搜档网
当前位置:搜档网 › 关于韦达定理的证明方法

关于韦达定理的证明方法

关于韦达定理的证明方法
关于韦达定理的证明方法

说起韦达定理,其实就是一元二次方程中根与系数的关系,说到这,你可能会想,难道这也算是定理吗?不就是把两个根加起来一次,乘起来一次吗?要是我出生的比韦达早,那这个定理就要改名了。其实不是这样的,这个定理可以推广到n次方程,根据代数基本定理,n次方程有n个根,那么你还会求出这n个根来相加,相乘吗,不说很高次的,就比如说一元三次方程,其求根公式是:

其中(i2 = - 1),那么他的根与系数的关系是

给你笔你有本事算算啊,还能是一加一乘就算出来吗?

到了五次以上的方程就没有求根公式了你还怎么算,找规律吗?

我个人认为,书上给出的韦达定理的证明那根本不叫证明而是验证

会误导学生..

接下来我会写出5种韦达定理的别样证法,其中1种为几何方法的证明

那么,接下来是几何证法,说是几何但需要借助平面直角坐标系的帮助

那么,到这里就结束了。

然后,补充一种与上面相似的几何证法

第十课判别式与韦达定理

第10课 判别式与韦达定理 〖知识点〗 一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理 〖大纲要求〗 1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况。对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围; 2.掌握韦达定理及其简单的应用; 3.会在实数范围内把二次三项式分解因式; 4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题。 内容分析 1.一元二次方程的根的判别式 一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根, 当△<0时,方程没有实数根. 2.一元二次方程的根与系数的关系 (1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,a c x x =21 (2)如果方程x 2 +px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=q (3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0. 3.二次三项式的因式分解(公式法) 在分解二次三项式ax 2+bx+c 的因式时,如果可用公式求出方程ax 2+bx+c=0的两个根 是x 1,x 2,那么ax 2+bx+c=a(x-x 1)(x-x 2). 〖考查重点与常见题型〗 1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如: 关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( ) (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )不能确定 2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如: 设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( ) (A )15 (B )12 (C )6 (D )3 3.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题。在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力。 考查题型 1.关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( ) (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )不能确定 2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( ) (A )15 (B )12 (C )6 (D )3 3.下列方程中,有两个相等的实数根的是( ) (A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2-2 6 x+1=0

韦达定理及其应用

韦达定理及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。 说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况

韦达定理在解析几何中的应用

韦达定理在解析几何中的应用 陈历强 一,求弦长 在有关解析几何的高考题型中不乏弦长问题以及直线与圆锥曲线相交的问题。求直线与圆锥曲线相交所截得的弦长,可以联立它们的方程,解方程组求出交点坐标,再利用两点间距离公式即可求出,但计算比较麻烦。能否另擗捷径呢?能!仔细观察弦长公式: ∣AB ∣=∣x 1-x 2∣21k +?=)1](4)[(221221k x x x x +-+ 或∣AB ∣=∣y 1-y 2∣2 11k + ? =) 11](4)[(2 21221k y y y y + -+ , 立刻发现里面藏着韦达定理(其中x 1、x 2分别表示弦的两个端点的横坐标,y 1、y 2分别表示弦的两个端点的纵坐标)。请看下面的例子: 例1,已知直线 L 的斜率为2,且过抛物线y 2=2px 的焦点,求直线 L 被抛物线截得的弦长。 解:易知直线的方程为y=2(x-2 p ). 联立方程组y 2=2px 和y=2(x- 2 p ) 消去x 得 y 2-py-p 2=0.∵△=5p 2>0,∴直线与抛物线有两个不同的交点。由韦达定理得y 1+y 2=p,y 1y 2=-p 2.故弦长d= 2 5p 例2,直线y=kx-2交椭圆x 2+4y 2=80交于不同的两点P 、Q ,若PQ 中点的横坐标为2,则∣PQ ∣等于___________. 分析:联立方程组y=kx-2和x 2+4y 2=80消去y 得(4k 2+1)x 2-16kx-64=0 设P(x 1,y 1),Q(x 2,y 2). 由韦达定理得 x 1+x 2= 1 4162 +k k = 4得k= 2 1.x 1x 2= -32∣PQ ∣=6 . 练习1:过抛物线 y 2=4x 的焦点作直线交抛物线A(x 1,y 1),B(x 2,y 2)两点,如果x 1+x 2=6, 那么|AB|=( ) (A)10 (B)8 (C)6 (D)4 (文尾有提示.下同) 二,判定曲线交点的个数

判别式韦达定理题型讲解

根的判别式 【典例1】.关于x 的方程10422 =-+kx x 的一个根是-2,则方程的另一根是 _____;k =______。 【典例2】.1x 、2x 是方程05322 =--x x 的两个根,不解方程,求下列代数式 的值: (1)2 2 2 1x x +(2) 2 1x x -(3)22 22133x x x -+ 【典例3】.已知关于x 的一元二次方程与 有一个相同的根,求k 的值。 【典例4】已知方程032=++k x x (1)若方程两根之差为5,求k 。 (2)若方程一根是另一根2倍,求这两根之积。 【典例5】已知方程 两根之比为1:3,判别式值为16,求a 、b 的值。

韦达定理 [典例1]因式分解6x y+7xy-3=___________ [典例2]解方程组 [典例3]如果直角三角形三条边a,b,c,都满足方程x-mx+=0,求三角形的面积。 [典例4]已知方程2x-8x-1=0的两个根为α,β,不解方程,求解以+,(α-1)(β-1)为根的一元二次方程。 [典例5]已知某二次项系数为1的一元二次方程的两个实数根为p,q,且满足关系式,试求这个一元二次方程。

[典例6]已知α,β是一元二次方程4kx-4kx+k+1=0的两个实根 (1)是否存在实数根k,使(2α-β)(α-2β)=- 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使+-2的值为整数的实数k的整数值。 训练题 1、(海淀中考)已知:关于x的一元二次方程ax2+2ax+c=0的两个实数根之差的平方为m. (1)试分别判断当a=1,c=-3与a=2,c=时,m≥4是否成立,并说明理由; (2)若对于任意一个非零的实数a,m≥4总成立,求实数c及m的值. 2、已知下列n(n为正整数)个关于x的一元二次方程:①x2-1=0,②x2+x-2=0, ③x2+2x-3=0,…(n)x2+(n-1)x-n=0. (1)请解上述一元二次方程①、②、③、(n); (2)请你指出这n个方程的根具有什么共同特点,写出一条即可. 3、(02海淀)(1)求证:若关于x的方程(n-1)x2十mx十1=0①有两个相等的实数根.则关于y的方程m2y2-2my-m2-2n2+3=0②必有两个不相等的实数根; (2)若方程①的一根的相反数恰好是方程②的一个根,求代数式m2n十12n 的值.

韦达定理及其应用

韦达定理及其应用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。

★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。 说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0 后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件, 试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和 同时为正;一根大于1,另一根小于是等价于和异号。

韦达定理的运用

一元二次方程跟与系数关系(韦达定理)的应用 一 教材分析 本节教学内容为“韦达定理的应用”,此内容是学生学习“一元二次方的根与系数的关系”中解决一些简单问题的重要方法。韦达定理联系了方程根与系数的关系,是学生在解决应用问题中的重要工具,具有广泛的应用价值,根据教材内容,由学生已知的认知结构及原由的知识水平,制定如下教学目标: 二 教学目标 1、巩固上一节学习的韦达定理,并熟练掌握韦达定理的应用。 2、提高学生综合应用能力 三 教学重难点 重点:运用韦达定理解决方程中的问题 难点:如何运用韦达定理 四 教学过程 (一 ) 回顾旧知,探索新知 上节课我们学习了韦达定理,我们回忆一下什么是韦达定理? 如果)0(02 ≠=++a c bx ax 的两个根是21,x x 那么a c x x a b x x =?- =+2121, {老师:由韦达定理我们可知,韦达定理表示方程的根与系数的关系,如果在方 程中遇到需要求解根的情况,我们是否能用韦达定理来解决呢?今天我们将来探讨这个问题。) (二) 举例分析 例 已知方程0652 =-+kx x 的一根是2,求它的另一根及k 的值。 请同学们分析解题方法: 思路:应用解方程的方法,带入法 解法一:把X=2代入方程求的K=-7 把K=-7代入方程:06752 =--x x 运用求根公式公式解得5 3,221- ==∴x x 提问:同学们还有没有其它方法呢? 启发学生,我们已知方程一根,求另一根,我们否能用韦达定理建立一个关系,求解方程。

解法二:设方程的两根为21,x x ,则21,2x x =是未知数 用韦达定理建立关系式 5 3 ,5622 2-=∴-=x x 7 ,5 3 ,27 ,5 2212-=-==∴-=∴-=+k x x k k x 对比分析,第二种方法更加简单 总结:在解方程的根时,利用韦达定理会使求解过程更为简单,且不用解方程,直接求某 些代数式的值 例2 不解方程,求一元二次方程2x 2+3x -1=0两根的 (1)平方和;(2)倒数和 方法小结: (1)运用韦达定理求某些代数式的值,关键是将所求的代数式恒等变形为用2121,x x x x ?+的代数式表示。 (2)格式、步骤要求规范: ①将方程的两根设为。 ②求出2121,x x x x ?+的值 。 ③将所求代数式用2121,x x x x ?+的代数式表示 。 ④ 将2121,x x x x ?+的值代人并求值。 三 综合运用 巩固新知 1、求一个一元二次方程,使它的两根分别是 解 : 2、设 2 1,x x 是方程03422 =-+x x 的两根,利用根与系数的关系,求下列各式的值。

判别式与韦达定理的应用

【学习课题】 九上 补充内容 综合应用根的判别式和韦达定理 龙泉二中 范积慧 【学习目标】 1、掌握一元二次方程根与系数的符号关系 2、利用韦达定理并结合判别式,求参数的值 【学习重点】一元二次方程根与系数的符号关系 【学习难点】利用韦达定理并结合判别式,求参数的值 【学习过程】 学习准备:(1)一元二次方程ax 2+bx+c=0 (a ≠0) 的判别式△=__________ △>0?__________△=0 ?_____________△<0 ?__________ (2)一元二次方程ax 2+bx+c=0 (a ≠0)的两根分别为x 1和x 2 x 1+x 2=____________, x 1x 2=_____________ 解读教材:由根的判别式及韦达定理可得如下结论: (1)若a 、c 异号 ? ax 2+bx+c=0 (a ≠0)必有两个不相等的实数根; (2)有一个根为1 ? a+b+c=0 ; (3) 有一个根为—1 ? a —b+c=0; (4)有一个根为0 ? c=0 (5)有两个正根 ??????+≥0210210>>△x x x x (6)有两个负根 ? ?? ???+≥0210210><△x x x x (7) 有一正根一负根 ????0021<△>x x (8)两根同号 ????≥002 1>△x x (9)两根互为相反数????=?=+0 0021b x x △> (10)两根互为倒数????=≥102 1x x △ (11)一根为正,一根为0 ??????=?=+00002 121c x x x x >△> (12)一根为负,一根为0 ??????=?=+00002 121c x x x x <△> (13)两根均为0?b=c=0 (14) 一根比a 大,一根比a 小????--0))(021 <(△>a x a x 例1 已知方程(k+1)x 2—4kx+3k —1=0 的两个实数根均为正,求k 的值。 思路点拨:因为原方程两个实数根均为正,有上述结论(5)可得不等式组,解这个不 等式组即可求出k 的值。

韦达定理应用资料资料全

韦达定理的应用 一、典型例题 例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。 解:设另一个根为x1,则相加,得x 例2:已知方程x-5x+8=0的两根为x1,x2,求作一个新的一元二次方程,使它的两根分别为和. 解:∵又 ∴代入得,∴新方程为 例3:判断是不是方程9x-10x-2=0的一个实数根? 解:∵二次实数方程实根共轭,∴若是,则另一根为 ∴,。 ∴以为根的一元二次方程即为.

例4:解方程组 解:设∴. ∴A=5. ∴x-y=5 又xy=-6. ∴解方程组∴可解得 例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值 解:不妨设斜边为C=13,两条直角边为a,b,则2。又a,b为方程两根。∴ab=4m(m-2)∴S但a,b为实数且 ∴∴ ∴m=5或6 当m=6时,∴m=5 ∴S. 例6:M为何值时,方程8x-(m-1)x+m-7=0的两根 ①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数 解:①∵∴m>7

②∵ ∴不存在这样的情况。 ③ ∴m<7 ④ ∴m=7 ⑤ ∴m=15.但使 ∴不存在这种情况 【模拟试题】(答题时间:30分钟) 1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于 2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q= 3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为() A.±8 B.8 C.-8 D.±4 4. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等? 5. 已知方程(a+3)x+1=ax有负数根,求a的取值围。

判别式与韦达定理

第三讲判别式与韦达定理 教学容:判别式与韦达定理 教学目标: 1、熟练掌握判别式的概念以及判别式与方程根的情况; 2、能熟练运用△求方程中的参数值或取值围; 3、理解并掌握韦达定理的定义; 4、熟练掌握一些常用代数式的变形; 5、能利用韦达定理构造一元二次方程; 6、经过本章的学习,体会一元二次方程根与系数的关系,以及加深对一元二次方程的理解。 教学重点: 1、△与方程根的关系; 2、韦达定理; 3、常用代数式的变形; 教学难点: 1、运用△求方程中参数的值或取值围; 2、常用代数式的变形; 教学方法:探究法、讲授法; 教学过程: 8:20~8:30:考勤,收发作业 8:30~8:50:进门考 第一课时8:50~9:20 一、讲评作业 二、导入新课 子曰:“温故而知新,可以为师矣!”所以在学习今天的新知识前我们先一起

来温习一下昨天我们学了什么? 1、引导学生复习一元二次方程: 定义 一元二次方程 特点 解 直接开方 解法 配方 公式 因式分解 2、举例复习四种方法: (1) x 2=25 (2) 2x 2+4x-2=0 (3) 2123 0234 x x +-= (4) 2560x x ++= 3、问公式引入判别式 三、探索新知: 1、回顾得出判别式的概念:24b ac ?=-作用:判别一元二次方程根的个数. 要先化为一般式 2、算出下列一元二次方程的判别式 2223720230410 x x x x x x -+=-=++= 3、判别式与方程的根的关系 1,2120020x b x x a ?>?= -?=?==?

韦达定理及其应用

韦达定理及其应用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则 ,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 说明此题易漏解a=b的情况。根的对称多项式,, 等都可以用方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。

其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

说明由“不等导出相等”是一种独特的解题技巧。另外在求得c=0后,由恒等式可得,即a=b。此方法较第一种烦琐,且需一定的跳跃性思维。 4.研究方程根的情况 将韦达定理和判别式定理相结合,可以研究二次方程根的符号、区间分布、整数性等。关于方程的实根符号判定有下述定理: ⑴方程有二正根,ab<0,ac>0; ⑵方程有二负根,ab>0,ac>0; ⑶方程有异号二根,ac<0; ⑷方程两根均为“0”,b=c=0,; ★★★例5设一元二次方程的根分别满足下列条件,试求实数a的范围。 ⑴二根均大于1; ⑵一根大于1,另一根小于1。 思路设方程二根分别为,,则二根均大于1等价于和同时为正;一根大于1,另一根小于是等价于和异号。

一元二次方程之韦达定理

一对一个性化辅导教师授课学案 学生姓名年级初三科目数学授课老师相老师总课时数第几次课 3 授课时间审核人 本次课课题一元二次方程根与系数的关系应用例析及训练 教学目标韦达定理 授课内容 教学内容 对于一元二次方程,当判别式△= 时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么 则是的两根。一元二次方程的根与系数的关系,综合 性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还 常常要求同学们熟记一元二次方程根的判别式 存在的三种情况,以及应用求根公式求出方程 的两个根,进而分解因式,即 。下面就对应用韦达定理可能出现的问题举例 做些分析,希望能给同学们带来小小的帮助。 一、根据判别式,讨论一元二次方程的根。 例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?

分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。 说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而 筛选出,这也正是解答本题的基本技巧。 二、判别一元二次方程两根的符号。 例1:不解方程,判别方程两根的符号。 分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。 说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。

浅谈韦达定理的应用(105620)

浅谈韦达定理的应用 齐贤学校 匡双霞 【趣题引路】 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代数学之父”。 历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。消息传开,数学界为之震惊。同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间 的应用: 1. 已知一元二次方程的一根,求另一根。 2. 已知一元二次方程的两根,求作新的一元二次方程。 3. 不解方程,求关于两根的代数式的值。 4. 一元二次方程的验根。 5. 解一类特殊的二元二次方程组和通过换元等方法求解二次根式方程。 6. 与判别式的综合应用。 【中考真题欣赏】 例1 (2001年河南省)已知关于x 的方程4x 2+4bx+7b=0有两个相等的实数 根,?y 1,y 2是关于y 的方程y 2 +(2-b)y+4=0的两个根,二次方程. 解析 ∵关于x 的方程4x 2+4bx+7b=0有两个相等的实数根, ∴ △ = (4b)2 -4×4×7b=0, 即b 2-7b=0. ∴b 1=0, b 2=7. 当b=0时,,关于y 的方程化为y 2+2y+4=0, 因△=4-16=-12<0,方程无解. 当b=7时,关于y 的方程可化为y 2-5y+4=0,

初二.判别式与韦达定理

[文件] sxjsck0006 .doc [科目] 数学 [关键词] 初二/ 判别式/韦达定理/方程 [标题] 判别式与韦达定理 [内容] 判别式与韦达定理 根的判别式和韦达定理是实系数一元二次方程的重要基础知识,利用它们可进一步研究根的性质,也可以将一些表面上看不是一元二次方程的问题转化为一元二次方程来讨论. 1. 判别式的应用 例1 (1987年武汉等四市联赛题)已知实数a 、b 、c 、R 、P 满足条件PR >1,Pc+2b+Ra=0. 求证:一元二次方程ax 2+2bx+c=0必有实根. 证明 △=(2b )2-4ac.①若一元二次方程有实根, 必须证△≥0.由已知条件有2b=-(Pc+Ra ),代入①,得 △ =(Pc+Ra )2-4ac =(Pc )2+2PcRa+(Ra )2-4ac =(Pc-Ra )2+4ac (PR-1). ∵(Pc-Ra )2≥0,又PR >1,a ≠0, (1)当ac ≥0时,有△≥0; (2)当ac <0时,有△=(2b )2-4ac >0. (1)、(2)证明了△≥0,故方程ax 2+2bx+c=0必有实数根. 例2 (1985年宁波初中数学竞赛题)如图21-1,k 是实数,O 是数轴的原点,A 是数 轴上的点,它的坐标是正数a.P 是数轴上另一点,坐标是x,x <a ,且OP 2=k ·PA ·OA. (1) k 为何值时,x 有两个解x1,x2(设x 1<x 2); 此处无图 (2) 若k >1,把x 1,x 2,0,a 按从小到大的顺序排列,并用不等号“<”连接. 解 (1)由已知可得x 2=k ·(a-x )·a ,即 x 2+kax-ka 2=0,当判别式△>0时有两解,这时 △ =k 2a 2+4ka 2=a 2k (k+4)>0. ∵a >0, ∴k (k+4)>0,故k <-4或k >0. (2)x 1<0<x 2<a. 例3(1982年湖北初中数学竞赛题)证明y x y xy x +++-2 2不可能分解为两个一次因式之积. 分析 若视原式为关于x 的二次三项式,则可利用判别式求解. 证明 ).()1(2222y y x y x y x y xy x ++-+=+++- 将此式看作关于x 的二次三项式,则判别式 △ =.163)(4)1(222+--=+--y y y y y 显然△不是一个完全平方式,故原式不能分解为两个一次因式之积. 例3 (1957年北京中学生数学竞赛题)已知x ,y ,z 是实数,且x+y+z=a ,①.2 12222a z y x =++ ②

韦达定理及其应用

韦达定理及其应用 【趣题引路】 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代数学之父”。 历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。消息传开,数学界为之震惊。同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理。你能利用韦达定理解决下面的问题吗? 已知:①a2+2a-1=0,②b4-2b2-1=0且1-ab2≠0,求( 221 ab b a ++ )2004的值。 解析由①知1+21 a - 2 1 a =0, 即(1 a )2-2· 1 a -1 =0,③ 由②知(b2)2-2b2-1=0,④ ∴1 a ,b2为一元二次方程x2-2x-1=0的两根. 由韦达定理,得1 a +b2=2, 1 a ·b2=-1. ∴ 221 ab b a ++ =[( 1 a +b2)+ 2 b a ]2004=(2-1)2004=1. 点评 本题的关键是构造一元二次方程x2-2x-1=0,利用韦达定理求解,?难点是将①变形成③,易错点是忽视条件1-ab2≠0,而把a,-b2看作方程x2+2x-1=0的两根来求解. 【知识延伸】 例1已知关于x的二次方程2x2+ax-2a+1=0的两个实根的平方和为71 4 ,求a的值.

韦达定理(根与系数的关系)全面练习题及答案

1、韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .

韦达定理及其应用竞赛题

韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b为实数,且,,求的值。 思路注意a,b为方程的二实根;(隐含)。 解(1)当a=b时, ; (2)当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。 ★★★例2若,且,试求代数式的值。 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m,n为方程的二不等实根,再由韦达定

理,得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以和为根的一元二次方程仍为。求所有这样的一元二次方程。 解(1)由韦达定理知 ,。 , 。 所以,所求方程为。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q)=(0,0),(1,0),(1 -)。 -,1)或(0, 1 -,0),(0,1),(2,1),(2 于是,得以下七个方程,,,,, 1 x2= -,其中0 1 x2= +无实数根,舍去。其余六个方程均为所求。x2= +,0 x 1 + 2 3.证明等式或不等式 根据韦达定理(或逆定理)及判别式,可以证明某些恒等式或不等式。 ★★★例4已知a,b,c为实数,且满足条件:,,求证a=b。

根的判别式韦达定理

一元二次方程根的判别式和韦达定理 知识点1.根的判别式 2 1.402 2.0204 3.,22ac b b ac b x x a a ? ?≠-????>???? ?=?????

1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02 =-x x 中,无实根的 方程是 。 2、已知关于x 的方程022 =+-mx x 有两个相等的实数根,那么m 的值是 。 3、下列方程中,无实数根的是( ) A 、011=-+-x x B 、 762=+y y C 、021=++x D 、0232=+-x x 4、若关于x 的一元二次方程01)12()2(2 2 =+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43< m B 、m ≤43 C 、4 3>m 且m ≠2 D 、m ≥43 且m ≠2 5、在方程02 =++c bx ax (a ≠0)中,若a 与c 异号,则方程( ) A 、有两个不等实根 B 、有两个相等实根 C 、没有实根 D 、无法确定 6、关于x 的一元二次方程x 2 +kx -1=0的根的情况是 ( ) A 、有两个不相等的同号实数根 B 、有两个不相等的异号实数 C 、有两个相等的实数根 D 、没有实数根 7、 m 取何值时,方程()0112)2(2 2 =++--x m x m (1)有两个不相等的实数根 (2) 有两个相等的实数根;(3)没有实数根 8、试证:关于x 的方程1)2(2 -=+-x m mx 必有实根。 9、已知关于x 的方程022 =-+-n m mx x 的根的判别式为零,方程的一个根为1,求m 、 n 的值。

韦达定理及其应用竞赛题

【内容综述】 设一元二次方程 宀肚…。佃弄°)有二实数根可和也,贝U “f 的关系, 为韦达定理。 其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中 数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1. 求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a , b 为实数,且以+力十l = n , “ + 十1 = (],求石打的值。 思路注意a , b 为方程Q +覽+1 = 0的二实根;(隐含A 土 0)。 解(1)当a=b 时, (2)当说护■^时,由已知及根的定义可知,a ,b 分别是方程*打"1二D 的两根,由韦 达定理得 .b d _ 盘2 +於 _ ?4对'一M)_ [-餌一*1 ..—4 — ---- ---------- -- -------------------- - ----------------- -- / L? h ■ 说明此题易漏解a=b 的情况。根的对称多项式对,工扌 程的系数表达出来。一般地,设 可「丁为方程宀E = D 的二根,'-卅+对,则有递 推关系。 其中n 为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出 a ,b 值进而求出所求多项式值,但计算量 较大。 ★★★例2若榊3=疏+1 ,池27-1 = 口且聊5|,试求代数式也G 思路此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为 宀,由根的定义知m n 为方程*-z = 0的二不等实根,再由韦达定理, 这两个式子反映了一元二次方程的两根之积与两根之和同系数 a , b ,c 称之 b 电等都可以用方 的值。

二次函数根的判别式韦达定理

一元二次方的应用及根的判别式、韦达定理 一、根的判别式 1.一元二次方程根的判别式的定义: 运用配方法解一元二次方程过程中得到 222 4()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22 424b b ac x a a -+=± 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ?=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式. 2.判别式与根的关系: 在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ?=-确定. 判别式:设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ?=-则 ①0?>?方程2 0(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0?=?方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a ==-. ③0?;有两个相等的实数根时,0?=;没有实数根时,0?<. (2)在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ?=-判定方程的根的情况 (有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ?=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根. ① 当0a >时?抛物线开口向上?顶点为其最低点; ② 当0a <时?抛物线开口向下?顶点为其最高点. 3.一元二次方程的根的判别式的应用: 一元二次方程的根的判别式在以下方面有着广泛的应用: (1)运用判别式,判定方程实数根的个数; (2)利用判别式建立等式、不等式,求方程中参数值或取值范围; (3)通过判别式,证明与方程相关的代数问题; (4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题. 二、韦达定理 如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x , ,那么,就有 ()()212ax bx c a x x x x ++=-- 比较等式两边对应项的系数,得 1212 b x x a c x x a ? +=-??? ??=??? ①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系. 因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x , 必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题. 利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ?=-≥0的条件下,我们有如下结论: 当0c a <时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0b a -<,

韦达定理(常见经典题型)

韦达定理(常见经典题型)

一元二次方程知识网络结构图 1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的方程叫做一元二次方程。 通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。 2. 一元二次方程的解法: (1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平 方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。 (2)配方法:用配方法解一元二次方程()02 ≠=++a o c bx ax 的一般步骤是: ①化二次项系数为 ,即方程两边同时除以二次项系数; ②移项,使方程左边为 项和 项,右边为 项; ③配方,即方程两边都加上 的平方; ④化原方程为2 ()x m n +=的形式, 如果n 是非负数,即0n ≥,就可以用 法求出方程的解。 如果n <0,则原方程 。 (3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________ (4)因式分解法:用因式分解法解一元二次方程的一般步骤是: 一元二次 定义:等号两边都是整式,只 含有一个未知数(一 解法直接开平方法 因式分解法 配方法 公式 法 22 240404b ac b ac b ac ?-??-???-?? >方程有两个不相等的实数根=方程有两个相等的实数根<方程无实数根应用一元二次方程解决实际 问题?? ? 步骤 实际问题的答案

①将方程的右边化为 ; ②将方程的左边化成两个 的乘积; ③令每个因式都等于 ,得到两个 方程; ④解这两个方程,它们的解就是原方程的解。 3、韦达定理 一、 一元二次方程的基本概念及解法 1、已知关于x 的方程x 2+bx +a =0有一个根是-a(a≠0),则a -b 的 值为 A .-1 B .0 C .1 D .2 2、 程时。 、当方程为一元二次方程时;、当方程为一元一次方的取值范围。 满足下列条件时,当方程21m 05)3()3(1 =+-++-x m x m m 3、一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .2 C .1和2 D .-1和2 二 一元二次方程根的判别式 4、关于x 的方程2210x kx k ++-=的根的情况描述正确的是( ). A .k 为任何实数.方程都没有实数根 B ,k 为任何实数.方程都有两个不相等的实数根 C .k 为任何实数.方程都有两个相等的实数根 D .根据k 的取值不同.方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种 5、已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l =0有两个不相等的实

相关主题