搜档网
当前位置:搜档网 › 遗传学发展历史及研究进展(黄佳玲)

遗传学发展历史及研究进展(黄佳玲)

遗传学发展历史及研究进展(黄佳玲)
遗传学发展历史及研究进展(黄佳玲)

遗传学发展历史及研究进展

湛江师范学院 09生本3班黄佳玲 2009574310

摘要:自从孟德尔发现遗传定律的一个多世纪以来,人们对生物的遗传特性锲而不舍地深入研究。从假设到实验,从宏观到微观,遗传学的羽翼日渐丰满。从遗传因子到基因,从基因的概念到基因的本质、功能,基因的概念逐渐扩展,人们对基因的认识逐渐深化。可以说,基因概念的发展史,就是人们对基因认识的发展史,就是遗传学的发展史。而分子遗传学则主要研究基因的本质、基因的功能以及基因的变化等问题。

关键词:遗传学分子遗传学重组DNA技术

几千年来,人类对生物及人类自身的生殖、变异、遗传等现象的认识不断深入和发展。人类从古代就注意到遗传和变异的现象,并通过人工选择获得所需要的新品种。从19世纪起就对遗传和变异开始作系统的研究。按照不同历史时期的学术水平和工作特点,遗传学的研究进程大体上可以划分为经典遗传学、生化遗传学、分子遗传学、基因工程学、基因组学和表观遗传学等数个既彼此相对独立,又前后互相交融的不同发展阶段[1]。这当中,分子遗传学的地位无疑是相当重要的,它起到了承上启下的作用。它的早期研究都用微生物为材料,其形成和发展与微生物遗传学和生物化学也有密切关系。

分子遗传学的主要研究方向集中在核酸与蛋白质大分子的遗传作为上,重点是从DNA水平探索基因的分子结构与功能的关系,以及表达和调节的分子机理等诸多问题。

早在1927年马勒和1928年斯塔德勒就用 X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢。直到1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端,它为有关的科学工作者着手研究构成分子遗传学两大理论支柱,即维系遗传现象分子本质的DNA自我复制和基因与蛋白质之间的关系,提供了正确的思路,奠定了成功的基础。1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构[2],其剖析重组的精细程度达到DNA多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。

应该说二十世纪50年代初期至70年代初期,是分子遗传学迅猛发展快速进步的年代。在这短短的二十余年间,许多有关分子遗传学的基本原理[3]相继提出,大量的重要发现不断涌现。其中比较重要的有:1956年,美国科学家科恩伯格在大肠杆菌中发现了DNA聚合酶Ⅰ,这是可以在试管中合成DNA链的头一种核酸酶,从此拉开了DNA合成研究的序幕;1957年,弗伦克尔-康拉特和辛格证实,烟草花叶病毒TMV的遗传物质是RNA,进一步表明RNA同样具有重要的生物学意义;1958年梅塞尔森和斯塔尔发

现了DNA半保留复制机理,揭示了基因之所以能够代代相传准确保留的分子本质;同年克里克提出了描述遗传信息流向的中心法则,阐明了在基因表达过程中,遗传信息从DNA到RNA再到蛋白质的传递途径;1961年两位法国科学家雅各布和莫洛建立了解释原核基因表达调节机理的操纵子模型,说明基因不但在结构上是可分的,而且在功能上也是有分工的;自1961年开始,经过尼伦伯格和库拉钠等科学家的努力,至1966年全部64种遗传密码子均已成功破译,从而将RNA分子上的核苷酸顺序同蛋白质多肽链中的氨基酸顺序联系起来,它是分子遗传学发展过程中影响最为深远的科学发现之一;1970年,美国科学家特明和巴尔帝摩发现了RNA病毒及其反转录酶,证明遗传信息也可以从RNA反向传递到DNA,这是对中心法则的重大修正;1970年,史密斯等人从流感嗜血菌中首先分离到Ⅱ型核酸内切限制酶,它与1967年发现的DNA连接酶,同为DNA体外重组技术的建立提供了酶学基础。正是上述这些研究发现与进展构成了分子遗传学的核心内容。

此后,重组DNA技术作为分子遗传学的重要内容开始在医药、农业等方面得到应用。人们利用这个技术人为改变生物的基因组成,改变其形状,从而造福于人类,其应用主要有三个方面[4]:一是获取具有优良形状的转基因动物、转基因植物,提高农产品的产量和质量,在植物方面,一批抗虫、抗病、抗除草剂及耐储藏的转基因农作物已应用于生产,产生了巨大的经济效益;二是将外源基因转入微生物、动物和植物,培育具有生物反应器功能的微生物菌株及转基因动植物,从而大量地获得所需的药物、干扰素、胰岛素及乙肝疫苗等许多基因工程药物都已广泛应用于临床;三是对人类遗传缺陷进行基因治疗。

今天,遗传学已是一门成熟的、非常有活力的学科,被认为是现代生物学的核心。它是人类对生命本质认识的集体智慧的结晶,世界上许多科学家都对遗传学的发展做出了杰出贡献。现代遗传学的发展非常迅速,特别是在高等真核生物包括人体的发育、细胞分化、记忆、衰老及信号转导等分子机制的研究,以及结构基因组和功能基因组研究方面,都有很大突破。总之,对于遗传学的深入研究和了解,让我们对自己的认识也更加深入,对以后人类的发展也是一大进步。

[1]杨学仁,朱英国.遗传学发展史[M].武汉:武汉大学出版社,1995.

[2]刘祖洞.遗传学(上、下册,第二版)[M].北京:高等教育出版社,1991.

[3]朱军.遗传学(第三版)[M].北京:中国农业出版社,2003.

[4]吴乃虎.基因工程原理(上、下册,第二版)[M].北京:科学出版社,1998.

遗传学发展的简史

For personal use only in study and research; not for commercial use 遗传学发展的简史 遗传学发展至今虽然只有100多年的历史,但却取得辉煌的成就。根据各阶段的主要特点和成就,可粗略将其发展历史划分为5个阶段: 1.启蒙遗传阶段(18世纪下半叶19世纪上半叶) ●18世纪下半叶和19世纪上半叶,拉马克(Lamarck JB)认为环境条件的改变是生物变异的根本原因,提出了: ○器官的用进废退(use and disuse of organ) ○获得性状遗传(inheritance of acquired characters) ●1859年,达尔文(Darwin C)发表了《物种起源》,提出了自然选择和人工选择的进化学说,使人们对遗传有新的认识。对于遗传变异的解释,达尔文承认获得性状遗传的一些论点,并提出泛生假说(hypothesis of pangenesis),认为: ○每个器官都存在泛生粒。 ○泛生粒能繁殖。

○聚集到生殖器官,形成生殖细胞。 ○受精后,泛生粒进入器官并发生作用,表现遗传。 ○泛生粒改变,则表现变异。 ●魏斯曼(Weismann A)——新达尔文主义的首创者,提出种策连续论(theory of continunity of germplasm) ○生物体是由体质和种质两部分组成。 ○体质是由种质产生的,种质是世代连绵不绝的。 ○环境只能影响体质,不能影响种质,故获得性状不能遗传。 2.孟德尔遗传学建立(19世纪下半叶开始) ●1866年,孟德尔(Mendel GJ)(图0-4)发表“植物杂交试验”论文,首次提出分离和独立分配两个遗传基本规律,认为性状遗传是受细胞内遗传因子控制的。 ●1900年,孟德尔遗传规律的重新发现,该年被公认为遗传学建立和开始的年份。发现者为狄·弗里斯(de Vris H)、柴马克(Tschermak E)和柯伦斯(Correns,Carl)。

线粒体及其相关疾病的遗传学研究进展

线粒体及其相关疾病的遗传学研究进展(作者:___________单位: ___________邮编: ___________) 作者:齐科研相蕾陈静宋玉国霍正浩杨泽 【关键词】线粒体DNA 基因突变疾病 线粒体广泛分布于各种真核细胞中,其主要功能是通过呼吸链(电子传递链和氧化磷酸化系统)为细胞活动提供能量,并参与一些重要的代谢通路,维持细胞的钙、铁离子平衡,以及参与其他生命活动的信号传导。 此外,线粒体还与活性氧(reactiveoxygen species,ROS)的产生及细胞凋亡有关[1-3]。组成线粒体的蛋白质有1000多种,除呼吸链复合体蛋白受mtDNA与核基因双重编码,其他蛋白均由核基因编码。mtDNA突变或核基因突变都能引起线粒体功能紊乱[1,4]。早在1963年,Nass等人就发现有遗传物质DNA的存在。1981年,Anderson等发表了人类mtDNA全序列。1988年,Holt和Wallace分别在线粒体脑病和Leber’s遗传性视神经病(LHON)患者的细胞中发现了mtDNA突变,从此开辟了研究mtDNA突变与人类疾病的新领域。随着对mtDNA研究的深入,人们对mtDNA的突变和人类疾病的相关性

日益重视。芬兰的数据显示人群单个点突变(3243A>G)的比率为1∶6000,然而,英国资料表明mtDNA疾病的患病率或易患比率为1∶3500[5]。动物模型和人类研究证据均证明,mtDNA突变是引起人类多因素疾病,部分遗传性疾病以及衰老的重要原因之一。本文将从以下几个方面对mtDNA突变和相关疾病进行阐述。 1 线粒体DNA的遗传学特征 线粒体DNA是存在于线粒体内而独立于细胞核染色体的较小基因组。与核基因相比,线粒体DNA具有一些显著特征。 1.1 母系遗传 Giles等[6]通过对几个欧洲家系线粒体DNA进行了单核苷酸多态性分析时,发现mtDNA 分子严格按照母系遗传方式进行传递。母系遗传是指只由母亲将其mtDNA分子传递给下一代,然后再通过女儿传给后代。有研究表明[7],在受精过程中,精子线粒体会被卵子中泛素水解酶特异性识别而降解,这很好地解释为什么父源性mtDNA不能传播给后代。 1.2 异质性和突变负荷 核基因突变所产生的突变体分为纯合子(homozygote,等位基因都发生突变,含量为100%)和杂合子(heterozygote,等位基因中的一个发生突变,突变含量为50%)与核基因不同,线粒体基因突

遗传学发展历史及研究进展(黄佳玲)

遗传学发展历史及研究进展 湛江师范学院 09生本3班黄佳玲 2009574310 摘要:自从孟德尔发现遗传定律的一个多世纪以来,人们对生物的遗传特性锲而不舍地深入研究。从假设到实验,从宏观到微观,遗传学的羽翼日渐丰满。从遗传因子到基因,从基因的概念到基因的本质、功能,基因的概念逐渐扩展,人们对基因的认识逐渐深化。可以说,基因概念的发展史,就是人们对基因认识的发展史,就是遗传学的发展史。而分子遗传学则主要研究基因的本质、基因的功能以及基因的变化等问题。 关键词:遗传学分子遗传学重组DNA技术 几千年来,人类对生物及人类自身的生殖、变异、遗传等现象的认识不断深入和发展。人类从古代就注意到遗传和变异的现象,并通过人工选择获得所需要的新品种。从19世纪起就对遗传和变异开始作系统的研究。按照不同历史时期的学术水平和工作特点,遗传学的研究进程大体上可以划分为经典遗传学、生化遗传学、分子遗传学、基因工程学、基因组学和表观遗传学等数个既彼此相对独立,又前后互相交融的不同发展阶段[1]。这当中,分子遗传学的地位无疑是相当重要的,它起到了承上启下的作用。它的早期研究都用微生物为材料,其形成和发展与微生物遗传学和生物化学也有密切关系。 分子遗传学的主要研究方向集中在核酸与蛋白质大分子的遗传作为上,重点是从DNA水平探索基因的分子结构与功能的关系,以及表达和调节的分子机理等诸多问题。 早在1927年马勒和1928年斯塔德勒就用 X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢。直到1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端,它为有关的科学工作者着手研究构成分子遗传学两大理论支柱,即维系遗传现象分子本质的DNA自我复制和基因与蛋白质之间的关系,提供了正确的思路,奠定了成功的基础。1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构[2],其剖析重组的精细程度达到DNA多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。 应该说二十世纪50年代初期至70年代初期,是分子遗传学迅猛发展快速进步的年代。在这短短的二十余年间,许多有关分子遗传学的基本原理[3]相继提出,大量的重要发现不断涌现。其中比较重要的有:1956年,美国科学家科恩伯格在大肠杆菌中发现了DNA聚合酶Ⅰ,这是可以在试管中合成DNA链的头一种核酸酶,从此拉开了DNA合成研究的序幕;1957年,弗伦克尔-康拉特和辛格证实,烟草花叶病毒TMV的遗传物质是RNA,进一步表明RNA同样具有重要的生物学意义;1958年梅塞尔森和斯塔尔发

遗传学进展概述(选修课论文)

遗传学进展概述 作者:戴宝生 克隆水稻分蘖的主控基因MOC1 据国家自然科学基金委员会2003年5月23日报道,最近,我国科学家成功分离和克隆了水稻分蘖的主控基因MOC1,该成果是由中国科学院遗传与发育研究所李家洋院士及其合作者在国内独立完成的。该研究结果已发表在Nature,2003,422:618上,这是我国分子遗传学基础研究领域的第一篇源自国内的Nature文章,标志着我国植物功能基因研究取得了重大突破。 分蘖是水稻等禾本科作物在发育过程中的一个重要的分枝现象,也是一个重要的农艺性状,它直接确定作物的穗数并进而影响产量。虽然对水稻分蘖的形态学、组织学及突变体都有过很多描述,但是控制分蘖的分子机制一直没有弄清。自1996年起,在国家科技部、国家自然科学基金委员会和中国科学院的共同资助下,李家洋和中国农业科学院国家水稻研究所的钱前博士等开始进行此方面的研究。经过不懈努力,项目组鉴定了一株分蘖的极端突变体——单杆突变体MOC1。通过遗传图谱定位克隆技术,分离鉴定了在水稻分蘖调控中起重要作用的基因MOC1,它的缺失可造成分蘖的停止。进一步的功能分析表明,该基因可编码一个属于GRAS家族的转录因子,该转录因子主要在腋芽中表达,功能是促进分蘖和促进腋芽的生长。对这一重要基因的深入研究,将有望解释禾本科作物分蘖调控的分子机制,对于水稻高产品种的培育有重要的理论和应用价值 走出“基因决定论”的误区 自从基因一词在20世纪初进入科学家的词汇表以来,它不仅是生物学家最为常用的词汇之一,也成为当今普通大众最为熟悉的科学术语之一。随着遗传学和分子生物学的进步,人们不仅知道了基因的化学性质——DNA序列,而且还认识到了基因的功能——编码蛋白质的氨基酸序列。由此,逐渐形成了一种广为流行的“基因决定论”:生命的各种性质和活动都是受基因控制的,甚至人类的精神活动也在基因的控制之下。不久前,芬兰赫尔辛基大学和瑞典卡罗林斯卡医学院的研究人员在某些患有诵读困难的病人中,发现了一种名为“DYXC1”的基因发生了突变。也就是说,人类的阅读可能受到这种“DYXC1”基因的控制。不可否认,基因对生命具有非常重要的作用,基因的异常通常就会导致生命的异常。但是,作为开放的复杂系统,生命活动从来就不是由一种因素就能完全决定的。当前越来越多的证据,正在向“基因决定论”挑战。科学家正在以一种全新的视野来理解生命现象。 不再是“垃圾” 随着基因组研究的深入,人们发现,在多细胞真核生物的基因组中,基因仅是其全部DNA 序列的一小部分。在人类基因组中,全部基因序列只占基因组的2%左右。基因组内的非基因序列曾一度被研究者称为“垃圾DNA”(junk DNA)。这些“垃圾DNA”中至少有一半是

遗传学发展历史及研究进展

遗传学发展历史及研究进展 【摘要】从1900年孟德尔的遗传学理论被重新发现时,遗传学才被典礼在科学的基础上。本世纪,遗传学已成为生物科学领域中发展最快的一门学科,几乎所有的生物学科都可以与遗传学形成交叉学科。遗传学作为自然科学的一个学科,有其建立、发展和不断完善的进程。 【关键词】历史进程发展趋势研究进展 什么是遗传学(Genetics)?遗传学就是研究生物的遗传与变异的科学。遗传是生物的一种属性,是生命世界的一种自然现象。遗传使生物体的特征得以延续,变异造成了生物体间的差别,遗传与变异构成生物进化的基础。与所有的学科一样,遗传学也是在人们的生产实践活动中发展起来的,是与生产实践紧密联系在一起的。从遗传学的建立、发展来看,研究遗传学的意义是十分深刻的。 一、遗传学的历史进程 1.远古时代 在远古时代,祖先们稚嫩的思维认为生物和非生物之间不存在什么区别,所有的东西都认为是活的。但是,祖先们在研究过程中都发现了一个事实——有些东西可以自我繁衍。“龙生龙,凤生凤”之类的俗语,可以算的上是最早的遗传学概念。在生产实践中,产生了实用遗传学,祖先们开始控制种畜的交配,选育优良的种子,淘汰较差的种畜和种子,以满足他们的需求。 2.中世纪 中世纪有一种观念严重地阻碍了科学的发展——自然发生论(Spontaneous Generation)。然而十七世纪一位意大利科学家雷迪用实验成功地否定了自然发生论。接下来,荷兰一位业余的科学家列文·虎克发明了显微镜并发现了细胞、证实了精细胞的存在和了解到多种生物都是拥有性别的。与此同时,科学家威廉·哈维也开始研究女性在生殖过程中的作用。到十九世纪为止,科学家们已发现动物和植物都有性别,自然生长论几近穷途末路。 3.十九世纪 十九世纪是一个不断进步的时代,科学家们和生产实践的工作者们碰到的问题不断地促进了对基因的探索。通过大量努力的探索,遗传规律开始被发现。一位来自奥地利布鲁恩的修道士,他用豌豆作为实验材料,进行了大量研究遗传问题的育种试验,1866年,他发表了《植物杂交试验》的论文,揭示了性状分离和独立分配的遗传规律。他就是现代遗传学的创始人——孟德尔。然而,当时的科学家正热衷于研究达尔文的进化论而忽视了这一重大发现。直到1900年,孟德尔遗传规律才被重新发现,这也标志着现代遗传学的开端。 二、现代遗传学的发展

遗传学发展历史及研究进展(综述)

遗传学发展历史及研究进展 湛江师范学院09生本一班徐意媚2009574111 摘要:遗传学是一门探索生命起源和进化历程的学科,起源于人类的育种实践,于1910年进入现代遗传学阶段,并依次经历个体遗传学时期、细胞遗传学时期、数量遗传学和群体遗传学时期、细胞水平向分子水平过渡时期、分子遗传学时期。目前遗传学在医学、农牧业等领域取得重大突破,如表遗传学在肿瘤的治疗方面。21世纪将是遗传学迅猛发展的世纪,在经济、微生物、工业、制造业等许多领域都将有重大的突破。 关键词:遗传学发展历史研究现状发展前景 1 现代遗传学发展前 1.1遗传学起源于育种实践 人类在新石器时代就已经驯养动物和栽培植物,渐渐地人们学会了改良动植物品种的方法。写于公元60年左右的《论农作物》和533~544年间中国学者贾思勰在所著的《齐民要术》中均记载了嫁接技术,后者还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。[1] 1.2 18世纪下半叶和19世纪上半叶期间 许多人都无法阐明亲代与子代性状之间的遗传规律,直到18世纪下半叶之后,拉马克和达尔文对生物界遗传和变异进行了系统的研究。拉马克通过长颈鹿的颈、家鸡的翅膀等认为环境条件的改变是生物变异的根本原因,并提出用进废退学说和获得性状遗传学说。达尔文达尔文以博物学家的身份进行了五年的考察工作,广泛研究遗传变异与生物进化关系,终于在1859年发表著作《物种起源》,书中提出自然选择和人工选择的进化学说,认为生物是由简单到复杂、低级再到高级逐渐进化的。除此之外,达尔文承认获得性状遗传的一些论点,并提出了“泛生论”假说,但至今未获得科学的证实。 1.3 新达尔文主义 以魏斯曼(Weismann A.,1834-1914) 为代表的等人支持达尔文选择理论否定获得性遗传,魏斯曼等人提出种质连续论,认为种质是世代连续不绝的。他们还通过对老鼠22代的割尾巴试验,否定后天获得性遗传,明确地区分种质和体质,认为种质可以影响体质,而体质不能影响种质,在理论上为遗传学的发展开辟了道路。[2] 2.现代遗传学的发展阶段

《遗传学》朱军版习题与答案

《遗传学(第三版)》 朱军主编 课后习题与答案 目录 第一章绪论 (1) 第二章遗传的细胞学基础 (2) 第三章遗传物质的分子基础 (6) 第四章孟德尔遗传 (8) 第五章连锁遗传和性连锁 (12) 第六章染色体变异 (15) 第七章细菌和病毒的遗传 (20) 第八章基因表达与调控 (26) 第九章基因工程和基因组学 (30) 第十章基因突变 (33) 第十一章细胞质遗传 (35) 第十二章遗传与发育 (37) 第十三章数量性状的遗传 (38) 第十四章群体遗传与进化 (42) 第一章绪论 1.解释下列名词:遗传学、遗传、变异。 答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。 遗传:是指亲代与子代相似的现象。如种瓜得瓜、种豆得豆。 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。 2.简述遗传学研究的对象和研究的任务。 答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。 遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。 3.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素? 答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。同时经过人工选择,才育成适合人类需要的不同品种。因此,遗传、变异和选择是生物进化和新品种选育的三大因素。 4. 为什么研究生物的遗传和变异必须联系环境? 答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。生物与环境的统一,是生物科学中公认的基本原则。所以,研究生物的遗传和变异,必须密切联系其所处的环境。

分子遗传学综述

分子遗传学综述 【摘要】:分子遗传学是在分子水平上研究生物遗传和变异机制的遗传学分支学科。经典遗传学的研究课题主要是基因在亲代和子代之间的传递问题;分子遗传学则主要研究基因的本质、基因的功能以及基因的变化等问题。 关键词:医学分子遗传学发展内容研究方法 分子遗传学是遗传学中的一门新兴分支学科。分子生物学的重要组成部分。广义地说,分子遗传学是研究分子水平描述的遗传体系或其组分的情形。狭义地说,它是研究遗传机理的分子基础以及受遗传物质控制的代谢过程。从分子水平研究遗传和变异的物质基础,是在遗传物质脱氧核糖核酸(DNA)的分子结构确认后迅速发展起来的。20世纪以来,随着对大分子化合物的研究不断取得突破,特别是脱氧核糖核酸分子双螺旋结构模型的建立,人们能够从主要生命物质结构的分予层次上得以合理地解释基因复制的机理、信息传递的途径、阐明生物遗传变异的运动形态,从而使整个遗传学的研究由形态描述、逻辑推理为主,转变为以物质结构与功能相统一为分析着眼点的新的发展阶段。分子遗传学的目的在于阐明脱氧核糖核酸的复制机理,脱氧核糖核酸、核糖核酸与蛋白质之间的关系,基因的本质、表达、传递及其调节机制,基因突变的分子基础,核外遗传的分子机制,以及细胞核质之间的关系等等.可从分子层次为探索生物发育、分化和进化等重大问题提供新的理论说明和实验手段.分子遗传学是遗传学发展的一个重要方向,遗传工程是分子遗传学的应用。

一、发展简史 1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端。1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构,其剖析重组的精细程度达到DNA 多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。 关于基因突变方面,早在1927年马勒和1928年斯塔德勒就用X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢,直到以微生物为材料广泛开展突变机制研究和提出DNA分子双螺旋模型以后才取得显著成果。例如碱基置换理论便是在T4噬菌体的诱变研究中提出的,它的根据便是DNA复制中的碱基配对原理。 美国遗传学家比德尔和美国生物化学家塔特姆根据对粗糙脉孢菌的营养缺陷型的研究,在40年代初提出了一个基因一种酶假设,它沟通了遗传学中对基因的功能的研究和生物化学中对蛋白质生物合成的研究。 按照一个基因一种酶假设,蛋白质生物合成的中心问题是蛋白质分子中氨基酸排列顺序的信息究竟以什么形式储存在DNA分子结构中,这些信息又通过什么过程从DNA向蛋白质分子转移.前一问题是

基因工程技术的发展历史-现状及前景

学号 1234567 基因工程课程论文 ( 2013 届本科) 题目:基因工程技术发展历史、现状及前景 学院:农业与生物技术学院 班级:生物科学 091 班 作者姓名: X X X 指导教师: XXX 职称:教授 完成日期: 2013 年 3 月 16 日 二○一三年三月

基因工程技术发展历史、现状及前景 摘要:生物学已是现代最重要学科之一,而从20世纪70年代初发展起来的基因工程技术,经过30多年来的发展与进步,已成为生物技术的核心。基因工程技术现应用范围涉及农业、工业、医药、能源、环保等诸多领域。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程技术及相关领域将成为21世纪的主导产业之一。 关键词:基因工程技术、发展历史、现状、前景 引言 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞-DNA 的技术称为“基因系治疗”,通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 一、基因工程技术的发展历史 (一)基因工程发展简述 人类与动物的许多病害都是由单细胞原核生物——细菌引起的。在一段时间,细菌成为人类的第一大杀手,成千上万的生命被其感染吞噬。虽然青霉素以及磺胺类等搞菌药物的出现拯救了无数的生命,但是,好景不长,青霉素使用不到期10年,即在世界上20世纪50年代中期,就发现了严重的细菌抗药性,并且这种抗药性还具有“传染性”,也就是说,一种细菌的抗药性可以传给另一种细菌。

临床遗传学研究进展的认识与感悟

临床0904班 03 陈舒宁 遗传,是一个抽象性总结性的词语,而它和我们的生活密切相关,甚至决定我们的生活质量。基因的发现以及各种探究技术的发展,将遗传这个概念具体化清晰化,我们越来越多的了解到遗传物质对各种性状表达的影响。科学的进步最终是要运用到实际中去的,遗传学的研究也在向临床应用方向推进。 今天对遗传学的认识已经远远超越了“豌豆杂交”,现在已经可以运用医学遗传学理论知识,通过家系调查和各项检查来诊断、治疗和预防遗传病。临床遗传学是在分离定律、自由组合定律、连锁交换定律等研究基础上,结合细胞遗传学技术、分子细胞遗传学技术、分子遗传学技术等,对遗传病进行诊断、预防、治疗,并且提供详细咨询。临床遗传学还有其独自的知识体系,比如染色体的基本知识、染色体国际命名体制;基因的基本知识;细胞有丝分裂、减数分裂的基本知识及其与染色体、基因遗传的关系等。通过学习,在认识到临床上对遗传学技术的应用已经远远超出了我最开始的认为。临床治疗、预防都已经和遗传学产生了密切的联系,它们相互促进,协同发展。 目前所指的遗传病,主要分为染色体病和基因病。染色体病是指染色体数目结构发生异常所引起的疾病。染色体多一条或少一条都会造成染色体病,比如唐氏综合征、13三体综合征、18三体综合征;而染色体结构的变化往往具有复杂的临床表现,比如生长发育异常、智力发育迟缓等等。这些疾病,目前主要以预防为主,高龄产妇需要格外注意。血清学检查和超声筛选应该是比较普遍的检查方式,它们不会对孕妇造成创伤,比较安全。血清学检查的检出率随着人们的研究已经有了较大的提高,但是还有一定的假阳性和假阴性的例子出现。而且,血清学筛查还存在许多问题,比如取血和开单时间无法一致,没有一个严格规范的筛查时限,有的医院技术不达标等等。于是进一步想到了较为直接的侵入性产前检查,因为它直接提取到胎儿的遗传物质,可谓是目前检查的”金标准“。但是,想象一下自己或者自己的亲人做这样的检查,会产生多大的思想压力。并且直接侵入性产检可能造成对胎儿伤害,诱发流产等。为了能够不造成母体和胎儿伤害,而又能达到较高的检出率,于是有了从母体外周血中检查游离胚胎DNA的方法。这个方法有点将前面两种方法益处相结合的意思,即提高检出率,又减少对母胎的伤害,而且它还提高了检查的效率。但是,目前应用的FISH,PCR都还有一些弊端,比如FISH的成本高,价格贵;母血的污染可能影响结果判断等等。当然,一切都还是在进步的,非侵入性产前非整倍体检查正在被不断完善,随着发展也一定会更加普及。染色体质的改变也会造成疾病,目前的检查方法检出率一般,而且并没有得到普及。并且由于染色的的缺失、重复等改变是微小的,多为新发,所以还需要更多的病例累积来帮助临床认识一些新的综合征。 基因病则分为单基因病和多基因病。单基因病是由单个基因突变引起的疾病,有一定的遗传规律,而且遗传研究上已经累积了一些病例知识,对致病基因的有一定的认识。对于临床上的常见的单基因病,例如短指症,白化病都有较好的诊断。结合病人的系谱调查,该遗传病的遗传特点,加之PCR等基因检测技术,可以达到较高的检出率。当然每个技术都不可能称之为百分百的完美,单基因病的诊断中也有许多问题干扰诊断,比如:表现度不同,有时会产生拟表型等等。多基因病则是指多对微小的累加的等位基因与环境共同作用所引起的疾病,比如心血管疾病,中风,精神分裂等。临床上主要还是对症治疗,并且有一定疗效。但是,治问题要治之根本,所以目前对这些疾病的基因诊断、治疗还在不断的研究之中。

最新遗传学的发展简史讲解学习

遗传学 遗传学:研究生物遗传和变异的科学 遗传:生物亲代与子代间像素的现象 变异:生物的亲代与子代、子代与个体之间总存在不同的差异,这种现象叫变异 1遗传学的发展简史:达尔文广泛研究遗传变异与生物进化关系,1859 年发表《物种起源》著作,提出了自然选择和人工选择的进化学说。孟德尔系统地研究了生物的遗传和变异。豌豆杂交试验提出分离规律和独立分配规律,认为遗传是受细胞里的遗传因子所控制的。沃森-克里克:1953通过X射线衍射分析,提出DNA分子结构模式理论。1983年,首例转基因植物 2细胞及其结构与功能:细胞膜、细胞质、细胞核等组成。动物细胞:含有中心体 植物细胞:叶绿体、细胞壁、胞间连丝。原核细胞:由细胞壁、细胞膜、细胞质、拟核、核糖体组成。仅有核糖体,细胞质内没有分隔,是个有机整体,DNA存在的区域称作拟核

3同源染色体:形态和结构相同的一对染色体;异源染色体:这一对染色体与另一对形态结构不同的染色体,互称为异源染色体 4核型分析:对生物细胞核内全部染色体的形态特征进行分析,称为核型分析 5 A染色体:有些生物的细胞中出了具有正常的恒定数目的染色体外,还长出现额外的染色体,通常把正常的染色体成为A染色体,额外人色提统称为B染色体。 6 细胞周期:主要包括细胞有丝分裂过程及两次有丝分裂之间的间期 7有丝分裂各期的特点及各期数染色体目变化 细胞的有丝分裂的分裂期:分裂期的时间一般占整个周期的5~10%。 前期:(1)染色质逐渐变成染色体;(2)核膜解体,核仁消失;(3)纺锤体逐渐形成;(4)染色体散乱地排列在纺锤体中央 中期:主要变化是(1)每一条染色体的

分子遗传学的发展本科论文

分子遗传学的发展 1. 生化遗传学 摩尔根曾经正确地指出:“种质必须由某种独立的要素组成,正是这些要素我们叫做遗传因子,或者更简单地叫做基因”。尽管由于摩尔根及其学派的广大科学工作者的努力,使基因学说得到了学术界的普遍的承认,然而当时人们对基因本质的认识还相当肤浅,并不知道基因与蛋白质及表型之间究竟存在着什么样的内在联系。虽然说早在1909年,英国的医生兼生物化学家加罗德(A.Garrod)就己指出,特定酶的表达是由野生型基因控制的假说。而且这个假说在二十世纪30年代,经过众多遗传学家的努力已经获得了很大的发展与充实。遗憾的是,由于当时人们掌握的酶分子结构的知识相当贫乏,没有认识到大部份基因的编码产物都是蛋白质,也不知道是否所有的蛋白质都是由基因编码的。在这样的知识背景下,要进一步研究分析基因与蛋白质之间的内在联系,显然是难以做到的。 值得庆幸的是到了二十世纪40年代初期,孟德尔-摩尔根学派的遗传学家便已经清醒地认识到,如果继续沿用经典遗传学的研究方法和实验体系,是难以有效地揭示基因控制蛋白质合成及表型特征的遗传机理。因此他们便广泛地转而使用诸如红色面包霉(Neurospora crassa)和肺炎链球菌(Streptococcus pneumpniae)等微生物为研究材料,并着力从生物化学的角度,探索基因与蛋白质及表型之间内在联系的分子本质。所以人们称这个阶段的遗传学为生化遗传学(biochemical genetics),或微生物遗传学(microbial genetics)。 由于微生物具有个体小、细胞结构简单、繁殖速度快、世代时间短和容易培养、便于操作等许多优点,因此便极大地加速了生化遗传学的研究,在短短的二三十年间就取得了丰硕的成果,主要的有如下三项。第一,1941年两位美国科学家比德尔(G.Beadle)和塔特姆(E.Tatum),通过对红色面包霉营养突变体的研究,提出了“一种基因一种酶”(后来修改为“一种基因一种多肽”)的假说。此后在1957年,这个假说被英国科学家英格拉姆(V.M.Ingram)证明是正确的。从而明确了基因是通过对酶(即蛋白质)合成的控制,实现对生命有机体性状表达的调节作用。第二,1944年微生物学家艾弗里(0.Avery)及其同事证明,肺炎链球菌的转化因子是DNA。第三,1952年,赫尔希(A.Hershey)和蔡斯(M.Chase)也在噬菌体感染实验中发现,转化因子的确是DNA而不是蛋白质,肯定了艾弗里的结论。至此基因的分子载体是DNA已是不争的事实。生化遗传学的发展为日后分子遗传学的诞生奠定了坚实的理论基础。它上承经典遗传学,下启分子遗传学,是经典遗传学向分子遗传学发展过程中的一个重要的过渡阶段。 2. 分子遗传学 经典遗传学虽然揭示了基因传递的一般规律,甚至还能够绘制出基因在染色体分子上的排列顺序及其相对距离的遗传图,生化遗传学尽管证明了基因的载体是DNA,但它们都不能准确地解释基因究竟是以何种机理、通过什么途径来控制个体的发育分化及表型特征的。确切地说,直到1953年Watson-Crick DNA双螺旋模型提出之前,人们对于基因的理解仍然停留在初步的阶段。那时的遗传学家不但没有揭示出基因的结构特征,而且也不能解释位于细胞核中的基因,是怎样地控制在细胞质中发生的各种生化过程,以及在细胞繁殖过程中,为何基因可准确地产生自己的复制品。而诸如此类的问题便是属于分子遗传学的研究范畴。由于长期以来分子遗传学的核心主题一直是围绕着基因展开的,所以也被冠名为基因分子遗传学(molecular genetics of the gene)。 分子遗传学的主要研究方向集中在核酸与蛋白质大分子的遗传作为上,重点是从DNA 水平探索基因的分子结构与功能的关系,以及表达和调节的分子机理等诸多问题。特别是

遗传学的发展史

遗传学发展历史及研究进展 摘要:遗传学的发展历程经历了以下几个历程遗传应用现象时期--遗传现象推论时期--遗传实验生物学时代--遗传学诞生期--细胞遗传的时期--微生物遗传及生化遗传学时期--分子遗传学时期。从遗传学现象应用到遗传学发展到分子遗传学时期,遗传学体系基本发展完善。在未来的发展中遗传学将会往社区遗传学发展,集中精力往解决人类遗传疾病以及疑难杂症和动植物以及农作物生产方面。由研究发展遗传学科学理论基础转化为应用遗传学基础科学技术解决现实问题的过度。这就是未来遗传学发展的期望。 关键词:遗传学、基因、时代、历程、发展 遗传学是一门探索生命起源和进化历程的学科,兴起于20世纪,发展异常迅速,随着研究的进展,以渗入生物科学的各个领域,派生出诸如植物遗传学、动物遗传学、微生物遗传学、人类遗传学、生理遗传学、发育遗传学等等,成为现代生物学得带头学科。其理论、机制以及先进的实验技术,在农业、工业、畜牧业、医学、国防等领域都有十分重要的作用。以下将介绍遗传学的发展历程。(4) 遗传应用现象时期:各种考古资料表明,人类在远古时代就已经知道优良动植物能够沉声与之相似的优良后代的现代,并通过选择和培育有用的动植物以用于各种生活目的。在植物选育方面,在我国湖北地区新石器时代末期的遗址中还保存有阔卵圆形的粳稻谷壳,说明人类对植物品种的选育具有悠久历史。公元前4000年左右,古埃及的石刻上还记载了人们进行植物杂交授粉的情况。但是,这些都仅仅是史前史前人类对遗传变异现象的观察,或是在实践中利用一些遗传、变异形状对动植物进行选择,并没有对生物遗传和变异的机制进行严肃的研究。(1) 遗传现象推论时期:公元前5世纪到4世纪,希波克拉底的观点使古希腊对生命现象的认识逐步从宗教的神秘色彩转向哲学的和原始科学的思维方案。古希腊医师希波克拉底及其追随者在生殖和遗传现象以及人类起源方面发现并认为雄性的精液首先在身体的各个器官形成后运输到血液中,双亲的各种生理活动和智理活动都可以传给子代,使子代具有与亲代相似的能力与特征。体液在亲代体内可以发生变化,所以子代可以遗传双亲从环境中获得的某些特征。而后来古希腊的哲学家和自然家亚里士多德推翻了希波克拉底的观点,认为雄性的精液是从血液形成的,不是从各个器官形成的。精液含的能力很高,这种能力作用于母体的月经使其形成了子代个体。提出泛生论,这些观点虽然现在看来很幼稚,但是当时并未发现精卵细胞。直到1827年卵细胞的发现,因此这种对遗传现象的解释在当时直至以后几个世纪都产生了重要影响。由于他们都认为遗传是通过双亲进行的,并受到位于不同单位中的遗传信息的控制,这些观点在遗传学系统理论知识的形成和过程中占突出

数量遗传学综述

数量遗传学的发展历程 摘要:数量遗传学经过近百年的发展,形成了一整套理论体系。本文以数量遗传学的诞生、发展、现状为线索,阐述了该学科诞生的背景及所得到的启示、体会,介绍了数量遗传学发展历程的三次结合,分析了它的研究现状和发展前景。 关键词:数量遗传学数量性状发展历程 1865年,孟德尔(G·Mendel)根据豌豆杂交试验,表了论文《植物杂交试验》,提出了遗传因子分离重组的假设,形成了孟德尔理论,标志着经典遗传的诞生。19世纪末,孟德尔遗传学与数学相结合成了群体遗传学(population genetics)。20世纪年代,Fisher在关于方差组分剖分的论文[1]中将体遗传学进一步与生物统计学相结合,奠定了数遗传学(quantitative genetics)的基础。数量遗学是以数量性状(quantitative trait)为研究对的遗传学分支学科[2],它作为育种的理论基础已发展了近百年。而将数量遗传学的理论应用于动育种则应归功于Lush(1945)在其划时代的著作物育种方案》(Animal Breeding Plan)中的系统述[3]。在中国,1958年吴仲贤教授翻译的出版了英K·Mather 的第一版《生统遗传学》(Biometricalnetics),对我国动植物数量遗传学的发展起到了键性的推动作用。在基因组学时代,随着对数量状基因型的识别,人们通过对经典数量遗传学模的修改完善,数量遗传学为分析表型信息和基因信息构建筑了合理框架,数量遗传学将会比过去挥更大的作用[4]。在畜牧业生产中,与生产性能有的大多数经济性状属于数量性状。因此,研究数量性状的遗传规律具有重要的实践意义。 1数量遗传学诞生的背景 数量遗传学的诞生可以追溯到Fisher(1918)关于方差组分剖分的论文[1],它作为育种的理论基础已经发展了近1O0年,而数量性状的遗传研究可追溯到19世纪。1885年,Galton[5]报道了205对父母与其930个后裔的身高关系。其后,Pearson陆续提出了13种密度函数,用以描述数量变异的分布。他们可算是数量遗传研究的先行者,但当时并没有遗传学理论作指导,人们也没有把他们

分子遗传学的传承与发展

分子遗传学的传承与发展 遗传学(genetics)这个名称,最初是由英国科学家贝特森(W.Bateson)于1906年根据拉丁文延长(Latin genetikos)之意创造的。按照不同历史时期的学术水平和工作特点,遗传学的研究进程大体上可以划分为经典遗传学(classical genetics)、生化遗传学(biochemical genetics)、分子遗传学(molecular genetics)、基因工程学(genetic engineering)、基因组学(genomics)和表观遗传学(epigenetics)等数个既彼此相对独立,又前后互相交融的不同发展阶段。这当中,分子遗传学的地位无疑是相当重要的,它起到了承上启下的作用。因此讲清分子遗传学的传承与发展这一命题,不仅对于学习与掌握分子遗传学的基本原理是十分必要的,而且对于培养青年学子树立科学的唯物史观也是十分必要的。 1. 经典遗传学 从1865年孟德尔《植物杂交实验》论文发表至20世纪40年代初,遗传学主要从细胞和染色体水平上研究生命有机体的遗传与变异的规律,属于细胞遗传学(cytogenetics)或叫染色体遗传学(chromosomal genetics)阶段。为了与后继发展的分子遗传学相区别,如今人们也习惯地称这一阶段的遗传学为经典遗传学或传统遗传学。鉴于经典遗传学主要研究生命有机体上下两个世代之间基因是如何传递的,故有时也称之为传递遗传学(transmission genetics)。 孟德尔通过豌豆杂交实验,为现代遗传学的诞生作出了划时代的杰出贡献。概括地说主要有如下两大方面: 第一,发现了两条遗传学的基本定律,即遗传因子分离律和自由组合律。孟德尔从1857年到1864年,坚持以豌豆为材料进行植物杂交试验。他选择了7对区别分明的性状作仔细观察。例如,他用产生圆形种子的植株同产生皱形种子的植株杂交,得到的几百粒杂交子一代的种子全是圆形的。第二年,他种了253粒圆形杂交种子,并让它们自交,结果得到的7324粒子二代种子中,有5474粒是圆形的,1850粒是皱形的。用统计学方法计算得出,圆皱比为3:1。据此孟德尔推导出遗传因子分离律。他还研究了具有两种彼此不同的对立性状的2个豌豆品系之间的双因子杂交试验。他选用产生黄色圆形种子的豌豆品系同产生绿色皱形种子的豌豆品系进行杂交,所产生的杂种子一代种子,全是黄色圆形的。但在自交产生的子二代556粒种子中,不但出现了两种亲代类型,而且还出现了两种新的组合类型。其中黄色圆形的315粒,黄色皱形的121粒,绿色圆形的108粒,绿色皱形的32粒。四种类型比例近于9:3:3:1。这就是所谓的孟德尔遗传因子的独立分配律。

表观遗传学研究进展概述

表观遗传学研究进展概述 摘要:表观遗传学是指表观遗传学改变(DNA甲基化、组蛋白修饰和非编码RNA如miRNA)对表观基因组基因表达的调节,这种调节不依赖基因序列的改变且可遗传表观遗传学。因素如DNA甲基化、组蛋白修饰和miRNA是对环境刺激因素变化的反映,这些表观遗传学因素相互作用以调节基因表达,控制细胞表型,所有这些表观遗传学因素都是维持机体内环境稳定所必需的,有助于正常生理功能的发挥。目前表观遗传学的研究成果已经应用于一些疾病的研究特别是癌症的治疗上,可谓是前景光明。此外,近年来对ES细胞分化调控的研究也归结到表观遗传学领域。因此了解表观遗传学机制在人类疾病发生中的作用和表观遗传学调节剂对疾病治疗的价值将会迎来生物医学研究的表观遗传学时代。 关键词:表观遗传学,microRNA,组蛋白修饰, 表观遗传学(epigenetics)是传统遗传学的分支,由英国科学家Waddington最早提出,其涵义为在DNA序列不发生改变的情况下,基因的表达与功能发生改变,并产生可遗传的表型。表观遗传学是经典遗传学的补充与进一步的发展,涉及何时、何地以何种方式去应用遗传学信息的概念。我们认识到基因组包括两类遗传信息:即DNA序列遗传信息及表观遗传学信息。人体及细胞正常功能的维持是这两种信息互相作用、保持平衡的结果,如果这两种因素的任何一种表达失衡,都有可能导致疾病的发生。因此,表观遗传学研究是生命科学中一个普遍而又极其重要的新的研究领域,它不仅对基因的表达、调控、遗传有重要作用¨,而且在生命发育、肿瘤发生、炎症、衰老及再生医学、免疫、血管新生、变性性疾病的发生与防治中起着极其重要的作用。表观遗传学研究的重要性不亚于50年代沃森和克里克发现DNA双螺旋结构所引发的关于染色体上基因的研究。 表观遗传学的主要调节机制有:DNA甲基化,组蛋白甲基化及乙酰化,及非编码RNA几种调节机制。然而这些调节机制的改变与我们生活的环境密切相关,每个生物个体都有特定的基因组与表观基因组,表观基因组在不改变DNA序列的情况下激活或关闭基因的表达。达,而这种由表观基因组所调控的基因表达又受多种环境因素的影响也就是说,我们日常所吃的食物、饮用的水、呼吸的空气、所处的环境当中所带来的精神因素的影响均可对基因表达的激活或关闭产生影响。因此表观遗传学特别强调生活的环境对人体表观遗传因素的影响。 表观遗传学对基因的表达调控可分为:(1)基因选择性表达的调控:包括DNA的甲基化和组蛋白的乙酰化与甲基化。(2)基因转录后的调控:包括小干扰RNA(smallinterferingRNA,siRNA)和微小RNA(microRNA,miRNA)。染色体重塑、基因印记、

近些年遗传学发展大事记

简报 细胞新乐章,生命交响曲:Nature报道表观遗传学新发现生物谷>趋势>快讯生物谷推荐英文原文报道:N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions 日前,芝加哥大学的科学家们在Nature上发表最新的研究成果,揭示了N6-甲基腺苷(N6-methyladenosine,m6A)调控RNA-蛋白质相互作用的一个未知机制。RNA结合蛋白通过与单链RNA结合基序(RNA binding motif,RBMs)1、2、3的结合来控制细胞的生物学进程。而RBMs会被埋在RNA结构4、5、6、7内部,从而抑制了RNA-蛋白质的相互作用。m6A是一种真核mRNA8-19的最为常见的内部修饰。它涉及包括生物节律、减数分裂和干细胞发育在内的各种细胞功能的控制。m6A能够选择性地被 YTH域家族蛋白2(human YTH domain family 2,YTHDF2)识别从而影响细胞质mRNA15的稳定性。但是m6A是如何完成这些繁重的生理学作用还需要进一步探索。本研究表明人类细胞m6A调控RNA结构依赖的RBMs进而影响RNA与蛋白的互作。研究者将这种机制命名为"m6A开关"。 他们还发现m6A就近改变mRNA和长非编码RNA的结构来促进异构核糖核蛋白C 与其结合,HNRNPC是一中丰富的核RNA结合蛋白,负责pre-mRNA20-24的加工。研究人员结合紫外交联合并免疫沉淀技术以及抗m6A免疫沉淀技术,使得我们能够识别HNRNPC结合区域的多达39060个m6A 开关。球状的m6A的减少会降低HNRNPC与2798个高效m6A开关的结合。并且发现受m6A调控的HNRNPC结合活性会进一步影响目标mRNAs的含量及其选择性地剪切,这表明m6A开关在基因表达和RNA成熟的调控作用。研究结果说明RNA结合蛋白通过m6A开关来调节其与RBMs的结合,这也为研究RNA修饰编码细胞生物学提供了新的方向。

相关主题