搜档网
当前位置:搜档网 › 盖梁的设计与计算

盖梁的设计与计算

盖梁的设计与计算
盖梁的设计与计算

盖梁支架设计计算

泉州至南宁高速公路过龙陂高架桥咼墩盖梁施工方案计算书 设计:_________________ 复核:_________________ 审批:_________________ 浙江省交通工程建设集团有限公司

2009221

过龙陂咼架桥盖梁支架设计计算书 一、概况: 盖梁尺寸为11.95X 2.3 X 3.7m (长X 宽X 高),在悬臂部分设置了 2.525 X 2m 倒角,盖 梁支架拟采用[]18a 、][14a 、120a 加工为锚固式三角托架,三角托架的结构如图一所示, 具体尺寸见加工图,三角架的上部锚固采用预埋锥形螺母锚固钢板的形式, 下部撑脚直接支 撑在砼面上。三角支架安装完成后,吊装盖梁施工平台 3、2和侧面模板4、5,其相互关系 见图二。 图一:盖梁承载三角架加工示意图 图二:三角支架、工作平台和侧面模板位置的相互关系 二、荷载统计和整体计算: 单个三角架自重1.6t ;单侧悬挑砼方量17.71方,自重44.275t ;悬挑砼下模板支架单个 计重 1.95t ;砼大面施工模板共 108平方米,计重21.6t ;跳板和施工平台约 41.4平方,荷载 林4, W5 . X 吐制尺初 Mil

每平米0.2t,计荷载8.28t,荷载总计125.53t。 根据以上的荷载统计,对支架整体结构进行了分析计算,其模型如下(计算模型中三角支架部分荷载为12t/m2,未折减倒角砼重量,加载区域 2.65mx 3m其余平面荷载1t/m2): 荷载分布示意图(图中荷载未考虑砼倒角荷载削减) BJ?7?+W!L 支架最大位移7.6mm (安全)El : IQ Hlh< i 1 __________ t#: zAh 商伍加齐 M]& Afridi UEJIH小E豁 K?? H刪:旳 Mlh i 22 Sr*: ■ E! EE*. H股亠3: aiTiE^tms* 支架最大组合应力94.6Mpa (安全) 舀工力 flft? I JHGH*-4O 2 O.IJXOJ*—K€ 耳4 £jaaoo?? -P-.^Qlw+W? zmwHT? 4丹饰”叭

某主干线同江至三亚段中桥盖梁施工组织设计

某主干线同江至三亚公路胶州至两城段 K21+976中桥盖梁 施 工 组 织 设 计 某国际建设股份有限公司 同三线九合同段第五工区 二OO二年

目录: 一、工程简介 二、桥台盖梁施工方法 三、施工工艺流程图 四、施工质量及要求标准 五、质量保证措施 六、机械、劳动力安排 七、安全操作

一、工程简介 同三线K21+976中桥位于王台镇西侧,横跨温凉河之上,河面比较开阔,是胶州至两城段的主要桥梁之一。K21+976中桥地形比较平坦。桥梁与路线前进方向的右夹角为900。桥梁上部结构采用16米预应力空心板,桥面连续。下部结构为桩基础。 二、盖梁桥台施工方法 (一)盖梁施工 1.碗扣支架施工 1.1支架处地基处理 墩柱施工完成后,搭盖梁支架,支架采用碗扣式落地支架,用人工将原地面整平夯实后搭支架。地基处理的同时要做好排水工作。坚决杜绝因雨水或汛期地表水对支架的浸泡而造成支架的不均匀沉降。 1.2碗扣支架搭设 支架纵、横桥向间距为0.9×0.9m,竖向间距1.2 m。为了保证支架稳定性,在纵横向加设一定数量的斜撑。 1.3支架立杆位置放样 为了便于控制标高,立杆布置通常以盖梁横轴中心线为准,左右对称布置,放样时以中心线为控制线,确定立杆纵、横向位置。 1.4布设立杆垫块 根据立杆位置布设立杆垫块,注意将其放置平整、牢固,并使立杆处于垫块中心。保证地基的受压面积,底部不得有悬空现象。 1.5支架底座标高控制 为保证横杆水平,控制好立杆顶标高,使立杆、横杆能顺利连接,需认真调节好混凝土或方木垫块上的支架底座标高。方法是横桥向每6根立杆为一个断面,纵向设左、中、右三个控制点拉线控制,调出每个底座的伸出量。 1.6安装立杆、横杆 根据立杆及横杆的设计组合,从底部向顶部依次安装立杆、横杆。安装时应保证立杆处于垫块中心,一般先全部装

盖梁支架受力计算知识讲解

盖梁支架受力计算 (预埋钢棒上安工字钢横梁法) 一、概况 汨罗江特大桥盖梁除悬浇主墩及28#过渡墩盖梁另外计算外,最重盖梁为 40mT梁盖梁,其尺寸为15.9m(长)×2.3m(宽)×2.1m(高),若经计算该盖 梁支架满足要求,则其他盖梁支架均满足要求。 针对该工程特点设计便易操作的盖梁支架系统。混凝土及模板系统的恒载、 施工操作的活荷载通过型钢直接传递给牛腿,牛腿递给墩柱及桩基础。 二、设计计算依据 (1)《路桥施工计算手册》 (2)《公路桥涵钢结构及木结构设计规范》 (3)《机械设计手册》 三、支架模板的选用 盖梁模板: 1.1、侧模:采用组合钢模拼装。 1.2、底模:方正部分用组合钢模拼装。 1.3、横梁:采用[14#a槽钢,间距40cm。 1.4、主梁:采用I45a工字钢。 1.5、楔块:采用木楔。 1.6、穿心钢棒:采用45号钢,直径10cm。长度每边外露30cm. 四、计算方法 1、总荷载计算 盖梁砼荷载F1:体积71.85立方米,比重2.6吨/立方米,自重:195.9吨, 合F1=185.9*10=1859KN 模板重量F2:盖梁两侧各设置一根I45a工字钢作为施工主梁,长18米(工 字钢荷载),q1=80.4×10×18×2/1000=28.94 KN;主梁上铺设[ 14a槽钢,每 根长3.0米,间距为40cm,墩柱外侧各设置8根,两墩柱之间设置19根。 q2=(19+8×2)×3.0×14.53×10/1000=15.26KN(铺设槽钢的荷载);

槽钢上铺设钢模板,每平方按0.45KN 计算, q3=(15.9×2.1×2+2.3×15.9+2.1×2.3×2)×0.45=50.9 KN (底模和侧模、端头模的荷载); q4=6KN (端头三角支架自重) F2=q1+q2+q3+q4+q4=107.1KN F3:人员0.5吨,合5KN F4:小型施工机具荷载:0.55吨,合5.5KN F5:振捣器产生的振动力及混凝土冲击力;本次施工时采用HZ6X-50型插入式振动器,设置2台,每台振动力为5KN ,施工时混凝土冲击力按5KN 计,则F5=2×5+5=15KN 总荷载: F=F1+F2+F3+F4+F5 =1859+107.1+5+5.5+15=1991.6KN 2、穿心钢棒(45号钢)受力安全分析 共有4个受力点,每点受力:Q max =F/4=1991.6/4≈497.9KN ; 钢棒截面积:S=0.05*0.05*3.14=0.0079m 2 最大剪应力:τmax =Q max /S=497.9/0.0079=63.03Mpa 45号钢钢材的允许剪力: [τ]=125Mpa 则[τ] =125 >τmax =63.03Mpa 结论:穿心钢棒(45号钢)受力安全 3、I45a 工字钢主梁受力安全分析 工字钢均布荷载:q=F/2/15.9=1991.6/2/15.9=62.63KN/m R1=R2=ql/2(a+l/2)=2340.17KN 工字钢横梁AB 段最大弯矩出现在中间处(x=a+l/2=7.95m ),a=3.25m , l=9.4m ;跨中最大弯矩 M max =62.63*9.4*7.95/2*[(1-3.25/7.95) *(1+2*3.25/9.4)-7.95/9.4] =360.98KN ?m 横梁CA 段和BD 段最大弯矩出现在支承点A 、B 两处,最大弯矩 2 12M qa =-=-1/2*62.63*3.252=-330.76 KN ?m

盖梁专项施工方案

目录 1.编制依据及执行标准 (1) 2.工程概况 (1) 3.钢筋加工场 (2) 4.施工组织机构及人员安排 (2) 5.施工机械及人员配备情况 (2) 6.盖梁施工 (3) 7.技术保证措施 (9) 8.质量保证措施 (10) 9.安全保证措施 (12) 10、环境保护的主要措施 (14) 11、文明施工管理措施 (14) 12、质量管理保证体系 (15) 13、安全保证体系 (16) 14、环境保护体系 (17) 15、项目组织机构图 (18)

03省道立交桥盖梁施工方案 1.编制依据及执行标准 1.1.编制依据 (1)义乌疏港快速路第三合同段施工图纸、招标文件、施工合同及相关参考资料。 (2)进场后现场调查所得的有关资料。 (3)义乌疏港快速路第三合同段实施性施工组织设计。 (4)《公路工程质量检验评定标准》(JTGF801-2012)。 (5)《公路桥涵施工技术规范》(JTG_TF50-2011)。 2.工程概况 2.1.工程简介 临安至缙云公路义乌城西至佛堂段工程(疏港快速路)起点位于义乌市城西街道夏演村与流下村之间、拟建杭金衢高速公路东河互通收费站出口,起点桩号K1+132.519,与杭金衢高速公路相接,路线按规划华厦路线位布设,由北向东南展线,在桥头村西侧设置互通上跨S103省道,经后店村西侧、下溪村、吴坎头村东侧,在水冰塘村西设置互通上跨四海大道,路线继续向东南走,在东城村西侧绕过姑塘水库和西田村,设置立交桥上跨稠义路,在西王界与杨梅院中间设置互通与03省道改建公路相连接,经何村西后,在下金村南设置互通上跨五洲大道,路线右转向南,经丹山村东,终于义乌市佛堂镇和溪村西北、甬金高速公路佛堂互通(规划)收费站出口,与甬金高速公路相接,终点桩号K9+948.399,路线全长8.816公里。 03省道立交桥中心桩号K6+826.2,6跨*30米共计180米,本桥桥墩为圆形柱式桥墩,墩顶设置现浇混凝土盖梁。两侧为肋式桥台,肋板顶设置现浇混凝土盖梁。具体盖梁数量见《盖梁数量统计表》。

最新盖梁支架设计计算

泉州至南宁高速公路过龙陂高架桥高墩盖梁施工方案计算书 设计: 复核: 审批: 浙江省交通工程建设集团有限公司 2009.2.21 过龙陂高架桥盖梁支架设计计算书

一、概况: 盖梁尺寸为11.95×2.3×3.7m(长×宽×高),在悬臂部分设置了2.525×2m倒角,盖梁支架拟采用[]18a、][14a、I20a加工为锚固式三角托架,三角托架的结构如图一所示,具体尺寸见加工图,三角架的上部锚固采用预埋锥形螺母锚固钢板的形式,下部撑脚直接支撑在砼面上。三角支架安装完成后,吊装盖梁施工平台3、2和侧面模板4、5,其相互关系见图二。 图一:盖梁承载三角架加工示意图 图二:三角支架、工作平台和侧面模板位置的相互关系 二、荷载统计和整体计算: 单个三角架自重1.6t;单侧悬挑砼方量17.71方,自重44.275t;悬挑砼下模板支架单个计重1.95t;砼大面施工模板共108平方米,计重21.6t;跳板和施工平台约41.4平方,荷载每平米0.2t,计荷载8.28t,荷载总计125.53t。 根据以上的荷载统计,对支架整体结构进行了分析计算,其模型如下(计算模型中三角

支架部分荷载为12t/m2,未折减倒角砼重量,加载区域2.65m×3m,其余平面荷载1t/m2):荷载分布示意图(图中荷载未考虑砼倒角荷载削减) 支架最大位移7.6mm(安全) 支架最大组合应力94.6Mpa(安全)

支架第一阶屈曲稳定系数12(安全) 三、局部计算分析和构造: 1、锚杆抗拔: 按照最不利荷载布置方式,分别由每根斜杆处传递竖向力约15.7t,对锚点求矩,(15.7×3+15.7×1.5)=70.65tm,算出锚点和撑脚的水平拉力和压力为70.65/2.85=24.8t,锚固安全系数取4倍,得出锚固区的抗拔力应大于100t,每个锚固区采用10.9级直径26.5mm 的预埋锥形螺母四个,每个螺杆面积A=3.14×26.5×26.5/4=551.266平方毫米。其抗拉保证强度等于4×830Mpa×A/9800=187t,故锚固力足够。 2、锚杆抗剪: 竖向荷载125.53t分别由四个锚点承受,每个锚点抗剪约31.4t,考虑拉剪组合应力,31.4×9800/4/A×1.414+24.8×9800/4/A=307.5Mpa,小于10.9级螺杆的保证应力830Mpa,故抗剪也安全。 3、锚固钢板构造: 根据钢结构规范和机械设计手册中关于预埋钢板 厚度以及螺杆直径和孔位的具体要求,选定锚固钢板 厚30mm,尺寸520×300mm,开孔位置见右图。 为了方便支架的安装和拆除,保证施工人员的安 全,在三角架锚板中间开槽,浇筑砼前预埋定位螺母, 拆模后安装定位螺杆。开槽钢板直接卡在定位螺杆上, 将三角架直接悬挂在砼上,施工人员再上三角架安装 其余的锚固螺栓。 四、施工注意事项: 三角架安装时施工人员站立在已浇筑砼面上指挥塔吊,利用晃绳控制支架位置,当风速大于10m/s时不能进行吊装作业。 三角架吊装前在外侧悬挂尼龙安全网,在三角架中部的水平脚手钢管上焊接走道板作为装拆螺栓的施工平台,平台外侧焊接钢筋作为护栏。 三角架作为盖梁的承载平台,锚板和支撑板的贴合情况很重要,为此特设置了上部转动连接销,在拼装加工过程中要保证四块板在一个平面上,同时保证三角架的拼装后在一个竖直面上。 锚固件的预埋精度要求高,需采用较薄的定位钢板在模板上放样开孔,将预埋螺母等配件安装在模板上,浇筑砼时注意控制振捣,不要将振捣泵直接插在埋件上,同时要保证该处

盖梁支架计算书

汕湛高速揭博项目T11标 盖梁支架计算书 四川路桥建设股份有限公司 2014年3月30日

目录 1、工程概况 (1) 2、总体施工方案 (1) 3、支承平台设置 (4) 4、计算依据 (5) 5、计算参数 (5) 6、计算结果 (9) 7、结论 (22) 8、抱箍试验 (23)

盖梁抱箍法施工方案 一、工程概况 本标段主线共设置大中桥7座(不含互通区和服务区),分别为白昌屋大桥(30米T梁),万年坑大桥(30米T梁),叶塘1号大桥(25米小箱梁),叶塘2号大桥(25米小箱梁),秋香江大桥(25米小箱梁),上赖水大桥(30米T梁),黎坑大桥(25米小箱梁);九和互通内共设置桥梁3座,其中主线桥2座,匝道1座,分别为三社坑大桥(25米小箱梁),围坪大桥(25米小箱梁),D匝道桥(20米现浇箱梁);紫金西互通内共设桥梁3座,其中主线桥2座,分别为玉竹坑中桥(25米小箱梁),围澳水大桥(25米小箱梁)和L线秋香江大桥(25米小箱梁);瓦溪服务区共设置主线桥1座,为四联大桥(30米T梁)。下部结构采用桩基础、地系梁、承台、柱式桥墩、肋板、台帽、盖梁和耳背墙。其中D匝道桥桥墩采用花瓶墩。 二、总体施工方案 因本标段桥梁盖梁高度较高,采用满堂支架施工盖梁耗时长、占用大量钢管扣件等周转材料、不经济。拟采用在墩柱上安设抱箍支承平台施工。 盖梁统计表

考虑最不利情况(跨度及盖梁尺寸均最大),采用秋香江1.8m*2.4m*17.437m盖梁(两柱)、上濑水大桥2.1m*2.4m*15.3m盖梁(两柱)和四联大桥2.1m*2.4m*20.1m(三柱)盖梁作为计算模型。盖梁简图

万石路盖梁施工组织设计

目录 一、编制依据和原则 (3) 1.1、编制依据 (3) 1.2、编制原则 (3) 二、工程概况 (3) 2.1工程简介 (3) 2.2地理、气候和水文情况 (3) 三、盖梁施工方案 (6) 四、雨季施工安排 (10) 五、确保工程质量和工期的措施 (11) 5.1质量保证措施 (11) 5.2工期保证措施 (12) 六、安全保障措施、安全施工及安全应急措施. (13) 6.1施工人员安全防护 (13) 6.2交通安全措施 (15) 6.3安全保卫措施 (15) 七、环境保护、水土保持的措施 (16) 7.1环境保护及水土保持目标 (16) 7.2环境保护 (16) 八、文明施工措施 (17)

附图附表 (20) 盖梁施工专项方案

一、编制依据和原则 1.1、编制依据 1.1.1设计提供的招标文件技术规范、施工图图纸。 1.1.2交通部颁布的《城市公路桥涵施工技术规范》、《城市公路工程质量检验评定标准》、《城市公路工程技术规范》、《城市公路桥涵设计通用规范》、《城市公路钢筋混凝土及预应力混凝土桥涵设计规范》、《城市公路抗震设计规范》等规范。 1.1.3 桥梁的结构形式、地质、气候、水文情况和现场地形地物情况。 1.1.4 我公司现有的技术装备、施工能力以及类似工程的施工经验。 1.2、编制原则 2.1安全第一的原则 2.2优质高效的原则 2.3确保工期的原则 2.4文明施工、环境保护的原则 二、工程概况 2.1工程简介 2.1工程简介 本桥设计采用桥跨跨径为4跨简支小箱梁桥,跨径组合为4*30M,桥面宽40m,及线路斜交角为30°。基础形式拟采用钻孔灌注桩基础,按公路-I级,桥宽40m、全长120m。1#、2#、3#每个桥墩横向设7片墩柱,墩柱直径1.5m,桩直径1.8m。桥墩(桥台)盖梁采用现浇钢筋混凝土结构。 2.2地理、气候和水文情况 2.2.1自然地理及地形地貌 拟建桥梁位于新都区斑竹园镇檀村及金牛区天回镇白塔村境内,交通十分方便。

盖梁支架施工方案(三立柱穿钢棒法)教学文案

浅谈桥梁盖梁穿钢棒法支架施工 摘要:桥梁盖梁穿钢棒法支架施工,即为盖梁施工前,在桥梁立柱上预留孔洞,在孔内穿一横向钢棒,再在钢棒上放置纵向工字钢,在工字钢上铺设横向槽钢,再辅以模板等这样就形成了盖梁施工平台(支架)。而为保证该支架的安全,钢棒和工字钢的型号选择极为重要,本文通过实践及实际计算阐述如何解决这一问题。 随着我市干线公路的不断新建,道路桥梁等级不断提高,新建桥梁的数量不断增加,随之而来是各种技术的应用。在桥梁盖梁施工中,采用的方法有满堂支架法、抱箍法、穿钢棒法。而穿钢棒法与其他方法相比具有占用钢管扣件等周转材料少、不需对每一个桥墩原地面硬化、施工不受墩下河水影响等优点,在施工中越来越受到广泛使用。但如何计算该支架受力状况,该支架是否安全可靠,现今桥梁多为双立柱,如碰到三立柱又如何解决,本文以施工中很少碰到的三立柱为例验算盖梁穿钢棒法支架受力是否满足要求。一、工程概况 本例以我市干线公路合子桥为例,该桥梁全长为124.88m,上部构造采用6×20m预应力混凝土空心板梁,先简支后桥面连续,下部构造桥墩采用三柱式墩。 二、总体施工方案 因采用满堂支架施工盖梁耗时长、占用大量钢管扣件等周转材料、不经济,以及位于河中的墩不便搭设满堂支架。故拟采用在墩柱上预留孔穿钢棒搭设支承平台施工。本桥墩圆柱直径均为1.4m,

0#及6#为桩基直接接台帽,1#、2#、3#、4#、5#下部构造为桩基-立柱-盖梁,本桥盖梁尺寸、砼方量均相同,盖梁尺寸均为 1.65m×1.4m ×21.362m(宽×高×长)。其中3#立柱平均高7m,且位于河中,故选取该盖梁作为计算模型用于计算指导盖梁施工。盖梁简图如下: 三、支承平台布置 盖梁施工支承平台采用在三个墩柱上各穿一根2m长φ100mm钢棒,上面采用墩柱两侧各一根21.5m长45c工字钢做横向主梁,搭设施工平台的方式。主梁上面安放一排每根2m长的[10a槽钢,间距为50cm作为分布梁。分布梁上铺设盖梁底模。传力途径为:盖梁底模——纵向分布梁(10a槽钢)——横向主梁(45c工字钢)——支点φ100mm钢棒。如下图:

桥梁通 第4章 盖梁计算与绘图

第4章盖梁计算与绘图 4.1概述 柱式墩台是公路桥梁设计中普遍采用的结构形式,由于跨径、斜度、桥宽、地质、车荷载的变化,很难完全套用现行标准图和通用图。尤其是盖梁部分,标准化程度低,工作量大,构件配筋复杂,设计人员往往要花费很大精力和时间。因此迫切需要一套软件帮助设计人员快速准确的完成设计,同时提供设计人员多方案比选,达到优化设计的目的。盖梁计算与绘图模块就是专门用来计算盖梁的内力,并进行强度和抗裂验算,动态显示弯矩、剪力包络图和裂缝配筋图,完成钢筋构造图的设计。 4.2功能 4.2.1计算与绘图共同部分 ●⑴既可对帽梁单独设计计算,单独绘钢筋构造图;又可设计计算绘图全过程进行。 ●⑵适合任意斜交角度的桥墩或桥台盖梁。 ●⑶绘制独柱、2柱、3柱、4柱;计算独柱、2柱、3柱…9柱、10柱式盖梁。 ●⑷盖梁截面高度等高或悬臂部分变高。 4.2.2计算部分 ●⑴提供中文计算书一份,包括原始数据和16个不同内容的计算结果表,便于用户备查和复核。表格内容如下: a:每片上部梁(板)恒载反力表 b:荷载反力和冲击系数表 c:梁(板)横向分配系数表 d:活载引起梁(板)支反力表 e:上部梁(板)恒载作用截面内力表 f:盖梁自重作用截面内力表 g:人群荷载作用内力表 h:挂车荷载作用内力表 i:汽车荷载作用内力表 j:各截面单项荷载弯矩表 k:各截面单项荷载左剪力表 l:各截面单项荷载右剪力表 m:内力合计表(未计入荷载效应提高系数) n:内力组合表(已计入荷载效应提高系数) o:配筋、裂缝计算表 p:箍筋间距计算表 ●⑵绘制弯矩包络图和计算相应控制截面钢筋根数。 ●⑶绘制剪力包络图和计算相应控制截面钢筋根数。 ●⑷绘制裂缝配筋图和计算相应控制截面钢筋根数。 ●⑸按2环(4肢)、3环(6肢)分别计算箍筋间距。 ●⑹活载考虑人群、汽车、验算荷载常用的三种。 汽车荷载包括汽车-10级、汽车-15级、汽车-20级、汽车超-20级、汽车城-A级、汽车城-B级或自定义。

盖梁模板设计计算书

盖梁模板设计计算书 一、概述 本合同段盖梁共有74个,按下接墩柱直径的不同可分为5种,其中下接φ1.3墩柱盖梁宽度有1.5m、1.6m两种,故共有6种不同的盖梁型式,其中每一种盖梁其它尺寸又有不同,详见附表:盖梁尺寸表。 针对盖梁种类多的情况,对质量要求与经济性进行综合考虑,拟对所有盖梁正侧模加工钢模,其余加工木模。 二、正侧模设计 1、正侧模尺寸及结构形式选定 正侧模高度分为1.35m、1.75m两种,1.35m高模板长度分为4.5m、1.5m两种,1.75m高模板长度分为4.5m、1.5m 两种。面板采用5mm厚钢板,紧贴模板的竖向小肋用□5×60扁钢,间距为300mm,横肋用[8槽钢,间距为500mm,对拉螺杆处竖向大肋用2[10槽钢,间距为1m。 2、模板荷载计算 (1)采用《简明施工计算手册》P310页推荐公式计算新浇普通砼作用于模板的最大侧压力,由该公式可以看出,最大侧压力与砼浇筑速度V、盖梁总高度H呈单调递增函数关系,故选取9#桥盖梁作为计算对象(高度较大,平均平面面积较小)。 砼浇筑速度:按每小时浇筑40m3计算,砼平均浇筑速度V=3.10m/h。砼的入模温度假定为10℃,K S取1.15,K W1.2 1500 1500 P m=4+ · Ks·Kw·3√V =4+ ×1.15×1.2×3√3.10 T+30 40 =79.46Kpa P m=25H=25×1.5=37.5Kpa 取P m=37.5Kpa

(2)振捣砼时产生的荷载取4.0Kpa。 (3)荷载组合:依据《公路桥涵施工技术规范》第8.2.2条规定:计算强度荷载P1=37.5 +4.0=41.5Kpa; 验算强度荷载P2=37.5Kpa。 3、面板计算 Lx/Ly=500/300=1.6 按双面板计算,选面板三面固定、一面简支的最不利情况计算。 (1)强度计算 先计算M max 查《建筑工程模板施工手册》 W=0.00249 M x=0.0384 M y=0.0059 M x0=-0.0814 M y0=-0.0571 取1m 宽板条作为计算单元,最大强度计算荷载为: q=41.5×103×10-6×1=0.0415N/mm M x·max=M x0·ql2=-0.0814×0.0415×3002=-304.029N·mm 面板的截面系数 W=1/6bh2=1/6×1×52=4.167mm3 查《建筑工程模板施工手册》P498知: M max 304.029 σmax===72.96N/mm2<[σ] V x·W x 1×4.167 =145N/mm2 其中V x=1(截面塑性发展系数) (2)刚度验算 F=P1=0.0375N/mm2 h=300mm

盖梁支架计算书(B版)

虎门二桥S4标 沙田枢纽立交主线桥 盖梁施工支架计算书(B版) 虎门二桥S4标项目经理部 2015年10月·广州

目录 1工程概况 (1) 1.1 工程简介 (1) 2盖梁施工方案简介 (7) 2.1 0#墩L型悬臂盖梁落地支架简介 (7) 2.2 1#~14#墩悬臂盖梁支架简介 (8) 2.3 圆柱墩盖梁抱箍支架简介 (8) 3盖梁施工支架计算 (10) 3.1 计算说明 (10) 3.2 计算参数 (10) 3.3 0#墩L型悬臂盖梁施工支架计算 (10) 3.4 1#~14#墩悬臂盖梁施工支架计算 (15) 3.5 圆柱墩盖梁施工支架计算 (20) 4抱箍计算 (23) 4.1 设计指标 (23) 4.2 D160cm计算 (23) 4.3 D180cm抱箍计算 (29)

1工程概况 虎门二桥项目起点位于广州市南沙区东涌镇,终点位于东莞市沙田镇,主线全线长12.891km,含大沙水道、坭洲水道两座悬索桥,其中大沙水道桥采用主跨为1200m悬索桥,坭洲水道桥采用548+1688m双跨钢箱梁悬索桥。坭洲水道桥跨越坭洲水道(狮子洋)桥位处河面宽度约2300m,西塔中心里程为K8+052.618,东塔中心里程为K9+740.618。坭洲水道桥总体布置图如下图所示。 坭洲水道桥总体布置图 1.1工程简介 沙田枢纽立交主线桥里程范围为K11+426.618~K12+941.618,分左右两幅,每幅共有49个墩(0#墩作为东引桥与沙田立交的过渡墩,其墩身施工方案已划入东引桥工程段,其盖梁施工划入沙田枢纽立交工程段),总共98个墩,桥墩有板式墩、双柱圆柱墩、三柱圆柱墩、四柱圆柱墩等四种类型。 板式墩共有32个,其中板厚1.6m的有28个,板厚1.8m的有4个;双柱墩共27个,其中柱径1.8m的有5个,柱径1.6m的有22个;三柱墩共有21个,其中柱径1.6m的有19个,柱径2.2m的有2个;四柱墩共有9个,柱径均为1.6m。 本工程段墩身最大高度为20.263m,墩身最大方量为166.6m3。 左右幅0#~18#墩、21#~46#墩、49#墩上设有盖梁,其中左右幅0#墩盖梁为变高L型悬臂梁,左右幅1#~14#墩盖梁形式为变高T形悬臂梁,其余均为矩形梁(左右幅19#~20#、47#~48#墩上为连续小箱梁,不设盖梁)。 左右幅0#墩盖梁为预应力变高L型悬臂盖梁,盖梁截面呈L型,采用C40混凝土,长度为18.7m,截面形式为3.5×[(2.2~1.1)+1.2]m,1.2m加高块位于预制小箱梁侧,宽度1.05m。盖梁方量108.0m3。 左右幅1#~14#墩变高悬臂盖梁为预应力混凝土结构,采用C40混凝土,盖梁长度均为18.7m,截面尺寸为2×(2.2~1.1)m,悬臂长度5.05m,混凝土方

桥梁盖梁施工方案样本

防城至东兴高速公路 M4合同段 桥梁盖梁专项施工方案 编写:黄鹏成 审核:李金明 施工单位:广西路桥建设有限公司 监理单位:广西桂通公路工程监理咨询有限责任公司

44

、编制说明................. 错误!未定义书签_ 、编制依据.................. 错误!未定义书签 三、工程概况.................. 错误!未定义书签 四、质量标准................. 错误!未定义书签 五、施工准备.................. 错误!未定义书签 六、施工方法.................. 错误!未定义书签 七、劳务人员进场情况............. 错误!未定义书签 八、桥梁工区划分................ 错误!未定义书签 九、质量管理及控制措施............ . 错误!未定义书签 十、环境和职业健康安全管理措施错误!未定义书签

编制说明 以GB/T19001- 《质量管理体系要求》标准为基础, 融入其它标准要求的模式, 建立了质量、环境、职业健康安全三标一体文件体系, 将”三标一体”管理体系与标准管理体系、过程管理体系相结合, 建立标准协调配套、结构科学合理、条款准确使用、操作切实可行的文件管理系统, 重视生态环境、强化环保意识, 做好环境保护和文明施工。严格控制施工噪音、扬尘, 处理好污水、弃碴、弃土, 尊重当地民族习惯和风土民情, 保障施工人员及周围群众的人身和财产不因施工而受到损害, 确保工程质量达到优良等级, 创精品工程。 二、编制依据 (1) 《防城至东兴高速公路能4合同段施工图设计》 (2) 《防城至东兴高速公路能4合同段施工组织设计》 ( 3) 《公路工程技术标准》; ( 4) 《公路桥涵施工技术规范》; ( 5) 《公路工程水泥混凝土试验规程》; ( 6) 《公路工程石料试验规程》; ( 7) 《公路工程金属试验规程》; ( 8) 《公路工程施工安全技术规范》; ( 9) 《公路工程质量检验评定标准》; ( 10) 《公路桥涵设计通用规范》; ( 11) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》

桥梁通第4章盖梁计算与绘图分析

桥梁通CAD 第4章盖梁计算与绘图使用说明17 第4章盖梁计算与绘图 4.1概述 柱式墩台是公路桥梁设计中普遍采用的结构形式,由于跨径、斜度、桥宽、地质、车荷载的变化,很难完全套用现行标准图和通用图。尤其是盖梁部分,标准化程度低,工作量大,构件配筋复杂,设计人员往往要花费很大精力和时间。因此迫切需要一套软件帮助设计人员快速准确的完成设计,同时提供设计人员多方案比选,达到优化设计的目的。盖梁计算与绘图模块就是专门用来计算盖梁的内力,并进行强度和抗裂验算,动态显示弯矩、剪力包络图和裂缝配筋图,完成钢筋构造图的设计。 4.2功能 4.2.1计算与绘图共同部分 ●⑴既可对帽梁单独设计计算,单独绘钢筋构造图;又可设计计算绘图全过程进行。 ●⑵适合任意斜交角度的桥墩或桥台盖梁。 ●⑶绘制独柱、2柱、3柱、4柱;计算独柱、2柱、3柱…9柱、10柱式盖梁。 ●⑷盖梁截面高度等高或悬臂部分变高。 4.2.2计算部分 ●⑴提供中文计算书一份,包括原始数据和16个不同内容的计算结果表,便于用户备查和复核。表格内容如下: a:每片上部梁(板)恒载反力表 b:荷载反力和冲击系数表 c:梁(板)横向分配系数表 d:活载引起梁(板)支反力表 e:上部梁(板)恒载作用截面内力表 f:盖梁自重作用截面内力表 g:人群荷载作用内力表 h:挂车荷载作用内力表 i:汽车荷载作用内力表 j:各截面单项荷载弯矩表 k:各截面单项荷载左剪力表 l:各截面单项荷载右剪力表 m:内力合计表(未计入荷载效应提高系数) n:内力组合表(已计入荷载效应提高系数) o:配筋、裂缝计算表 p:箍筋间距计算表 ●⑵绘制弯矩包络图和计算相应控制截面钢筋根数。 ●⑶绘制剪力包络图和计算相应控制截面钢筋根数。 ●⑷绘制裂缝配筋图和计算相应控制截面钢筋根数。 ●⑸按2环(4肢)、3环(6肢)分别计算箍筋间距。 ●⑹活载考虑人群、汽车、验算荷载常用的三种。 汽车荷载包括汽车-10级、汽车-15级、汽车-20级、汽车超-20级、汽车城-A级、汽车城-B级或自定义。

中交设计师步步解析桥梁盖梁设计计算,设计师都在看!

中交设计师步步解析桥梁盖梁设计计算,设计师都在看! 桥梁设计中,柱式桥墩是普遍采用的结构型式。对于简支桥梁,盖梁是一个承上启下的重要构件,上部结构的荷载通过盖梁传递给下部结构和基础,盖梁是主要的受力结构。在设计中,由于桥梁的跨径、斜度、桥宽、车辆荷载标准的变化,对盖梁设计的影响很大,很难完全套用标准图和通用图。盖梁设计的标准化程度很低,经常是非标准设计,需要对盖梁进行较多的计算,所以盖梁设计是桥梁设计的一个关键部分。

一、盖梁的受力特点及分析 1盖梁的受力特点 盖梁的主要荷载是由其上梁体通过支座传递过来的集中力,盖梁作为受弯构件,在荷载作用下在各截面除了引起弯矩外,同时伴随着剪力的作用。此外,盖梁在施工过程中和活载作用下,还会承受扭矩,产生扭转剪应力。扭转剪应力的数值很小且不是永久作用,一般不控制设计。实际计算中一般只考虑弯剪的组合,因为考虑弯、剪、扭三种内力同时组合,需要空间分析,计算工作会很繁琐,而且实际意义也不大。可见盖梁是一种典型的以弯剪受力为主的构件。 2盖梁的受力分析 盖梁除了自重荷载之外,主要承受由支座传递过来的上部结构的恒载。对不同桥宽、不同跨径简支梁板桥的盖梁内力计算结果进行分析,以双柱式桥墩盖梁墩顶负弯矩为例:盖梁自重所占比例很小,为9%左右;上部恒载所占比例很大,为63%左右;而活载只占总荷载比例的28%左右。表1为笔者在设计工作中对双柱式桥墩盖梁墩顶内力计算结果的一个归纳。

二、盖梁的计算要点 盖梁的计算要点是如何建立准确而且简化的计算模型。 盖梁的几何外形简单,且是以弯矩、剪力及轴力为主,受力特点明确。将它模拟成平面杆单元比模拟成空间体单元计算要简单许多,而且能满足控制要求。空间计算结果虽然准确,但是计算复杂,对于盖梁计算必要性不大。采用盖梁平面基本的简化模式进行计算是最简单且比较实用的,但使用时要对局部区域的峰值如墩顶截面进行适当的折减削峰处理,因为盖梁的实际控制截面往往不在墩顶而在墩柱边缘附近,这样能避免造成较大的浪费。盖梁的刚度与柱的刚度之比越大,简化计算结果越准确。当相对刚度比大于10时,误差已经控制在10%以内了,在精度要求不很高的结构工程中是允许的,且偏于安全。此时可忽略桩柱对盖梁的弹性约束作用,把盖梁简化成简支或连续梁的型式。当然,整体图式法是计算最为准确的平面简化计算方法,计算简单且符合实际,建议有条件时尽量采用。 1承载力计算方法

桥梁施工组织设计 (1)

桥梁施工组织设计

目录 一 .编制依据 二.工程概况及施工条件 三.施工准备 四.施工方案选择(多写点) 五.施工组织管理与总体设想 六.管理职责及权限 七.施工测量的技术措施和总体安排 八.主要技术质量措施 九.施工工艺流程 十.施工进度计划(表内容写多点) 十一.劳动力需求量计划 十二. 主要技术经济指标 十三. 施工平面布置 十四.安全保证体系及保证措施 十五.质量管理体系及保证措施 十六.工期保证体系及保证措施 十七.环境保护保证体系及保证措施 十八.节约成本和季节性施工措施

桥梁施工组织课程设计 一 .编制依据 本建议书根据合同段招标文件,及国家有关部委颁发的标准、规范、规程,并经过施工现场的认真勘察,经反复讨论后,编制此实施性施工组织设计。 二. 工程概况及施工条件 1.工程建设概况: 该桥位于省道线上,跨越河流,为该道路工程建设的一部分,该桥采用设计为13米的装配式预应力混凝土简支板桥,桥宽11米。基础采用桩基础,桥台采用重力式U型桥台。墩台的施工已经完成,只需要进行上部结构施工。 2. 设计标准及原则: (1)、桥梁设计荷载:公路—Ⅰ级 (2)、桥梁与路基同宽,桥梁横坡为双向横坡1.5%,不设纵坡。 3. 现场施工条件: (1)、施工用电、用水 业主能够将自来水管接至现场,也能提供相应的高压电源至桥西端的工地上。(2)、施工便道 路上交通方便,有专用公路直达该桥建地的西端。 (3)、施工气候 该地区多年平均气温20℃,最高月平均气温8℃,最高日平均气温34℃,最低日平均气温4℃,最大日温差12℃,极端最高气温41℃,极端最低气温2℃。(4)、施工用材料 有一中型水泥厂离桥位仅约1.5-2km,该厂能够提供满足施工要求的袋装水泥;碎石可自陆上采石场采购,河流下游一代盛产优质中粗砂;钢材、木材的采购

穿心棒法盖梁施工计算书工字钢

托担法盖梁施工计算书 一、工程概况 盖梁设计尺寸: 双柱式盖梁设计为长,宽,高,混凝土方量为方,两柱中心距。盖梁如图所示: 1预埋直径110mm 硬质PVC管,较高立柱根据高差来进行标高调整,保证两预留孔处于同一个标高,施工时把有关主筋间距和上下层箍筋间距作微调; 2)插入钢棒:柱顶插入一根直径为9cm,长度为300cm的钢棒,作为主梁工字钢支撑点,钢棒外伸长度一致; 3)安装固定装置和机械式千斤顶。 4)吊装主梁工字钢,利用φ25精轧螺纹钢,夹紧主梁工字钢,上铺工字钢作为分配梁; 5)拆除钢棒,封堵预留孔:盖梁施工完成后把预留孔用细石混凝土封堵。

三、受力计算 1、设计参数 1)工字钢 截面面积为:A=1810mm2 截面抵抗矩:W=77×103mm3 截面惯性矩:I=488×104mm4 弹性模量E=×105Mpa 钢材采用Q235钢,抗拉、抗压、抗弯强度设计值[σ]=215Mpa。2)主梁工字钢 横向主梁采用2片45b工字钢。 截面面积为:A=11100mm2 截面抵抗矩:W=1500×103mm3 截面惯性矩:I=33760×104mm4 弹性模量E=×105Mpa 3)钢棒 钢棒采用φ90mm高强钢棒(A45), 截面面积为:A=×452=6362mm2, 抗剪强度设计值[τ]=125Mpa。 2、荷载计算 1) 混凝土自重荷载(考虑立柱混凝土重量) W1=×26=; 2)支架、模板荷载

A、2片I45b组成主梁,长12m,纵向工字钢长,间距30cm。 W2=12××2+××(11/)=; B、定型钢模板,重量由厂家设计图查询得到。 W3=6800×10=68kN; 3)施工人员、机械重量。 按每平米1kN,则该荷载为: W4=12×2×1=24kN; 4)振捣器产生的振动力。 盖梁施工采用50型插入式振动器,设置3台,每台振动力2kN。 施工时振动力:W5=2×3=6kN; 总荷载:W=W1+1 W2+ W3+ W4+ W5= 5)荷载集度计算 横桥向均布荷载集度:q h=W/12=m; 顺桥向荷载集度取跨中部分计算:q z= q h/==m 2、强度、刚度计算 1) 工字钢强度验算 取盖梁跨中横向一米段对工字钢进行计算,其中横向一米荷载共有3根工字钢承担,顺桥向荷载集度:m,每一根承担kN/m 计算模型

盖梁支架计算书

汕湛高速揭博项目T11 标 盖梁支架计算书 四川路桥建设股份有限公司 2014年3月30日

目录 1、工程概况 (1) 2、总体施工方案 (1) 3、支承平台设置 (4) 4、计算依据 (5) 5、计算参数 (5) 6、计算结果 (9) 7、结论 (22) & 抱箍试验 (23)

盖梁抱箍法施工方案 工程概况 本标段主线共设置大中桥7座(不含互通区和服务区),分别为白昌屋大桥(30米T梁),万年坑大桥(30米T梁),叶塘1号大桥(25米小箱梁),叶塘2号大桥(25米小箱梁),秋香江大桥(25米小箱梁),上赖水大桥(30米T梁),黎坑大桥(25米小箱梁);九和互通内共设置桥梁3座,其中主线桥2座,匝道1座,分别为三社坑大桥(25米小箱梁),围坪大桥(25米小箱梁),D匝道桥(20米现浇箱梁);紫金西互通内共设桥梁3座,其中主线桥2座,分别为玉竹坑中桥(25米小箱梁),围澳水大桥(25米小箱梁)和L线秋香江大桥(25米小箱梁);瓦溪服务区共设置主线桥1座,为四联大桥(30米T梁)。下部结构采用桩基础、地系梁、承台、柱式桥墩、肋板、台帽、盖梁和耳背墙。其中D匝道桥 桥墩采用花瓶墩。 二、总体施工方案 因本标段桥梁盖梁高度较高,采用满堂支架施工盖梁耗时长、占用大量钢管扣件等周转材料、不经济。拟采用在墩柱上安设抱箍支承平台施工。 盖梁统计表

考虑最不利情况(跨度及盖梁尺寸均最大),采用秋香江 1.8m* 2.4m*17.437m盖梁(两柱)、上濑水大桥2.1m*2.4m*15.3m盖梁(两柱)和四联大桥2.1m*2.4m*20.1m (三柱)盖梁作为计算模型。盖梁简图

东常高速满堂式盖梁支架计算书

东常高速满堂式盖梁支架计算书 一、满堂式支架 1、说明: 1)、简图以厘米为单位,本图只示出支架正面图。侧面图间距与正面图相同。 2)、参考规范《公路桥涵施工技术规范》、《建筑钢结构设计规范》。3)、设计指标参照《建筑钢结构设计规范》选取 4)、简图 2、荷载计算 1)、模板重量:G1=0.75(11.35×1.9+1.4×11.35×2+1.9×1.4× 2)=44KN=4.4T

2)、支架重量:G2=(20×4×1.2×3.84+(12×4+2×20) ×3.84+20×4×2×1.35) ×20/1.2×1.2=18.45T; 3)、混凝土重量:G3=(11.35×1.9-10.75×0.5-2×1.2×0.6) ×1.9×2.5=69.61T; 4)、施工人员、材料、行走、机具荷载:G4=0.001×11.35×1.9×102=2.16T; 5)、振动荷载:G5=0.001×11.35×1.9×102=2.16T; 3、抗压强度及稳定性计算 支架底部单根立柱压力N1=(G1+G2+G3+G4+G5)/N; N=20×4=80;N1=1.21tf;安代系数取1.2;立柱管采用?48×3.5钢管;A=489mm2、i=15.8mm;立杆按两端铰接考虑取μ=1。στμ 立柱抗压强度复核:σ=1.2×N1×104/A=25.15Mpa<[σ]=210Mpa 抗压强满足要求。 稳定性复核:λ=μL/i=76;查GBJ17-88得υ=0.807 σ=1.2×N1×104/(ΦA)=30.18MPa<[σ]=210Mpa; 稳定性满足要求。 4.扣件抗滑移计算 支架顶部单根钢管压力N2=(G1+G3+G4+G5)/n=1tf; 扣件的确容许抗滑移力Rc=0.85tf. 使用两个扣件2×Rc=1.7tf>1tf. 扣件抗滑移满足要求。 5.在支架搭设时应在纵横向每隔4-5排设45度剪力撑。

盖梁计算书

盖梁指的是为支承、分布和传递上部结构的荷载,在排架桩墩顶部设置的横梁。又称帽梁。在桥墩(台)或在排桩上设置钢筋混凝土或少筋混凝土的横梁。主要作用是支撑桥梁上部结构,并将全部荷载传到下部结构。有桥桩直接连接盖梁的,也有桥桩接立柱后再连接盖梁的。 设计计算 桥梁设计中,柱式桥墩是普遍采用的结构型式。对于简支桥梁,盖梁是一个承上启下的重要构件,上部结构的荷载通过盖梁传递给下部结构和基础,盖梁是主要的受力结构。在设计中的跨径、斜度、桥宽、车辆荷载标准的变化梁设计的影响很大,很难完全套用标准图和通用图。盖梁设计的标准化程度很高,需要对盖梁进行较多的计算,所以盖梁设计是桥梁设计的一个关键部分。 计算要点 盖梁的计算要点是如何建立准确而且简化的计算模型。 3.1 盖梁的平面简化 3.1.1 关于盖梁平面基本简化的规定 《公路桥涵设计手册》中规定:多柱式墩台的盖梁可近似地按多跨连续梁计算;对于双柱式墩台,当盖梁的刚度与柱的刚度之比大于5时,可忽略桩柱对盖梁的约束作用,近似地按简支(悬臂)梁计算。柱顶视为铰支承,柱对盖梁的嵌固作用被完全忽略,这种计算图

式是以往设计实践中用得最多、最普遍的一种。目前一些盖梁计算程序,如“中小桥涵CAD系统”等一些平面计算的软件,基本上都是采用这种简化计算模式来分析盖梁内力的,这是一种基本的简化模式,但是对计算结果一般要作削峰处理。 3.1.2 盖梁平面基本简化模式存在的问题 上述的简化模式有些粗糙且有一定的局限性,使得计算结果偏大,按此进行的配筋设计往往过于保守。对于独柱式盖梁,常规的计算方法是将其视为一端嵌固的单悬臂梁,该简化使得悬臂根部的弯矩计算结果偏大;对于双柱式盖梁按简支(悬臂)梁计算,使得跨中弯矩计算结果明显偏大。而当盖梁的刚度与柱的刚度之比小于5时,《公路桥涵设计手册》并未做明确说明。该简化模式的问题在于将墩柱与盖梁的连接等效成点支撑,将墩梁框架结构简单等效为简支(悬臂)梁来处理。这虽然使计算得到简化,但与实际结果偏差过大。而且无论墩柱尺寸及盖梁尺寸如何,皆按简支(悬臂)梁来处理,使得其适用范围受到限制。多柱式盖梁也存在同样的问题。现在有一种修正的计算方法是将单点铰支模型转化为两点铰支模型,此时墩顶负弯矩要比基本的简化模式(单点铰支模型)小,以达到削峰处理的作用。两点铰支模型的弯矩值与所模拟的两铰支点间的距离有关,但对这个距离目前还缺乏足够的依据。这种计算方法现在多用在独柱式盖梁的计算上,对于双柱式及多柱式盖梁,因计算结果差别很大,是不可取的。 3.1.3 平面简化的其他方法—整体图式法

相关主题