达到预定的状态(成为机构、位移超限或达到目标位移),从而判断结构分析模型是否满足相应的抗震能力要求。

静力弹塑性分析方法(push-over法)分为两个部分,首先建立结构荷载一位移曲线,然后评估结构的抗震能力,基本工作步骤为:

第一步:准备结构数据:包括建立结构模型、构件的物理参数和恢复力模型等;

第二步:计算结构在竖向荷载作用下的内力;

第三步:在结构每层的质心处,沿高度施加按某种分布的水平力,确定其大小的原则是:水平力产生的内力与前一步计算的内力叠加后,恰好使一个或一批件杆开裂或屈服;在加载中随结构动力特征的改变而不断调整的加载模式是比较合理

有效的模式。

第四步:对于开裂或屈服的杆件,对其刚度进行修改后,再增加一级荷载,又使得一个或一批杆件开裂或屈服。

不断重复第三步、第四步,直到结构达到某一目标位移(对于普通push-over方法)、或结构发生破坏(对于能力谱设计方法),push-over方法确定结构目标位移时,都要将多自由度结构体系等效为单自由度体系。

对于结构振动以第一振型为主、基本周期在2sec以内的结构,push-over方法能够很好地估计结构的整体和局部弹塑性变形,同时也能揭示弹性设计中存在的隐患(包括层屈服机制、过大变形以及强度、刚度突变等)。研究成果和工程应用表明,在一定适用范围内push-over方法能够较为准确地反映结构的非线性地震反应特征,对于层数不太多或者自振周期不太长的结构,不失为一种可行的弹塑性简化分析方法。

静力弹塑性分析方法的特点:1)由于在计算时考虑了结构的塑性,可以估计结构的非线性变形和出现塑性铰的部位;2)较弹塑性时程分析法,其输人数据简单,工作量较小,计算时间短。

对于二维push-over方法,随着加载模式、目标位移以及需求谱等方面的日趋完善,应用于规则结构的抗震性能评估,能够较好地满足工程设计要求。但是,随着建筑造型和结构体型复杂化,某些结构平面和竖向质量、刚度不均匀,因此将结构简化为二维模型分析将不能正确模拟结构的反应,尤其是对于远离结构刚度中心的边缘构件更是如此,因此,push-over方法向三维发展是必然趋势。

对于长周期结构和高柔的超高层建筑,push-over方法不再适用。

MATLAB弹性时程分析法编程

计算书:课程设计计算书(题一) 根据加速度调幅公式:m i a t a a a /)(max ,00*= )/(29002902s mm Gal a m == 得:58/)(72900/)(3500i i t a t a a =*= )(i t a =[0 600 1100 150021002500 2900350 2050

15001000600200 -700 -1300-1700 -2000 -1800-1500 -700-250200 -100 0 0 0]; 所以经调幅后为0a =[0 72.6 133.1 181.5 254.1 302.5 350.9 42.4 248.1 181.5 121 72.6 24.2 -84.7 -157.3 -205.7 -242 -217.8 -181.5 -84.7 -30.3 24.2-12.1 0 0 0 ] 6.7206.72''1''2=-=-U U 5.60 6.721.133''2''3=-=-U U 依次类推可以求出地面运动加速度的差值。 因为km c 2=ζ,08.0=ζ , m kN k /9000=, m s kN m /2502?= 代入可以算得m s kN c /240?= 一、表格第一行数据计算: t c t m k K i i /3/62++=*, t=0.05s 代入得m N K i /623400 =* )△△2 /3()3/6(''''''''t U U c U t U U m P i i g i *++---=* N 18150-6.72250-=*= **=i i P U K △△ mm K P U i i 03.0623400/18150 /-=-==**△△ 起始时刻时:0=U 0'=U 0''=U 因为'''2''3/6/6i i U t U t U U -*-*=△△ 所以7205.0/)03.0(62''1 -=-*=U △

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应的简单实例ABAQUS时程分析法计算地震反应的简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2.1e11Pa,泊松比0.3,所有振型的阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 的集中质量。反应谱按7度多遇地震,取地震影响系数为0.08,第一组,III类场地,卓越周期Tg=0.45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS的反应谱法计算过程以及后处理要比ANSYS方便的多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2.1e11,poisson’s ratio:0.3.

时程分析法

第九章时程分析法 第一节时程分析法的概念 振型分解法仅限于计算结构在地震作用下的弹性地震反应。时程分析法是用数值积 分求解运动微分方程的一种方法,在数学上称为逐步积分法。这种方法是从t=0时刻开始,一个时段接着一个时段地逐步计算,每一时段均利用前一时段的结果,而最初时段应根 据系统的初始条件来确定初始值。即是由初始状态开始逐步积分直至地震终止,求出结 构在地震作用下从静止到振动、直至振动终止整个过程的地震反应。 时程分析法是对结构动力方程直接进行逐步积分求解的一种动力分析方法。时程分 析法能给出结构地震反应的全过程,能给出地震过程中各构件进入弹塑性变形阶段的内 力和变形状态,因而能找出结构的薄弱环节。 时程分析法分为弹性时程分析法和弹塑性时程分析法两类。 第一阶段抗震计算“小震不坏”中,采用时程分析法进行补充计算,这时计算所采用 的结构刚度和阻尼在地震作用过程中保持不变,称为弹性时程分析。 在第二阶段抗震计算“大震不倒”中,采用时程分析法进行弹塑性变形计算,这时结 构刚度和阻尼随结构及其构件所处的非线性状态,在不同时刻可能取不同的数值,称为 弹塑性时程分析。弹塑性时程分析能够描述结构在强震作用下在弹性和非线性阶段的内力、变形,以及结构构件逐步开裂、屈服、破坏甚至倒塌的全过程。 第二节时程分析法的适用范围 一、时程分析法的适用范围 时程分析法是根据选定的地震波和结构恢复力特性曲线,对动力方程进行直接积分,采用逐步积分的方法计算地震过程中每一瞬时的结构位移、速度和加速度反应,从而可观察到结构在强震作用下弹性和非弹性阶段的内力变化以及构件开裂、损坏直至结构倒塌的全过程。但此法的计算工作十分繁重,须借助计算机,费用较高,且确定计算参数尚有许多困难,目前仅在一些重要的、特殊的、复杂的以及高层建筑结构的抗震设计中应用。《建筑抗震设计规范》对时程分析法的适用范围规定如下:

时程分析法

时程分析法 定义:由结构基本运动方程沿时间历程进行积分求解结构振动响应的方法。 概述:时程分析法是世纪60年代逐步发展起来的抗震分析方法。用以进行超高层建筑的抗震分析和工程抗震研究等。至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。 原理:时程分析法在数学上称步步积分法,抗震设计中也称为“动态设计”。由结构基本运动方程输入地面加速度记录进行积分求解,以求得整个时间历程的地震反应的方法。此法输入与结构所在场地相应的地震波作为地震作用,由初始状态开始, 一步一步地逐步积分,直至地震作用终了。 是对工程的基本运动方程,输入对应于工程场地的若干条地震加速度记录或人工加速度时程曲线,通过积分运算求得在地面加速度随时间变化期间结构的内力和变形状态随时间变化的全过程,并以此进行结构构件的界面抗震承载力验算和变形验算。 时程分析法是世纪60年代逐步发展起来的抗震分析方法。用以进行超高层建筑的抗震分析和工程抗震研究等。至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。 “时程分析法”是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法。 “时程分析法”常作为计算高层或超高层的一种(补充计算)方法,也就是说满足了规范要求的时候是可以不用它计算结构的。规范规定:对于特别不规则的建筑、甲类建筑及超过一定高度的高层建筑,宜采用时程分析法进行补充计算。所以有较多设计人员对应用时程分析法进行抗震设计感到生疏。近年来,随着高层建筑和复杂结构的发展,时程分析在工程中的应用也越来越广泛了。 地震动输入对结构的地震反应影响非常大。目前的现状是,输入地震动的选择大多选择为数不多的几条典型记录(如:1940年的El Centro(NS)记录或1952年的Taft记录),国内外进行结构时程分析时所经常采用的几条实际强震记录主要有适用于I类场地的滦河波、适用于II、III类场地的El-Centrol波(1940,N-S)和Taft波(1952,E-w)、适用于IV 类场地的宁河波等。

底部剪力法,反应谱法和时程分析法三者应用分析

从传统的观点来看,底部剪力法,反应谱法和时程分析法是三大最常用的结构地震响应分析方法。那么正确的认识它们的一些关键概念,对于建筑结构的抗震设计具有非常重要的意义。HiStruct在此简单的总结一些,全当抛砖引玉。 1. 底部剪力法 高规规定:高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的高层建筑结构,可采用底部剪力法。底部剪力法适用于基本振型主导的规则和高宽比很小的结构,此时结构的高阶振型对于结构剪力的影响有限,而对于倾覆弯矩则几乎没有什么影响,因此采用简化的方式也可满足工程设计精度的要求。底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2. 反应谱方法 高规规定:高层建筑结构宜采用振型分解反应谱法。对质量和刚度不对称、不均匀的结构以及高度超过100m的高层建筑结构应采用考虑扭转耦联振动影响的振型分解反应谱法。反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构反应起重要作用的振型所对应的频率密集的结果(高振型的影响较大,或者考虑扭转振型的条件下),CQC是精确的。这是因为对于建筑工程上常用的阻尼而言,振型相关系数(见高规3.3.11-6)在很窄的范围内才有显著的数值。 3.反应谱分析的精确性 对于采用平均意义上的光滑反应谱进行分析而言,其峰值估计与相应的时程分析的平均值相比误差很小,一般只有百分之几,因此可以很好的满足工程精度的要求,正是在这个平均(普遍性)意义上,我们认为反应谱分析方法是精确的。但是对于单个锯齿形的反应谱而言,其分析结果与单个波的时程分析,误差可以达到10-30%之间,因此在个别(特殊性)意义上而言,反应谱分析结果是有误差的,因此,规范规定对于复杂的或者高层建筑需要采用时程分析进行补充计算和验证。 4.反应谱分析与时程分析对于高阶振型计算的不同之处 一般反应谱的高频段是采用平台段来表达的,实际上对于高阶振型反应不显著的结构而言,反应谱适用性很好,也足够准确。但是对于高柔结构而言,一般高阶振型的影响比较显著,采用时程分析的时候,等于其高频段的峰值并未被人为削成平台段,因此采用时程分析的时候此频段的地震响应可能很大,一般表现为高层建筑的顶部或者对其他结构对高阶振型影响显著部位,其地震响应峰值比反应谱分析结果要大(但是总体的剪力和弯矩差别则没这么明显)。 5.时程分析 理论上时程分析是最准确的结构地震响应分析方法,但是由于其分析的复杂性,且地震波的随机性,因此一般只是把它作为反应谱的验证方法而不是直接的设计方法使用。高规规定:3 7~9度抗震设防的高层建筑,下列情况应采用弹性时程分析法进行多遇地震下的补充计算:

时程分析法(汇编)

时程分析法 时程分析法又称直接动力法,在数学上又称步步积分法。顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。 当用此法进行计算时,系将地震波作为输入。一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。 时程分析法的主要功能有: 1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。 2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。 3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。 总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。 时程分析法有关的几个问题: 1、恢复力特性曲线;

推荐:什么是结构时程分析

什么是结构时程分析 【学员问题】什么是结构时程分析? 【解答】时程分析是结构抗震分析较为高端的一种分析方法。其实质是将实际地震时测得的地震加速度数据输入结构,根据结构动力学方程,通过数值方法求解结构的地震响应。由于地震加速度随时间是剧烈变化的,因此按这种方法得到的结构响应也将与时间有关,故称时程分析。 时程分析分为线弹性时程分析和弹塑性时程分析两种,其区别在于前者仅考虑材料的线弹性性质,而后者考虑材料的弹塑性性质。 这里必须明确一个概念:材料弹塑性性质构件弹塑性性质结构弹塑性性质。 这三个概念是不同的。 材料弹塑性属于弹塑性力学研究对象,工程上直接应用弹塑性力学的理论方法还比较困难,例如应力空间,屈服曲面,三参数强化法则,五参数强化法则,随动强化,等向强化,流动法则,这些概念对于不少工程师来讲估计挺头疼的。究其原因,一是对数学和力学的要求较高,二是这些复杂的力学理论也不便于工程使用。不过无论如何,力学是整个土木工程的基石,良好的力学功底对于结构工程师来讲还是相当重要的。构件弹塑性现多建立在塑性铰理论基础上,例如杆件在外加力作用下进入弹塑性后在杆件的端部产生塑性铰。结构弹塑性性质则是构件弹塑性性质的宏观反应。

静力弹塑性分析:也称Pushover分析、推覆分析。结构在假定的水平力分布下,沿水平方向不断施加单向推覆力,直到结构构件产生足够多的塑性铰而形成机构发生结构整体破坏。简单通俗地说,就是不断施加外力,把结构给推倒了为止。推覆过程中关心的几个关键点包括:结构线弹性点、结构屈服点、结构性能点、结构承载力点。注意这些点都是针对结构整体受力特性而言。然而,静力弹塑性分析的假定是存在缺陷的:其一是采用假定的地震力分布模式,其二是单向加载而不是像真实地震作用那样往复加载。所以,由静力弹塑性分析得到的计算结果不一定能够真实地放映结构的实际受力状态。 动力弹塑性分析:这种方法与静力弹塑性分析方法的不同之处在于,直接将地震加速度波输入结构计算结构的弹塑性地震响应,其弹塑性性质一般也基于塑性铰理论。这种分析方法更接近实际情况,因此更准确些。当然这种分析方法对工程人员的理论要求较高,而且较耗费计算机资源。现在仅在少数大型重要复杂工程中有所应用,当然也仅是少数水平较高设计院的专利。 以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。 结语:借用拿破仑的一句名言:播下一个行动,你将收获一种习惯;播下一种习惯,你将收获一种性格;播下一种性格,你将收获一种命运。事实表明,习惯左右了成败,习惯改变人的一生。在现实生活中,大多数的人,对学习很难做到学而不厌,学习不是一

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应得简单实例ABAQUS时程分析法计算地震反应得简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3, EX=2、1e11Pa,泊松比0、3,所有振型得阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 得集中质量。反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越 周期Tg=0、45s。 图1计算对象 第一部分:反应谱法 几点说明: 本例建模过程使用CAE ; 添加反应谱必须在inp中加关键词实现, CAE不支持反应谱; *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 ABAQUS得反应谱法计算过程以及后处理要比ANSYS方便得多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database

(2)进入Part 模块,点击create part,命名为column , 3D、deformation、wire。continue ■ C r e at e Fart Px (3) Create lines,在 分别输入0, 0回车;0, 3回车;0, 6回车;0, 9回车;0, 12回车。

(4) 进入property 模块,create material, name:steel, general-->>density , mass density: 7800 mechanical--?elasticity--?elastic , young ‘ s modulus2、1e11, poisson ' s ratio)、3、

时程分析报告阻尼模型附数值计算方法

时程分析阻尼模型及数值计算方法 1、阻尼模型 阻尼是用以描述结构在振动过程中能量的耗散方式,是结构的动力特性,是影响结构动力反应的重要因素之一。结构振动时,由于结构材料的内摩擦、材料的滞回效应等机制导致能量消耗,使结构振动幅值逐渐减少,最后直至完全静止。结构的耗能机制非常复杂,它与介质的特征、结构粘性等诸多因素有关。常用的是粘滞阻尼理论,它认为,阻尼力与速度成正比。试验也证明,对于许多材料,这种阻尼理论是可行的,并且物理关系简单,便于应用和计算。 根据实测去确定阻尼大小是相当困难的,但由于阻尼的影响通常比惯性力和刚度的影响小,所以一般都采用简化的方法考虑阻尼。本文采用最为广泛应用的瑞雷阻尼。 瑞雷阻尼假设阻尼矩阵是质量矩阵和刚度矩阵的线性组合,即 [][][]C M K αβ=+ (4.15) 式中,α、β为常数,可以直接给定,或由给定的任意二阶振型的阻尼比i ξ、j ξ反算求得。 根据振型正交条件,待定常数α和β与振型阻尼比之间的关系应满足: 22 k k k βωα ξω= + (k =1,2,3,…,n ) (4.16a) 任意给定两个振型阻尼比i ξ和j ξ后,可按下式确定比例常数 22 2j i i j i j i j ξωξωαωωωω-=- 222j i i j i j ξωξωβωω-=- (4.16b) i ω、j ω分别为第i 、j 振型的原频率。本文取前两阶振型频率求得α、β值。 2、数值积分方法 多自由度结构体系动力微分方程为: []{}[]{}[]{}[]{}()g M x C x K x M x t I ++=- (4.17) 其中,[]M -质量矩阵;[]C -阻尼矩阵;[]K -刚度矩阵;{}I -单位对角阵;() g x t -地面运动加速度;{}x 、{}x 、{}x -结构楼层相对于地面的位移、速度和加速度反应。

简述时程分析法

[ 转] 时程分析法 来源:潘宇翔的日志 时程分析法又称直接动力法,在数学上又称步步积分法。顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。 当用此法进行计算时,系将地震波作为输入。一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。 作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。 时程分析法的主要功能有: 1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。 2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。 3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。

总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。 时程分析法有关的几个问题: 1、恢复力特性曲线; 恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。 2、结构计算模型及分析方法; 3、地震波的选用; 4、时程分析计算结果的处理。 时程分析要依靠计算机及软件,作为一般的工程设计人员,只需要了解1、2 两个 问题的内容,为软件的选用及前期数据准备做基础。问题3、4 的内容,特别是问 题3 的内容,设设计人员能够把握的,也是能否得到良好分析结果的重要因素。 目前结构动力时程分析模型主要有三种:三维空间模型、二维平面模型和层模型。从理论上讲,三维空间模型最接近结构的实际情况,是较理想的分析模型,计算精度也高,但由于这种模型计算工作量巨大,在目前的微机硬件资源条件下,大型结构设计中很少采用。 二维平面模型和层模型对结构作了较多的简化处理,二维平面模型是将结构离散成一系列相互独立的“榀”,这种模型适用于刚度分布均匀、几何布置规则的结构仅就独立的一榀而言,二维平面模型的弹塑性动力反应分析理论研究比较成熟,计算工作量有限,效率和精度都比较高,但由于建筑造型的多样化,结构不规则布置是经常的,将二维平面模型应用于不规则布

时程分析计算精辟解读(值得收藏)

时程分析计算精辟解读(值得收藏) 时程分析法是20世纪60年代逐步发展起来的抗震分析方法.用以进行超高层建筑的抗震分析和工程抗震研究等.至80年代,已成为多数国家抗震设计规范或规程的分析方法之一. “时程分析法”是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法. “时程分析法”常作为计算高层或超高层的一种(补充计算)方法,也就是说满足了规范要求的时候是可以不用它计算结构的.规范规定:对于特别不规则的建筑、甲类建筑及超过一定高度的高层建筑,宜采用时程分析法进行补充计算.所以有较多设计人员对应用时程分析法进行抗震设计感到生疏.近年来,随着高层建筑和复杂结构的发展,时程分析在工程中的应用也越来越广泛了. 1输入地震动准则 输入地震动准则即为结构时程分析选择输入地震加速度记录时程(简称地震波)的基本要求,包括:地震环境(场地类别和地震分组)、数量、持续时间、检验方法等.地震波的合理选择是时程分析结果能否既反映结构最大可能遭遇的地震作用,又满足工程抗震设计基于安全和功能要求的基础.在这里不提“真实”地反映地震作用,也不提计算结果的“精确”性,正是基于对结构可能遭遇地震的极大不确定性和计算中结构建模的近似性.在工程实际应用中经常出现对同一个建筑结构进行时程分析时,由于输入地震波的不同,造成计算结果的数倍乃至数十倍之差,使工程师无所适从. 《建筑抗震设计规范》(GB50011—2010)(简称2010规范)5.1.2-3条要求“采用时程分析法时,应按建筑场地类别和设计地震分组选用实际强震记录和人

工模拟的加速度时程曲线,其中实际强震记录的数量不应少于总数的2/3,多组时程曲线的平均地震影响系数曲线(即反应谱)应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符”. 1.1“选波”要求 1.1.1地震环境要求 2010规范在构建设计反应谱时,按不同场地类别和震级、震中距从全球强震加速度记录数据库中挑选了数百条地面加速度记录,求出每条记录的反应谱.同时收集这些记录台站的地质剖面和地震震级、震中距等参数,按照2010规范的场地类别划分标准,场地分成Ⅰ~Ⅳ类和远、中、近震分组,共计12组,再经平滑处理得到2010规范5.1.5条的地震影响系数曲线,即设计反应谱.时程分析法输入地震波的选择应遵循上述构建设计反应谱的原则,考虑建设场地与记录台站场地的地震环境. 1.1.2数量要求 对于高度不是太高、体型比较规则的高层建筑,取2+1,即选用不少于2条天然地震波和1条拟合目标谱的人工地震波,计算结果宜取包络值.对于超高、大跨、体型复杂的建筑结构,取5+2,即不少于7组地震波,其中,天然地震波数量不少于总数的2/3,计算结果取平均值. 1.1.3持续时间要求 为了充分地激励建筑结构,一般要求输入的地震动有效持续时间为结构基本周期的5倍左右.对于结构动力时程分析,只有加速度记录的强震部分的时长,即有效持续时间才有意义.最常用的有效持续时间定义是:取记录最大峰值的10%~15%作为起始峰值和结束峰值,在此之间的时间段为有效持续时间.图1表示编号为US185地震加速度记录的波形,用于7度小震下结构时程分析,最大加速度峰值是35gal,取首、尾

用midas做时程分析步骤

一般地震时程分析的步骤如下: 1. 在“荷载/时程分析数据/时程荷载函数”中选择地震波。时间荷载数据类型采用无量纲加速度即可。其他选项按默认值,详细可参考用户手册或联机帮助。 2. 在“荷载/时程分析数据/时程荷载工况”中定义荷载工况。 结束时间:指地震波的分析时间。如果地震波时间为50秒,在此处输入20秒,表示分析到地震波20秒位置。 分析时间步长:表示在地震波上取值的步长,推荐不要低于地震波的时间间隔(步长)。 输出时间步长:整理结果时输出的时间步长。例如结束时间为20秒,分析时间步长为0.02秒,则计算的结果有20/0.02=1000个。如果在输出时间步长中输入2,则表示输出以每2个为单位中的较大值,即输出第一和第二时间段中的较大值,第三和第四时间段的较大值,以此类推。 分析类型:当有非线性单元或非线性边界单元时选择非线性,否则选择线性。 分析方法:自振周期较大的结构(如索结构)采用直接积分法,否则选择振型法。 时程分析类型:当波为谐振函数时选用线性周期,否则为线性瞬态(如地震波)。 无零初始条件:可不选该项。 振型的阻尼比:可选所有振型的阻尼比。 3. 在“荷载/时程分析数据>地面加速度”中定义地震波的作用方向。 在对话框如果只选X方向时程分析函数,表示只有X方向有地震波作用,如果X、Y方向都选择了时程分析函数,则表示两个方向均有地震波作用。 系数:为地震波增减系数。 到达时间:表示地震波开始作用时间。例如:X、Y两个方向都作用有地震波,两个地震波的到达时间(开始作用于结构上的时间)可不同。 水平地面加速度的角度:X、Y两个方向都作用有地震波时如果输入0度,表示X方向地震波作用于X 方向,Y方向地震波作用于Y方向;X、Y两个方向都作用有地震波时如果输入90度,表示X方向地震波作用于Y方向,Y方向地震波作用于X方向;X、Y两个方向都作用有地震波时如果输入30角度,表示X 方向地震波作用于与X轴方向成30度角度的方向,Y方向地震波作用于与Y方向成30度角度的方向。 另外,地震时程分析不能与地震反应谱分析同时进行,用户应分别保存为两个模型,分别进行反应谱分析和时程分析。 时程分析注意事项: 1、截面需要使用“数据库/用户”来指定截面的尺寸,不然非弹性铰的特征值程序无法自动计算,之后的计算也会有问题(如计算速度特别慢,计算会出错); 2、加柱的P-M-M铰时候,不管截面形状,需要在“屈服面特性值”里选择“自动计算”,对于梁和支撑是在“滞回模型”旁边的“特征值”里选择“自动计算”; 3、如果需要考虑“时变静力荷载”,在用地震动进行计算的时候,“时程荷载工况”里“加载顺序”要“接续前次”,考虑时变静力荷载的作用,必须注意有一个顺序的问题:在添加“时程荷载工况”和“定义时程分析函数”的时候,需要先定义“时变静力荷载”,然后才定义地震动函数(定义地震波),并且在“时程荷载工况”的定义里,时变静力荷载和地震波的分析类型及其它参数的定义应该一致; 4、在“时程荷载工况”的定义里,考虑弹塑性一般使用“非线性”的分析类型,“直接积分法”的分析方法,“阻尼计算方法”一般使用“质量和刚度因子”,可以通过第一、第二振型的周期来计算“质量和刚度因子”。“阻尼计算方法”的“应变能比例”和“单元质量和刚度因子”一般是和组阻尼一起使用,两者的区别是“应变能比例”是根据单元的变形来计算阻尼,“单元质量和刚度因子”计算阻尼的时候和振型有关。 5、如果要看到层的时程分析结果,需要定义“模型/建筑物数据/控制数据”,勾选“时程分析结果的层反应”,否则在“结果/时程分析结果/层数据图形”中看不到一些结果。

时程分析

19. 时程分析(Time History Analysis) 时程分析(Time History Analysis)中所使用的动力平衡方程如下。
: 质量矩阵(Mass Matrix) : 阻尼矩阵(Damping Matrix) : 刚度矩阵(Stiffness Matrix) : 动力荷载 、 、 : 位移、速度、加速度
时程分析是可以求出建筑物在动力荷载作用下的动力平衡方程解的方法,这 种方法利用建筑物的动力特性和承受的荷载,计算出处于任意时间内建筑物 的变形、内力等。时程分析方法中有直接积分法(Direct Integration)和振 型叠加法(Modal Superposition),由于振型叠加法的效果好,所以被较多 地使用。 振型叠加法 振型叠加法利用建筑物位移之间具有的正交性,通过线性组合的形式进行表 示,公式如下。这种方法是在假定阻尼矩阵可以用质量矩阵和刚度矩阵的线 性组合进行表示的前提之下。

(1)
(2) (3)
(4)
(5)
: Rayleigh 系数 : 第 i 振型的阻尼比 : 第 i 振型的基本周期 : 第 i 振型的模态 : 第 i 振型的单自由度方程的解 时程分析中,建筑物的位移可以按照像公式(4)一样使用振型模态和单自由 度方程解的乘积表示,位移的准确性受到所使用的振型数量的影响。这种方 法是结构分析程序中使用最多的方法,可以说是大型建筑物线性动力分析中 非常有效的方法。但是在非线性动力分析或者装有阻尼装置,阻尼无法用刚 度和质量的线性组合进行表现时是不能使用该方法的,这是该方法的缺点。

地震时程分析的步骤

因对 MA DIS 学习不久 , 正好遇到一个要做非线性时程分析的工程 请教大家关于MADIS 做非线性时程分析的具体步骤,要点,或者介绍一下相关参考资料 手册上写得太简单 希望有实例作为引导 请高手指点! 2008-1-19 19:01 #1 左超平 助理工程师 精华 0 积分 24 帖子 40 水位 81 技术分 0 状态 离线 一般地震时程分析的步骤如下: 1. 在“荷载/时程分析数据/时程荷载函数”中选择地震波。时间荷载数据类型采用无量纲加速度即可。其他选项按默认值,详细可参考用户手册或联机帮助。 2. 在“荷载/时程分析数据/时程荷载工况”中定义荷载工况。 结束时间:指地震波的分析时间。如果地震波时间为50秒,在此处输入20秒,表示分析到地震波20秒位置。 分析时间步长:表示在地震波上取值的步长,推荐不要低于地震波的时间间隔(步长)。 输出时间步长:整理结果时输出的时间步长。例如结束时间为20秒,分析时间步长为0.02秒,则计算的结果有20/0.02=1000个。如果在输出时间步长中输入2,则表示输出以每2个为单位中的较大值,即输出第一和第二时间段中的较大值,第三和第四时间段的较大值,以此类推。 分析类型:当有非线性单元或非线性边界单元时选择非线性,否则选择线性。 分析方法:自振周期较大的结构(如索结构)采用直接积分法,否则选择振型法。 时程分析类型:当波为谐振函数时选用线性周期,否则为线性瞬态(如地震波)。 无零初始条件:可不选该项。 振型的阻尼比:可选所有振型的阻尼比。 3. 在“荷载/时程分析数据>地面加速度”中定义地震波的作用方向。 在对话框如果只选X 方向时程分析函数,表示只有X 方向有地震波作用,如果X 、Y 方向都选择了时程分析函数,则表示两个方向均有地震波作用。 系数:为地震波增减系数。 到达时间:表示地震波开始作用时间。例如:X 、Y 两个方向都作用有地震波,两个地震波的到达时间(开始作用于结构上的时间)可不同。 水平地面加速度的角度:X 、Y 两个方向都作用有地震波时如果输入0度,表示X 方向地震波作用于X 方向,Y 方向地震波作用于Y 方向;X 、Y 两个方向都作用有地震波时如果输入90度,表示X 方向地震波作用于Y 方向,Y 方向地震波作用于X 方向;X 、Y 两个方向都作用有地震波时如果输入30角度,表示X 方向地震波作用于与X 轴方向成30度角度的方向,Y 方向地震波作用于与Y 方向成30度角度的方向。 另外,地震时程分析不能与地震反应谱分析同时进行,用户应分别保存为两个模型,分别进行反应谱分析和时程分析。 时程分析注意事项: 1、截面需要使用“数据库/用户”来指定截面的尺寸,不然非弹性铰的特征值程序无法自动计算,之后的计算也会有问题(如计算速度特别慢,计算会出错); 2、加柱的P -M -M 铰时候,不管截面形状,需要在“屈服面特性值”里选择“自动计算”,对于梁和支撑是在“滞回模型”旁边的“特征值”里选择“自动计算”;

简述时程分析法

[转]时程分析法 来源:潘宇翔的日志 时程分析法又称直接动力法,在数学上又称步步积分法。顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。 当用此法进行计算时,系将地震波作为输入。一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。 时程分析法的主要功能有: 1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。 2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。 3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。 总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。 时程分析法有关的几个问题: 1、恢复力特性曲线; 恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。 2、结构计算模型及分析方法; 3、地震波的选用; 4、时程分析计算结果的处理。 时程分析要依靠计算机及软件,作为一般的工程设计人员,只需要了解1、2两个问题的内容,为软件的选用及前期数据准备做基础。问题3、4的内容,特别是问题3的内容,设设计人员能够把握的,也是能否得到良好分析结果的重要因素。 目前结构动力时程分析模型主要有三种:三维空间模型、二维平面模型和层模型。 从理论上讲,三维空间模型最接近结构的实际情况,是较理想的分析模型,计算精度也高,但由于这种模型计算工作量巨大,在目前的微机硬件资源条件下,大型结构设计中很少采用。二维平面模型和层模型对结构作了较多的简化处理,二维平面模型是将结构离散成一系列相互独立的“榀”,这种模型适用于刚度分布均匀、几何布置规则的结构。仅就独立的一榀而

基于Matlab求解建筑结构地震响应的时程分析法_孟宪萍 (1)

2008年第6期总第120期 福 建 建 筑 F u j i a nA r c h i t e c t u r e &C o n s t r u c t i o n N o 6·2008 V o l ·120 基于M a t l a b 求解建筑结构地震响应的时程分析法 孟宪萍 (开封市供水总公司 475004) 摘 要:本文基于m a t l a b 阐述了我国《建筑抗震设计规范》(G B 50011-2001)规定的求解建筑结构地震响应的时程分析法,应用m a t l a b 语言编制了时程分析法求解建筑结构地震响应的计算程序,并以一三层钢筋混凝土结构为工程算例,应用基于m a t l a b 的时程分析法进行结构的地震响应计算。结果表明,基于m a t l a b 的时程分析计算效率较高。关键词:M A T L A B 地震响应 时程分析法 中图分类号:T U 312+.1 文献标识码:A 文章编号:1004-6135(2008)06-0038-03 T h e t i m e -h i s t o r y m e t h o db a s e d o nm a t l a b o f r e s o l v i n g t h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e s M e n g X i a n p i n g (K a i f e n g Wa t e r S u p p l y C o m p a n y 475004) A b s t r a c t :I nt h i s p a p e r ,t h e t i m e -h i s t o r y m e t h o dw h i c h i s m e n t i o n e d i n t h e c o d e f o r s e i s m i c d e s i g n o f b u i l d i n g s (G B 50011-2001)t o r e s o l v e t h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e s i s d i s c u s s e d b a s e d o nm a t l a b .T h e c a l c u l a t i o np r o g r a m s o f t h et i m e -h i s t o r y m e t h o da r e w o r k e do u t u s i n g t h e l a n g u a g e m a t l a b .T a k i n g a t h r e es t o r y r e i n f o r c e d c o n c r e t e f r a m e s t r u c t u r e a s a ne x a m p l e ,t h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e i s r e s o l v e d b y u s i n g t h e c a l c u l a t i o n p r o g r a m s o f t h e t i m e -h i s t o r y m e t h o d .T h e r e s u l t i n d i c a t e s t h a t T h e t i m e -h i s t o r y m e t h o d b a s e do n m a t l a bo f r e s o l v i n gt h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e s i s e f f i c i e n t .K e y w o r d s : M A T L A B e a r t h q u a k e r e s p o n s e t i m e -h i s t o r y a n a l y s i s m e t h o d 作者简介:孟宪萍,女,1966年出生,主要从事建筑结构设 计及建筑咨询。 收稿日期:2008-03-25 1 引言 我国《建筑抗震设计规范》(G B 50011-2001)第5章对时程分析法的使用情况作出了规定。时程分析法又称为直接动力法或逐步积分法。采用时程分析法可以计算出结构在地震过程中每一瞬时的反应,可用来求解建筑结构的几何及物理线性与非线性动力响应。与经典的反应谱方法相比,有很多的优点,但是它也存在许多不足,主要有计算模型的合理选择困难;地震波输入的不确定性;在计算过程中要进行刚度矩阵等的不断修正,每一时刻的结果都受到此刻之前的结果的影响等,导致计算分析工作量较大。虽然目前在结构弹塑性时程分析时,结构动力增量微分方程已有较为成熟的算法以及相关的大型分析软件可以利用,但是其计算分析工作量仍然十分繁重,不但耗费机时,结果处理复杂,而且同计算者本身的经验和对结构在地震作用下的损伤形态和破坏顺序的 假定相关,这些都带有一定的主观性。但是随着计算机的普及,时程分析法正逐步被抗震规范接受。本文在详细阐述了时程分析法基本原理基础上,结合m a t -l a b 语言编制了时程分析法求解建筑结构地震响应的计算程序,并以一三层钢筋混凝土结构为例进行验证。 2 时程分析法基本原理 2.1 结构在地震作用下的动力微分方程 多自由度体系建筑结构在地震作用下的运动运动微分方程为 [M ]{x ·· }+[C ]{x · }+[K ]{x }=-[M ]{x ·· g } (1) 其中,[M ],[C ],[K ]分别为建筑结构质量、阻尼和刚度矩阵,{x ·· g }为地面运动加速度。2.2 建筑结构的计算模型 建筑结构计算模型一般应根据结构形式及构造特点、分析精度以及计算机容量等情况确定。用时程分析法求解时,由于计算工作量大,在尽量真实再现结构动力反应特点的前提下,尽可能对结构予以简化。对于传统的多层房屋结构,最简单且应用最广的模型是层间剪切模型,如图1所示,在这种模型中,房

动力学时程分析

研究生课程考核试卷 科目:结构动力学教师:刘纲 姓名:赵鹏飞学号:20131613163 专业:建筑与土木工程类别:专业 上课时间:2013年11月至2013年12月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

1 题目及要求 1、按规定设计一个2跨3层钢筋混凝土平面框架结构(部分要求如附件名单所示;未作规定部分自定)。根据所设计的结构参数,求该结构的一致质量矩阵、一致刚度矩阵; 2、至少采用两种方法求该框架结构的频率和振型; 3、输入地震波(地震波要求如附件名单所示),采用时程分析法,利用有限元软件或自编程序求出该框架结构各层的线性位移时程反应。 要求给出: (1)框架结构图,并给出一致质量矩阵和一致刚度矩阵; (2)出两种方法名称及对应的频率和振型; (3)输入地震波的波形图,计算所得各楼层位移反应时程图。

2 框架设计 2.1 初选截面尺寸 设计框架为3层2跨,跨度均为5.0 m ,层高均为4.5m 。梁、柱混凝土均采用C30,214.3/c f N mm =,423.010/c E N mm =?,容重为 3 25/k N m 。 估计梁、柱截面尺寸如下: (1)梁: 梁高b h 一般取跨度的1/12-1/8,即417mm-625mm,故取梁高 b h =600mm ; 梁宽一般为梁高的1/2-1/3,即200mm-300mm ,取梁宽300b b mm =; 所以梁的截面尺寸为:600mm ×300mm (2)柱: 框架柱的截面尺寸根据柱的轴压比限值,按下列公式计算: ①柱组合的轴压力设计值...E N F g n β= 其中:β:考虑地震作用组合后柱轴压力增大系数; F :按简支状态计算柱的负荷面积; E g :折算在单位建筑面积上的重力荷载代表值,可近似取 为12-14KN/m ;

相关主题