搜档网
当前位置:搜档网 › 2021年广州大学数学与信息科学学院834微积分与线性代数考研核心题库之高等数学解答题精编

2021年广州大学数学与信息科学学院834微积分与线性代数考研核心题库之高等数学解答题精编

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; , 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

广州大学数学分析第二学期试卷(A)

广州大学2005-2006 学年第二学期试卷 课程 数学分析 考试形式(闭卷,考试) 数学与信息科学学院 05级1~7班 学号 姓名 一、填 空 题 (每小题3分 , 共15分) 1. ()F x = dt e x t ? 2 的凸性区间为______________________ 。 2. 函数 12322 3 +-=x x y 的极大值点=0x _______________ 。 3. =-?2 )1sgn(dx x __________________________。 4. 计算无穷积分: =?+∞ dx x x 1 sin 12 2 π ___________________ 。 5、求级数的和:=+∑ ∞ =1 ) 1(1 n n n _________________ 。 二、单项选择题 (每小题3分 ,共15分) 1、若)(x f 为恒正连续函数,则___________ ≡ 0 。 A 、 ?dx x f dx d )( ; B 、 ?)(x df ;

C 、 ? 1 )(dt t f dx d ; D 、 ? x dt t f dx d 0 )(; 2、若)(x f 的一个原函数为)(x F ,则)12(+x f 的一个原函数为________ 。 A 、)12(+x F ; B 、 2 1 )12(+x F ; C 、2)12(+x F ; D 、不存在。 3. 在区间[ - 1 , 1 ] 上不可积的函数为 ________。 A 、狄利克雷函数 D(x); B 、取整函数 [x]; C 、符号函数 sgn x ; D 、绝对值函数 x 。 4、若n a 满足 时,级数∑∞ =1n n a 收敛。 A 、0lim =∞ →n n a ; B 、n a 2 1 n ≤ (n=1,2,…); C 、=∞ →n n n a lim λ< 1 ; D 、λ=+∞→n n n a a 1 lim < 1 。 5、利用M 判别法证明函数项级数∑∞ =1 2 cos n n nx 在),(+∞-∞上一致收敛时可作优级数的为 。 A 、∑∞ =11n n ; B 、∑∞ =121 n n ; C ∑∞ =1 cos n nx ; D 、∑ ∞ =1 cos n n nx 。

南开大学数学分析考研试卷答案

南开大学年数学分析考研试卷答案 一、 设),,(x y x y x f w -+= 其中),,(z y x f 有二阶连续偏导数,求xy w . 解:令u =x +y ,v =x -y ,z =x ,则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、 设数列}{n a 非负单增且a a n n =∞ →lim ,证明 a a a a n n n n n n =+++∞ →1 21][lim . 解:因为a n 非负单增,故有n n n n n n n n n na a a a a 11 21)(][≤+++≤ . 由a a n n =∞ →lim ;据两边夹定理有极限成立。 三、 设? ??≤>+=0 ,00),1ln()(2 x x x x x f α,试确定α的取值范围,使f (x )分别满足: (1) 极限)(lim 0x f x + →存在 (2) f (x )在x=0连续 (3) f (x )在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 2 0x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++- -→+ α极限存在,则 2+α0≥知α2-≥. (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α . (3)0)0(='- f 所以要使f(x)在0可导则1->α. 四、设f (x )在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关. 解;令U =22 y x +,则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f (x )在R 上连续,故存 在F (u )使d F (u )=f (u )du=ydy xdx y x f ++)(22. 所以积分与路径无关。

2015年数学考研数学分析各名校考研真题及答案

2015年考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学

2014年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},min{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? - =?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2)(lim )(lim )() (lim )('lim 20 0020 00A x dt t f x x f x dt t f x x f x x x x x x x =-=-=?? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ? ?--+--= 1 1 11 )(2)(2])1[(])1[(!!21 )()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2 ) (2 ])1[(])1[(] )1[(])1[(=

浙江大学数学分析考研试题

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:数学分析 科目代号:427 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 111(20)1...log ,log 23111lim(...)122n n x n e n n n n →∞=++++-+++++一、分(1)证明数列收敛其中表示以为底的对数;(2)计算2 (15)[,],()()2()lim 0.()k k k k k a b r x f x r f x r f x r f x →∞++--=二、分函数f(x)在闭区间上连续,存在收敛于零的数列使得对任意的, 证明:为线性函数. (15)()(),()h x f x f x 三、分假设函数为处处不可导的连续函数,以此为基础构造连续函数使仅在两点可导,并说明理由。 22222221()sin ,0(20)(,)0,0(1)(,),(,)(2),(,)x y x y x y f x y x y f f x y x y x y f f f x y x y ?++≠?+=??+=? ????????四、分二元函数求 是否在原点连续,在原点是否可微,并说明理由。 0 000 (15)()[,]()1 lim ()()xy y f x a b f x dx a a f x dx f x dx ∞ ∞ ∞-→+>=???五、分在任意区间黎曼可积,收敛,证明: 2222223/21 (15),0,0,0.()x y z xdydz ydzdx zdxdy a b c ax by cz ++=++>>>++??六、分计算 222(15):1cos().V V x y z I ax by cz dxdydz ++==++???七、分计算在单位球上的积分 2()01!(20)(),12(0)n n n f x x x f ∞==--∑八、分设函数证明级数收敛。 (15)()(0)0,'()(),[0,)()0.f x f x f x Af x f x =≤∞=九、分设可微,对于任意的有证明在上注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用! dragonflier 2006-1-16

2020广州大学学科数学考研经验分享

2020广州大学学科数学考研经验分享 2019届考研已经落下帷幕,20届考研复习的黄金时期也到来了,回想自己去年6月至9月这个时期的坚持学习,可以说打下了深厚的基础,后期的复习也更加有条不紊。趁着这个时间,我也赶紧写下我的备考经验,希望给你们一些启发。 英语二:前期先背单词,这是长期战,不要想着一次性把它们背完了就不管了,我们得每天都花时间去背去巩固复习,这样才能记得牢固深刻。然后阅读是重点,每天可以练习一篇真题上的阅读题,做完了可以仔细分析一下,全文都翻译下来,这虽然有点费时间,但是对后面英语各部分的答题都有帮助。作文的话,静下心来去背作文,把那20篇作文背下来,考场上花的时间不会很多。在学作文得同时要自己学会整理模板,也要背下来,会更适合自己。 政治:前期看视频学习知识,比较生动,后期9月份左右大题背肖4和肖8,所以政治前期重点放在选择题就好了,市面上的模拟题都买来做一做,很有帮助的。 333教育综合:我们今年考的333出了选择题,虽然很突然,但是我复习的时候用的是爱考宝典的学姐的笔记,几本参考书上的知识点都认真看了背了,不懂的地方爱考的学姐给我在线上课的时候也认真给我讲解了,所以没有什么大问题,考试的时候状态挺好的。333教育综合考的两本书,教育基础第二版,姚本先心理学,官网说赵国祥,但是学姐推荐我用姚本先的,大家可以安心用这本复习,挺不错的。 333建议还是过一遍书,做课后习题。然后把历年真题考过的真题背熟,把相关的知识点也找出来,然后整理并且背诵,背诵不建议死记硬背,应该在看书的时候把书上的的关键点梳理成一个大框架,然后再将详细的知识点补充进去,背的时候先背框架,然后根据框架一点一点的回忆细碎的知识点。这样大脑也会形成框架,到时候考试的时候就算记得不详细,前后联系一下也能比较轻松的回忆起来。 924:参考书目是华东师范的数学分析上下册,还有官网公布的线性代数。备考期间,重点是把书刷一两遍。时间充裕的师弟师妹们就多刷几遍。然后期间再配合一些视频和笔记,加上真题进行复习,当然不懂的地方我是可以直接问爱考宝典的学姐,大家有需要的可以自行联系,真的会省去不少时间,在线解答也会比较方便,这样自己心里也会踏实很多。如果数学没有一个可以帮你解疑惑的人,会学的有点困难,我也是因为有人教,有人帮,我才能有这么好的成绩。所以大家有不懂的不会的一定要及时找人帮忙,舍得开口,不然吃亏的还是你自己,考研在这一阶段是最最重要的事情了。 最后,大概分享的内容就这些,希望大家一切顺利,都能考上心仪的院校。

数学分析报告考研试题

高数考研试题2 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0,0,0,1cos )(=≠?????=x x x x x f 若若λ 其导函数在x=0处连续,则λ的取值围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导. 【详解】 当1>λ时,有 ,0, 0,0,1sin 1cos )(21 =≠?????+='--x x x x x x x f 若若λλλ 显然当2>λ时,有) 0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续. 【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). (2)已知曲线b x a x y +-=2 33与x 轴相切,则2b 可以通过a 表示为=2b 6 4a . 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2 b 与a 的关系. 【详解】 由题设,在切点处有 0332 2=-='a x y ,有 .220a x = 又在此点y 坐标为0,于是有 030023 0=+-=b x a x , 故 .44)3(6 422202202a a a x a x b =?=-= 【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. 完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题. (3)设a>0, ,x a x g x f 其他若, 10,0,)()(≤≤?? ?==而D 表示全平面,则??-=D dxdy x y g x f I )()(= 2 a . 【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域积分即可. 【详解】 ??-=D dxdy x y g x f I )()(=dxdy a x y x ??≤-≤≤≤1 0,102 =. ])1[(21 02101 2a dx x x a dy dx a x x =-+=??? + 【评注】 若被积函数只在某区域不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可. 完全类似例题见《数学复习指南》P.191【例8.16-17】 . (4)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵 T E A αα-=, T a E B αα1+=,

数学分析考研试题 (1)

南京理工大学2005年数学分析试题 一、(10分)设0>n a ,n=1,2, )(,0∞→≠→n a a n ,证 1lim =∞→n n n a 。 二、(15分)求积分 ??∑?ds n F ??其中),,=(x y yz x y F ?,∑为半球面,0z 1z y x 222≥,=++和圆1y x 0z 22≤+, =的外侧 三、(15分)设f 为一阶连续可微函数,且) (0f ''存在,f (0)=0, 定义?????≠'0 x x f x 10 x 0f x g )(=)()=( 证 g 是一个可微,且g '在0点连续。 四、(15分)证明 级数 ∑∞1n x n 2e =- 在),+(∞0上不一致收敛,但和函数在) ,+(∞0上无穷次可微。 五、(15分)设〕,〔b a C f ∈,证明,0>?ε存在连续折线函数g ,使得 ε<)()-(x g x f ,〕〔b a,x ∈ ?。 六、(15分)设),(t x u 为二元二阶连续可微函数且u 的各一阶偏导关于x 是以1为周期 函数,且2222x u t u ????=,证明?????E 1022dx x u t u 21t ))+()(()=(是一个与t 无关的函数。 七、(15分)设f 为〕 ,+〔∞1上实值函数,且f (1)=1,)()(+)=(1x x f x 1x f 22≥',证明)(+x f lim x ∞→存在且小于4 1π+。 八、(15分)设∑∞1n n n x a =为一幂函数,在(-R ,R )上收敛,和函数为f ,若数列{}j x 满足 0x x R 21>>>>Λ且0lim =∞ →j j x ,Λ1,2j 0x f j =,)=(,证明 Λ210n 0a n ,,=,= 九、(15)设f 是 〕〔〕,〔b a b a ??上的二元连续映射,定义 {}〕 ,〔),()=(b a y y x f max x g ∈,证明 g 在〔a ,b 〕上连续。 十、(20分)讨论二元函数连续、可偏导、可微三个概念之间的关系,要有论证和反例。

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

2014-2015(1)线性代数试题(A)解答

广州大学2014-2015学年第一学期考试卷 课 程:《线性代数Ⅱ》 考 试 形 式:闭卷考试 学院:____________ 专业班级:__________ 学号:____________ 姓名:___________ 一、填空题(每空3分,本大题满分18分) 1.设A ,B 都为3阶方阵,且5||1=-A ,54|3|=B ,则=-||1AB 101 . 2.若对三阶阵A 先交换第一,三行,然后第二行乘2后再加到第三行,则相当于在A 的 左边乘三阶阵??? ?? ??021010100. 3.若阵A 为3阶方阵,且秩1)(=A R ,则=)(*AA R 0 . 4.设向量组),1,1(1a =α,)1,,1(2a =α,)1,1,(1a =α所生成的向量空间为2维的,则=a 2-. 5.已知????? ??=3332 31 131211333 a a a a a a A ,其特征值为3,2,1-,??? ? ? ??=3332 31 232221 131211 a a a a a a a a a B ,则B 的行列式中元素的代数余子式=++232221A A A 2-. 二、选择题(每小题3分,本大题满分15分) 1.若AB 为n 阶单位阵,则必有( C ). (A )BA 也n 阶为单位阵;(B )BA 可能无意义;(C )n BA R =)(;(D )以上都不对.

2.齐次线性方程组??? ??=++=++=++0 00321 3213221x x x x x x x x x λλλλ的系数矩阵记为A 。若存在三阶阵O B ≠, 使得O AB =,则( C ). (A )2-=λ,且0||=B ; (B )2-=λ,且0||≠B ; (C )1=λ,且0||=B ; (D )1=λ,且0||≠B . 3.对含n 个未知数, 1+n 个方程的线性方程组b Ax =,行列式0|),(|=b A 是它有解 的( B ). (A )充分条件; (B )必要条件; (C )充要条件; (D )非充分非必要条件. 4.设????? ??=1100c ζ,????? ??=2210c ζ,????? ??-=3311c ζ,??? ? ? ??-=4411c ζ,其中4321,,,c c c c 为任意常数,则下 列向量组线性相关的为( C ). (A) 321,,ζζζ; (B) 421,,ζζζ; (C) 431,,ζζζ; (D) 432,,ζζζ. 5.设},,{321ααα分别为同维无关向量组,而},,,{1321βαααα+为相关向量组,则有( A )成立. (A) },,,{2321βαααα+为相关向量组; (B) },,{132βααα+为无关向量组; (C) 1}),,({}),,,({321321+=αααβαααR R ;(D)1}),,({}),,,({321321-=αααβαααR R 三、(本题满分12分) 设??? ? ? ??-=321011330A ,且A 满足矩阵方程X A AX 2+=,求X . 解:由于X A AX 2+=,则A X E A =-)2(,这样A E A X 1)2(--=--------------3分 ??? ? ? ??----=-321011330121011332),2(M M M A E A ------------------------------------------5分 ????? ??----→321330011121332011M M M ???? ? ??-→300352011110310011M M M ????? ??-→011352011100310011M M M

广州大学matlab大作业

广州大学机电学院电气101 MATLAB大作业 MATLAB是由美国公司发布主要面对科学计算、可视化以的计算环境。它可以将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个视窗环境中,为科学研究众多科学领域提供了一种全面的解决方案,代表了当今国际科学计算软件的先进水平。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB在以下的领域里解决各种问题是一个十分有效的工具: ? 工业研究与开发。 ? 数学教学,特别是线性代数。所有基本概念都能涉及。 ? 在数值分析和科学计算方面的教学与研究。能够详细地研究和比较各种算法。? 在诸如电子学、控制理论和物理学等工程和科学学科方面的教学与研究。? 在诸如经济学、化学和生物学等有计算问题的所有其他领域中的教学与研究。 这学期我们做了诸多matlab实验,从符号计算及程序设计到一维、二维数组实验,还有图形显示等实验,我们初步掌握了matlab操作方法。我会在后文中用三个例子在三个应用方面着重汇报我的matlab使用心得。 本报告将以如下顺序进行叙述: 一、MATLAB在线性代数方面的应用 1.简单的矩阵的生成 2.常用矩阵的生成 3. 线性方程求解 二、MATLAB在经济学中的应用 价格平衡模型分析 三、MATLAB在三维图形绘制中的应用 1.函数PLOT3命令 2.如何改变视角 四、心得体会 一、MATLAB在线性代数方面的应用 1980年,MATLAB的首创者Cleve Moler博士在New Mexico大学讲授线性代数课程时,看到了用高级语言编程解决工程计算问题的诸多不便,因而构思开发了用Fortran语言编写而成,集命令翻译、工程计算功能于一身的MATLAB软件。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。矩阵概念在生产实践中也有许多应用,比如矩阵图法以及保护个人帐号的矩阵卡系统等等。 在第一次上机实验课中我们就做了简单的矩阵实验,下面稍作探讨: 1.简单的矩阵的生成 在MATLAB中,可以采用多种不同的方式生成矩阵。 (1)直接输入矩阵元素

2017年北大数学分析考研试题(Xiongge)

北京大学2017年硕士研究生招生考试试题 (启封并使用完毕前按国家机密级事项管理) 考试科目:数学基础考试1(数学分析)考试时间:2016年12月25日上午 专业:数学学院各专业(除金融学和应用统计专业) 方向:数学学院各方向(除金融学和应用统计方向) ————————————————————————————————————————说明:答题一律写在答题纸上(含填空题、选择题等客观题),写在此试卷上无效. 1.(10分)证明lim n !+1Z 2 sin n x p 2x dx =0.2.(10分)证明1X n =111+nx 2sin x n ?在任何有限区间上一致收敛的充要条件是?>12.3.(10分)设1X n =1a n 收敛.证明lim s !0+1X n =1a n n s =1X n =1a n . 4.(10分)称 (t )=(x (t );y (t )),(t 2属于某个区间I )是R 2上C 1向量场(P (x;y );Q (x;y ))的积分曲线,若x 0(t )=P ( (t )),y 0(t )=Q ( (t ));8t 2I ,设P x +Q y 在R 2上处处非0,证明向量场(P;Q )的积分曲线不可能封闭(单点情形除外). 5.(20分)假设x 0=1;x n =x n 1+cos x n 1(n =1;2; ),证明:当x !1时,x n 2=o ?1n n ?.6.(20分)假如f 2C [0;1];lim x !0+f (x ) f (0)x =?<ˇ=lim x !1 f (x ) f (1)x 1 .证明:8 2(?;ˇ);9x 1;x 22[0;1]使得 =f (x 2) f (x 1)x 2 x 1 .7.(20分)设f 是(0;+1)上的凹(或凸)函数且 lim x !+1xf 0(x )=0(仅在f 可导的点考虑 极限过程).8.(20分)设 2C 3(R 3), 及其各个偏导数@i (i =1;2;3)在点X 02R 3处取值都是0.X 0点的?邻域记为U ?(?>0).如果 @2ij (X 0) á3 3是严格正定的,则当?充分小时,证明如下极限存在并求之: lim t !+1t 32? U ?e t (x 1;x 2;x 3)dx 1dx 2dx 3: 9.(30分)将(0; )上常值函数f (x )=1进行周期2 奇延拓并展为正弦级数: f (x ) 4 1X n =112n 1 sin (2n 1)x:该Fourier 级数的前n 项和记为S n (x ),则8x 2(0; );S n (x )=2 Z x 0sin 2nt sin t dt ,且lim n !1S n (x )=1.证明S n (x )的最大值点是 2n 且lim n !1S n 2n á=2 Z 0sin t t dt .考试科目:数学分析整理:Xiongge ,zhangwei 和2px4第1页共??页

南开大学数学分析考研试题

南开大学2008年数学分析考研试题 一.计算题 1.求极限2 1lim[ln(1)]x x x x →∞ -+ 。 2.求和()() ∑∞ =-+-1121n n n n 。 3.已知()()() 1f x x f x ''-=-,求()x f ? 4 .设 2ln 2 6 x π = ? ,则x =? 5.设区域()[][]{} 1,1,2,0,-∈∈=y x y x D ,求D 。 二.设61-≥x 61+= +n n x x ,(1,2,)n =,证明数列{}n x 收敛,并求其极限。 三.设()[]b a C x f ,∈,并且[]b a x ,∈?,[]b a y ,∈?,使()()x f y f 2 1 ≤, 证明[]b a ,∈?ξ,使得()0=ξf . 四.设()x f 在[)+∞,a 一致连续,且广义积分 ()a f x dx +∞ ? 收敛,求证()0lim =+∞ →x f x 。 五.设()x f 在(,)-∞+∞上可微,对任意(,)x ∈-∞+∞,()0f x >, ()()f x mf x '≤, 其中10<

最新广州大学考研初试复试笔记汇总大全

最新广州大学考研笔记汇总 ——广大本科笔记与考研真题哪里下载 考研笔记是往届考研的高分学长学姐们复习时对于考点的把握和理解的体现,往往内容详细条理清晰,手握一份广大学长学姐们的考研笔记,就感觉已经一脚踏进了大学的门槛,考研笔记就是这么神奇的存在,不过由于笔记数量过于稀缺,有需求的考生又很多,总有许多考生抱怨根本买不到。 针对考研笔记的稀缺性,鸿知广大考研网官方教学研发团队联合广大各专业排名前三的学长学姐们针对广州大学各专业考点,共同编写了一系列《考研复习全析》,发售五年来好评率超过98%!《考研复习全析》结合往年广大考研真题答案,帮助报考广州大学考研的同学通过广大教材章节框架分解、配套的课后习题讲解及相关名校考研真题与解答,帮助考生梳理指定教材的各章节内容,深入理解核心重难点知识,把握考试要求与考题命题特征。 最新广州大学考研笔记汇总全文完整内容请打开链接查看: https://www.sodocs.net/doc/ff11402257.html,/search/?keywords=%u5168%u6790 [ 鸿知广大考研网] 2019广大考研333教育综合复习全析(含真题答案,共三册) [ 鸿知广大考研网] 2019广大考研398法硕联考专业基础复习全析(含真题答案,共三册)[ 鸿知广大考研网] 2019广大考研498法硕联考综合复习全析(含历年真题,共四册) [ 鸿知广大考研网] 2019广州大学868经济学考研复习全析(共两册) [ 鸿知广大考研网] 2019广大考研812分析化学复习全析(含真题,共两册) [ 鸿知广大考研网] 2019广大853概率论与数理统计考研复习全析(含真题,共三册) [ 鸿知广大考研网] 2019广州大学考研817环境学复习全析(含历年真题,共两册) [ 鸿知广大考研网] 2019广州大学考研632历史学基础复习全析(含历年真题,共11册)

2019年数学考研数学分析各名校考研真题及答案

考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学 一、,,0N ?>?ε当N n >时,ε<>?m a N m , 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε 2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('

又2))((''2 1 ))((')()(a x f a x a f a f x f -+ -+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 ,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -=?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ??--+--=1 111) (2)(2])1[(])1[(!!21)()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2)(2])1[(])1[(])1[(])1[(= 0])1][()1[()1(])1[(])1[(11 )(221 1 )1(2)1(2=---==---??-+-+-dx x x dx x x k m m k k m m k k Λ 当k m =时, ?? ----= 1 11 1 )(2)(22 2])1[(])1[(!21)()(dx x x m dx x P x P m m m m m k m ?? -+---------=--1 1 )1(21211 1 221 1 )(2)(2])1[(])1[(])1[(])1[(])1[(])1[(dx x x x x dx x x m m m m m m m m m m m m =?-+----1 1)1(212])1[(])1[(dx x x m m m m =?----=1 1 )2(22])1][()1[()1(dx x x m m m m Λ= ? ---1 1 2])1[()!2()1(dx x m m m =?--1 2])1[()!2()1(2dx x m m m 六、J 是实数,,0,0>?>?δε当δs 时,该积分收敛。 七、∑=-n k k 1 )1(有界,2 1 x n +在),(+∞-∞上单调一致趋于零,由狄利克雷判别法知,∑∞ =+-12)1(n n x n 在),(+∞-∞上一致收敛,∑∞ =+12 1n x n 与∑∞ =11 n n 同敛散,所以发散; 当0=x 时,∑∞ =+122)1(n n x x 绝对收敛,当0≠x 时,∑∞ =+122 ) 1(n n x x 绝对收敛;

线性代数A期末复习题答案

一、填空题 1. 1 1 1 11111 ---x 是关于x 的一次多项式,该式中一次项的系数是 2 1 1 11)1(3 2=--+。 2. 已知四阶行列式 D 中第三列元素依次为1-,2,0,1,它们的余子式依次分别为5,3,7-,4,则 1502)1(433323134343333323231313-=-+--=+++=M M M M A a A a A a A a D 。 3. 已知a b c d c b d a D d b c a a b d c = ,则 14243444A A A A +++= 1101 1 a b c c b d d b c a b d =。 4. 已知矩阵 n s ij c C B A ?=)(,,满足CB AC =,则A 与B 分别是 n s ,阶矩阵。 5. 已知??? ? ? ??=40060852b A 是奇异阵,则= b 0 。 6. 设方阵 A 满足0322=--E A A ,则= -1A )2(3 1 E A -。 7. 设?? ? ?? ?? ? ?-=11002100 001200 25A ,则= -1 A ? ? ???? ?? ? ?---31310032310 0005 20021。 8. ? ?? ? ??-=1011A ,k 为自然数,则=k A ??? ? ??-101k 。 9. 若 A 为n 阶方阵,且E AA T =,则= A 1 1-或。 10. 若n 阶方阵A 的秩小于n ,则A 的行列式等于 零 。 11. 设 A 为3阶方阵,且3=A ,则*1A A -+=3 64 43111= =+---A A A 。 12. 已知??? ?? ??=200020002A ,满足B A AB +=,则= B A =???? ? ??200020002。 13. 设A 为n 阶方阵,且2=A ,则= A 21 2+n , =*A 1 2-n 。 14. 若A 为n 阶方阵,且E AA T =,1-=A 则=+E A 0 。 15. 设 A 为5阶方阵,且2 1= A ,试求=--1 *)3(A A A A A 3 231)(311*-=-=--。 16. 已知矩阵??? ? ? ??=054032100A ,则()r A = 3 。

浙大2000年-2002年数学分析考研试题及解答

浙江大学2000年数学分析考研试题及解答 一、(1)求极限()1 1lim t t t e t →+-; 解 ()1 1 1 ln(1) ln(1)1 11 lim lim lim t t t t t t t t t e e e e e t t t ++-→→→+---== 1 ln(1)1 ln(1)1 1lim ln(1) 1 t t t t e t e t t t +-→+--=+- 2 00 ln(1) 1 1 1 ln(1)1lim lim lim lim 22(1) 2 t t t t t t t t e t t e e e e t t t t t →→→→+--+--+=====- +; 或()1 ln(1) 1 1 ln(1) 2 1ln(1) ( ) 1(1) lim lim lim 1 t t t t t t t t t e t e e e t t t t t ++→→→+- +--+== 2 ln(1)1lim t t t t e t →-++=2 1 1 (1) 1lim 2t t t e t →- ++=2 lim 2(1) 2 t t e e t t →-==- +。 (2)设01,x a x b ==,211()2 n n n x x x --= -,求 n n x lim ∞ →. 解 由条件,得 12111211()()2 2 n n n n n n n x x x x x x x ------+=-+= +, 反复使用此结果 11 11011()()()()22 n n n n x x x x b a ---+=+=+, ,2,1=n ; 于是 21212221100()()()n n n n n x x x x x x x x ++-=+-++++- 221 11()()()()()22 n n a b a b a b a -=++-++++- 21 11() 222 () ()13 3 1() 2 n b a a b a a b a +-- -=+-→+-= -- ,)(∞→n ; 22212122100()()()n n n n n x x x x x x x x ---=+-++-++

相关主题