搜档网
当前位置:搜档网 › 等差数列与等比数列学案

等差数列与等比数列学案

等差数列与等比数列学案
等差数列与等比数列学案

专题三 数 列 第1讲 等差数列与等比数列

等差、等比数列的基本运算(基础型) 通项公式

等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -

1.

求和公式

等差数列:S n =n (a 1+a n )2=na

1+n (n -1)

2d ;

等比数列:S n =a 1(1-q n )1-q =a 1-a n q

1-q (q ≠1).

性质

1.(2018·贵阳模拟)设等差数列{a n }的前n 项和为S n ,若a 6=2a 3,则S 11

S 5=( )

A.11

5 B.522 C.1110

D.225

解析:选D.S 11S 5=11

2(a 1+a 11)

52(a 1+a 5

)=11a 65a 3=22

5

.故选D.

2.(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )

A .-12

B .-10

C .10

D .12

解析:选B.设等差数列{a n }的公差为d ,因为3S 3=S 2+S 4,所以3(3a 1+3×22d )=2a 1+d

+4a 1+4×32d ,解得d =-3

2a 1,因为a 1=2,所以d =-3,所以a 5=a 1+4d =2+4×(-3)

=-10.故选B.

3.(2018·郑州模拟)等比数列{a n }的前n 项和为S n ,若对任意的正整数n ,S n +2=4S n +3恒成立,则a 1的值为 ( )

A .-3

B .1

C .-3或1

D .1或3

解析:选C.设等比数列{a n }的公比为q ,当q =1时,S n +2=(n +2)a 1,S n =na 1,由S n +2

=4S n +3得,(n +2)a 1=4na 1+3,即3a 1n =2a 1-3,若对任意的正整数n ,3a 1n =2a 1-3恒成立,则a 1=0且2a 1-3=0,矛盾,所以q ≠1,

所以S n =a 1(1-q n )1-q ,S n +2=a 1(1-q n +

2)1-q

代入S n +2=4S n +3并化简得a 1(4-q 2)q n =3+3a 1-3q ,若对任意的正整数n 该等式恒成

立,则有?????4-q 2

=0,3+3a 1-3q =0,解得?????a 1=1,q =2或?

????a 1=-3,q =-2,故a 1=1或-3,故选C. 4.(2018·南宁模拟)在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20

a 10

=________.

解析:法一:设等比数列{a n }的公比为q ,由a 2a 6=16得a 21q 6=16,所以a 1q 3

=±

4.由a 4+a 8=8,得a 1q 3(1+q 4)=8,即1+q 4=±2,所以q 2=1.于是a 20

a 10

=q 10=1.

法二:由等比数列的性质,得a 24=a 2a 6=16,所以a 4=±4,又a 4+a 8=8,

所以?????a 4=4,a 8=4或?????a 4=-4,a 8=12.因为a 2

6=a 4a 8>0,所以?

????a 4=4,a 8=4,则公比q 满足q 4=1,q 2=1,

所以a 20

a 10

=q 10=1.

答案:1

5.(2018·高考全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;

(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解:(1)设{a n }的公比为q ,由题设得a n =q n -

1.

由已知得q 4=4q 2,

解得q =0(舍去),q =-2或q =2. 故a n =(-2)n

-1

或a n =2n -

1.

(2)若a n =(-2)

n -1

,则S n =1-(-2)n

3

.

由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -

1,则S n =2n -1.

由S m =63得2m =64,解得m =6. 综上,m =6.

等差、等比数列的判定与证明(综合型)

证明数列{a n }是等差数列或等比数列的方法 (1)证明数列{a n }是等差数列的两种基本方法: ①利用定义,证明a n +1-a n (n ∈N *)为一常数; ②利用等差中项,即证明2a n =a n -1+a n +1(n ≥2). (2)证明{a n }是等比数列的两种基本方法: ①利用定义,证明a n +1

a n (n ∈N *)为一常数;

②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).

[典型例题]

设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =2-a n ,数列{b n }满足

b 1=2a 1,b n =b n -1

1+b n -1

(n ≥2,n ∈N *).

(1)求证:数列{a n }是等比数列,并求{a n }的通项公式;

(2)判断数列{1

b n }是等差数列还是等比数列,并求数列{b n }的通项公式.

【解】 (1)当n =1时,a 1=S 1=2-a 1,解得a 1=1;

当n ≥2时,a n =S n -S n -1=a n -1-a n ,即a n a n -1=1

2(n ≥2,n ∈N *).

所以数列{a n }是首项为1,公比为1

2的等比数列,

故数列{a n }的通项公式为a n =????

12n -1

.

(2)因为a 1=1, 所以b 1=2a 1=2. 因为b n =b n -11+b n -1,

所以1b n =1b n -1+1,

即1b n -1b n -1

=1(n ≥2). 所以数列{1b n }是首项为1

2

,公差为1的等差数列.

所以1b n =12+(n -1)·1=2n -12,故数列{b n }的通项公式为b n =2

2n -1

.

判断(证明)等差(比)数列应注意的问题

(1)判断或者证明数列为等差数列、等比数列最基本的方法是用定义判断或证明,其他方法最后都会回到定义,如证明等差数列可以证明通项公式是n 的一次函数,但最后还得使用定义才能说明其为等差数列.

(2)证明数列{a n }为等比数列时,不能仅仅证明a n +1=qa n ,还要说明a 1≠0,才能递推得出数列中的各项均不为零,最后断定数列{a n }为等比数列.

[对点训练]

记S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (1)求{a n }的通项公式;

(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得

?

????a 1(1+q )=2,a 1(1+q +q 2

)=-6. 解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .

(2)由(1)可得S n =a 1(1-q n )1-q

=-23+(-1)n 2n +

1

3.

由于S n +2+S n +1=-4

3

+(-1)n

2n +3

-2n +

23=2[-23+(-1)n 2n +

1

3

]=2S n ,故S n +1,S n ,S n +2

成等差数列.

S n ,a n 关系的应用(综合型)

数列{a

n }中,a n 与S n 的关系

a n =?????S 1,n =1,S n -S n -1

,n ≥2.

求数列通项的常用方法

(1)公式法:利用等差(比)数列求通项公式.

(2)在已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用累加法求数列的通项a n .

(3)在已知数列{a n }中,满足a n +1

a n

=f (n ),且f (1)·f (2)·…·f (n )可求,则可用累乘法求数列的通项a n .

(4)将递推关系进行变换,转化为常见数列(等差、等比数列).

[典型例题]

(1)(2018·合肥第一次质量检测)已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,

则a 2 018=( )

A .22 018-1

B .32 018-6

C .???

?12 2 018

-7

2 D .???

?13 2 018

-103

(2)(2018·福州模拟)已知数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2,n ∈N *).设b n =a n +1-a n .

①证明:数列{b n }是等比数列;

②设c n =b n

(4n 2

-1)2n

,求数列{c n }的前n 项和S n . 【解】 (1)选A.因为a 1=S 1,所以3a 1=3S 1=2a 1-3?a 1=-3.

当n ≥2时,3S n =2a n -3n ,3S n -1=2a n -1-3(n -1),所以a n =-2a n -1-3,即a n +1=-2(a n -1+1),所以数列{a n +1}是以-2为首项,-2为公比的等比数列.

所以a n +1=(-2)×(-2)n -

1=(-2)n ,

则a 2 018=22 018-1.

(2)①证明:因为a n +1=3a n -2a n -1(n ≥2,n ∈N *),b n =a n +1-a n , 所以b n +1b n =a n +2-a n +1a n +1-a n =(3a n +1-2a n )-a n +1a n +1-a n =2(a n +1-a n )a n +1-a n =2,

又b 1=a 2-a 1=2-1=1,

所以数列{b n }是以1为首项,以2为公比的等比数列. ②由①知b n =1×2n -

1=2n -

1,

因为c n =b n

(4n 2

-1)2n

, 所以c n =12(2n +1)(2n -1)=14????1

2n -1-12n +1,

所以S n =c 1+c 2+…+c n

=1

4????1-13+13-15+…+12n -1-12n +1 =14????1-12n +1=n 4n +2.

(1)给出S n 与a n 的递推关系求a n 的常用思路:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .

(2)形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.

[对点训练]

(2018·贵阳模拟)已知数列{a n }的前n 项和为S n ,且满足S n =32a n -12,a 1=1.

(1)求数列{a n }的通项公式;

(2)若b n =1

log 3a n +1·log 3a n +2,求数列{b n }的前n 项和T n .

解:(1)由已知S n =32a n -1

2①,

得S n -1=32a n -1-1

2

(n ≥2)②,

①-②得a n =32a n -3

2

a n -1,即a n =3a n -1(n ≥2),

又a 1=1,所以数列{a n }是以1为首项,3为公比的等比数列,故a n =3n -

1.

(2)由(1)知b n =1n (n +1)=1n -1

n +1

所以T n =11-12+12-13+…+1n -1n +1=1-1n +1=n

n +1,

所以T n =n

n +1

.

数列与新定义相交汇问题(创新型)

[典型例题]

(2018·武汉调研)对任一实数序列A =(a 1,a 2,a 3,…),定义新序列ΔA =(a 2-a 1,

a 3-a 2,a 4-a 3,…),它的第n 项为a n +1-a n .假定序列Δ(ΔA )的所有项都是1,且a 12=a 22=0,则a 2=________.

【解析】 令b n =a n +1-a n ,依题意知数列{b n }为等差数列,且公差为1, 所以b n =b 1+(n -1)×1, a 1=a 1, a 2-a 1=b 1, a 3-a 2=b 2, …

a n -a n -1=

b n -1,

累加得a n =a 1+b 1+…+b n -1=a 1+(n -1)b 1+(n -1)(n -2)

2

=(n -1)a 2-(n -2)a 1

+(n -1)(n -2)2

分别令n =12,n =22,

得?????11a 2-10a 1+55=0,21a 2-20a 1

+210=0, 解得a 1=231

2,a 2=100.

【答案】 100

数列新定义型创新题的一般解题思路

(1)阅读审清“新定义”.

(2)结合常规的等差数列、等比数列的相关知识,化归、转化到“新定义”的相关知识. (3)利用“新定义”及常规的数列知识,求解证明相关结论.

[对点训练]

在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n

=k (k 为常数),则称{a n }为“等差比数列”,下列

是对“等差比数列”的判断:

①k 不可能为0;

②等差数列一定是“等差比数列”; ③等比数列一定是“等差比数列”; ④“等差比数列”中可以有无数项为0. 其中所有正确判断的序号是________.

解析:由等差比数列的定义可知,k 不为0,所以①正确,当等差数列的公差为0,即等差数列为常数列时,等差数列不是等差比数列,所以②错误;当{a n }是等比数列,且公比q =1时,{a n }不是等差比数列,所以③错误;数列0,1,0,1,…是等差比数列,该数列中有无数多个0,所以④正确.

答案:①④

一、选择题

1.已知等差数列{a n }的前n 项和为S n ,且a 3·a 5=12,a 2=0.若a 1>0,则S 20=( ) A .420 B .340 C .-420

D .-340

解析:选D.设数列{a n }的公差为d ,则a 3=a 2+d =d ,a 5=a 2+3d =3d ,由a 3·a 5=12得d =±2,由a 1>0,a 2=0,可知d <0,所以d =-2,所以a 1=2,故S 20=20×2+20×19

(-2)=-340,故选D.

2.(2018·益阳、湘潭调研)已知等比数列{a n }中,a 5=3,a 4a 7=45,则a 7-a 9

a 5-a 7的值为( )

A .3

B .5

C .9

D .25

解析:选D.设等比数列{a n }的公比为q ,则a 4a 7=a 5

q ·a 5q 2=9q =45,所以q =5,

a 7-a 9a 5-a 7

=a 5q 2-a 7q 2a 5-a 7

=q 2

=25.故选D.

3.(一题多解)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8

=( )

A .72

B .88

C .92

D .98

解析:选C.法一:由S n +1=S n +a n +3得a n +1-a n =3,则数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,所以a 1=1,S 8=8a 1+8×7

2

d =92.

法二:由S n +1=S n +a n +3得a n +1-a n =3,则数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)

2

=92. 4.已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan

b 3+b 9

1-a 4·a 8

的值是 ( )

A .- 3

B .-1

C .-

3

3

D. 3

解析:选A.依题意得,a 36=(-3)3

,3b 6=7π,所以a 6=-3,b 6=7π3,所以b 3+b 91-a 4·a 8

2b 6

1-a 26=-7π3,故tan b 3+b 91-a 4·a 8

=tan ????-7π3=tan ????-2π-π3=-tan π3=-3,故选A.

5.(2018·长春质量检测(一))等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( )

A .6

B .7

C .8

D .9

解析:选C.由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1

-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d

2

>0,所以前8项和为前n 项和的最小值,故选C.

6.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =( )

A .2

B .2n

C .2n +

1-2

D .2n -

1-2

解析:选C.因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2

n -1

+2

n -2

+…+22

+2+2=2-2n 1-2+2=2n -2+2=2n

,所以S n =2-2n +

11-2

=2n +1-2.

二、填空题

7.(一题多解)(2018·高考全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6

=________.

解析:法一:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1; 当n =2时,a 1+a 2=2a 2+1,解得a 2=-2; 当n =3时,a 1+a 2+a 3=2a 3+1,解得a 3=-4; 当n =4时,a 1+a 2+a 3+a 4=2a 4+1,解得a 4=-8; 当n =5时,a 1+a 2+a 3+a 4+a 5=2a 5+1,解得a 5=-16; 当n =6时,a 1+a 2+a 3+a 4+a 5+a 6=2a 6+1,解得a 6=-32; 所以S 6=-1-2-4-8-16-32=-63.

法二:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1,当n ≥2时,a n

=S n -S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,所以a n =-2

n -1

,所以S 6=-1×(1-26)

1-2

=-63.

答案:-63

8.(2018·惠州第二次调研)已知数列{a n }满足a 1=1,a n +1-2a n =2n (n ∈N *),则数列{a n }的通项公式a n =________.

解析:a n +1-2a n =2n 两边同除以2n +

1,可得a n +12n +1-a n 2n =12,又a 12=12,所以数列??????a n 2n 是以12为

首项,12为公差的等差数列,所以a n 2n =12+(n -1)×12=n 2

,所以a n =n ·2n -

1.

答案:n ·2n -

1

9.设某数列的前n 项和为S n ,若S n

S 2n

为常数,则称该数列为“和谐数列”.若一个首项

为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.

解析:由S n S 2n =k (k 为常数),且a 1=1,得n +1

2n (n -1)d =k ????2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,因为对任意正整数n ,上式恒成立,

所以?

????d (4k -1)=0,

(2k -1)(2-d )=0,得?

????d =2,

k =14

.

所以数列{a n }的公差为2. 答案:2 三、解答题

10.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.

解:(1)由题意可得a 2=12,a 3=14

.

(2)由a 2n -(2a n +1-1)a n -2a n +1=0,得2a n +1(a n +1)=a n (a n +1), 因为{a n }的各项都为正数,所以a n +1a n =1

2

.

故{a n }是首项为1,公比为12的等比数列,因此a n =1

2

n -1.

11.(2018·高考全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n

n .

(1)求b 1,b 2,b 3;

(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.

解:(1)由条件可得a n +1=2(n +1)

n

a n .

将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.

(2){b n }是首项为1,公比为2的等比数列.

由条件可得a n +1n +1=2a n

n ,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比

数列.

(3)由(2)可得a n n

=2n -1,所以a n =n ·2n -

1.

12.已知数列{a n }是等差数列,满足a 2=5,a 4=13,数列{b n }的前n 项和是T n ,且T n

+b n =3.

(1)求数列{a n }及数列{b n }的通项公式; (2)设c n =a n ·b n ,求数列{c n }中的最大项. 解:(1)设等差数列{a n }的首项为a 1,公差为d ,

由题意,得????

?a 1+d =5,a 1+3d =13,

解得?

????a 1=1,

d =4,

所以a n =4n -3. 又T n +b n =3, 所以T n +1+b n +1=3, 两式相减得,2b n +1-b n =0, 所以b n +1=12

b n .

当n =1时,b 1+b 1=3,所以b 1=3

2

.

所以数列{b n }为等比数列,且首项是32,公比是1

2,

所以b n =32×????12n -1=3

2

n .

(2)因为c n =a n ·b n =3(4n -3)

2n ,

所以c n +1=3(4n +1)

2n +

1

, 所以c n +1-c n =3(4n +1)2n +1-3(4n -3)2n =3(7-4n )

2n +

1. 所以当n =1时,c 2-c 1>0; 当n ≥2时,c n +1-c n <0, 所以c 1c 3>c 4>…, 所以(c n )max =c 2=154

.

数学必修5导学案:1-2 第2课时等比数列的性质

第2课时 等比数列的性质 知能目标解读 1.结合等差数列的性质,了解等比数列的性质和由来. 2.理解等比数列的性质及应用. 3.掌握等比数列的性质并能综合运用. 重点难点点拨 重点:等比数列性质的运用. 难点:等比数列与等差数列的综合应用. 学习方法指导 1.在等比数列中,我们随意取出连续三项及以上的数,把它们重新依次看成一个新的数列,则此数列仍为等比数列,这是因为随意取出连续三项及以上的数,则以取得的第一个数为首项,且仍满足从第2项起,每一项与它的前一项的比都是同一个常数,且这个常数量仍为原数列的公比,所以,新形成的数列仍为等比数列. 2.在等比数列中,我们任取下角标成等差的三项及以上的数,按原数列的先后顺序排列所构成的数列仍是等比数列,简言之:下角标成等差,项成等比.我们不妨设从等比数列{a n }中依次取出的数为a k ,a k +m ,a k +2m ,a k +3m ,…,则 k m k a a 2+= m k m k a a ++2= m k m k a a 23++=…=q m (q 为原等比数列的公比),所以此数列成等比数列. 3.如果数列{a n }是等比数列,公比为q,c 是不等于零的常数,那么数列{ca n }仍是等比数列,且公比仍为q ; {|a n |} 也是等比,且公比为|q |.我们可以设数列{a n }的公比为q ,且满足 n n a a 1+=q ,则 n n ca ca 1+= n n a a 1+=q ,所以数 列{ca n }仍是等比数列,公比为q .同理,可证{|a n |}也是等比数列,公比为|q |. 4.在等比数列{a n }中,若m+n=t+s 且m,n,t,s ∈N +则a m a n =a t a s .理由如下:因为a m a n =a 1q m-1·a 1q n-1 =a 21q m+n-2,a t a s =a 1q t-1·a 1q s-1=a 21q t+s-2,又因为m+n=t+s ,所以m+n -2=t+s -2,所以a m a n =a t a s .从此性质还可得到,项数确定的等比数列,距离首末两端相等的两项之积等于首末两项之积. 5.若{a n },{b n }均为等比数列,公比分别为q 1,q 2,则 (1){a n b n }仍为等比数列,且公比为q 1q 2. (2) { n n b a }仍为等比数列,且公比为2 1q q . 理由如下:(1) n n n n b a b a 11++=q 1q 2,所以{a n b n }仍为等比数列,且公比为q 1q 2;(2) n n n n b a b a 11 ++· n n a b = 2 1q q , 所以{ n n b a }仍为等比数列,且公比为 2 1q q . 知能自主梳理 1.等比数列的项与序号的关系 (1)两项关系 通项公式的推广:

等比数列教学设计(共2课时)

《等比数列》教学设计(共2课时) 一、教材分析: 1、内容简析: 本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。 2、教学目标确定: 从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念,同时,还要注意“比”的特性。在学习等比数列的定义的基础上,导出等比数列的通项公式以及一些常用的性质。从而可以确定如下教学目标(三维目标): 第一课时: (1)理解等比数列的概念,掌握等比数列的通项公式及公式的推导 (2)在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力 (3)通过对等比数列通项公式的推导,培养学生发现意识、创新意识 第二课时: (1)加深对等比数列概念理解,灵活运用等比数列的定义及通项公式,了解等比中项概念,掌握等比数列的性质 (2)运用等比数列的定义及通项公式解决问题,增强学生的应用 3、教学重点与难点: 第一课时: 重点:等比数列的定义及通项公式 难点:应用等比数列的定义及通项公式,解决相关简单问题 第二课时: 重点:等比中项的理解与运用,及等比数列定义及通项公式的应用 难点:灵活应用等比数列的定义及通项公式、性质解决相关问题 二、学情分析: 从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以及等差数列的有关知识的学习,但是对于国际象棋故事中的问题,学生还是不能解决,存在疑问。本课正是由此入手来引发学生的认知冲突,产生求知的欲望。而矛盾解决的关键依然依赖于学生原有的认知结构──在研究等差数列中用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数列的定义及通项公式。 高一学生正处于从初中到高中的过度阶段,对数学思想和方法的认识还不够,思维能力比较欠缺,他们重视具体问题的运算而轻视对问题的抽象分析。同时,高一阶段又是学生形成良好的思维能力的关键时期。因此,本节教学设计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、概括能力培养。 多数学生愿意积极参与,积极思考,表现自我。所以教师可以把尽可能多的时间、空间让给学生,让学生在参与的过程中,学习的自信心和学习热情等个性心理品质得到很好的培养。这也体现了教学工作中学生的主体作用。 三、教法选择与学法指导: 由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比

等差、等比数列知识点总结

一、任意数列的通项n a 与前n 项和n S 的关系:???≥-==-)2() 1(11n S S n S a n n n 二、等差数列 1、等差数列及等差中项定义 d a a n n =--1、2 1 1-++= n n n a a a 。 2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+= 当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。 3、等差数列的前n 项和公式:2)(1n n a a n S += d n n na S n 2 ) 1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+ 5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、…… 仍为等差数列。 6、B A a A d Bn An S n +==+=122,, 7、在等差数列}{n a 中,有关n S 的最值问题 利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列 1、等比数列及等比中项定义: q a a n n =-1 、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n = 当1≠q 时,q q a S n n --=1)1(1 q q a a S n n --=11 4、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ?=? 5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、 m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则 四、求数列}{n a 的最大的方法: 1-1n n n n a a a a ≥≥+ 五、求数列}{n a 的最小项的方法: 1 -1n n n n a a a a ≤≤+ 例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。 例:已知数列}{n a 的通项公式为:n n n n a 10) 1(9+=,求数列}{n a 的最大项。

等差数列与等比数列学案

专题三 数 列 第1讲 等差数列与等比数列 等差、等比数列的基本运算(基础型) 通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n - 1. 求和公式 等差数列:S n =n (a 1+a n )2=na 1+n (n -1) 2d ; 等比数列:S n =a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1). 性质

1.(2018·贵阳模拟)设等差数列{a n }的前n 项和为S n ,若a 6=2a 3,则S 11 S 5=( ) A.11 5 B.522 C.1110 D.225 解析:选D.S 11S 5=11 2(a 1+a 11) 52(a 1+a 5 )=11a 65a 3=22 5 .故选D. 2.(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12 解析:选B.设等差数列{a n }的公差为d ,因为3S 3=S 2+S 4,所以3(3a 1+3×22d )=2a 1+d +4a 1+4×32d ,解得d =-3 2a 1,因为a 1=2,所以d =-3,所以a 5=a 1+4d =2+4×(-3) =-10.故选B. 3.(2018·郑州模拟)等比数列{a n }的前n 项和为S n ,若对任意的正整数n ,S n +2=4S n +3恒成立,则a 1的值为 ( ) A .-3 B .1 C .-3或1 D .1或3 解析:选C.设等比数列{a n }的公比为q ,当q =1时,S n +2=(n +2)a 1,S n =na 1,由S n +2 =4S n +3得,(n +2)a 1=4na 1+3,即3a 1n =2a 1-3,若对任意的正整数n ,3a 1n =2a 1-3恒成立,则a 1=0且2a 1-3=0,矛盾,所以q ≠1, 所以S n =a 1(1-q n )1-q ,S n +2=a 1(1-q n + 2)1-q , 代入S n +2=4S n +3并化简得a 1(4-q 2)q n =3+3a 1-3q ,若对任意的正整数n 该等式恒成 立,则有?????4-q 2 =0,3+3a 1-3q =0,解得?????a 1=1,q =2或? ????a 1=-3,q =-2,故a 1=1或-3,故选C. 4.(2018·南宁模拟)在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20 a 10 =________. 解析:法一:设等比数列{a n }的公比为q ,由a 2a 6=16得a 21q 6=16,所以a 1q 3 =± 4.由a 4+a 8=8,得a 1q 3(1+q 4)=8,即1+q 4=±2,所以q 2=1.于是a 20 a 10 =q 10=1. 法二:由等比数列的性质,得a 24=a 2a 6=16,所以a 4=±4,又a 4+a 8=8,

微专题11等差数列与等比数列(教学案)

微专题11等差数列与等比数列 1.掌握并活用等差、等比数列的基本量和性质,进行基本运算. 2.运用定义域分析通项公式,判断或证明一个数列是等差(比)数列. 3.从分析数列特征入手,综合运用通项公式、求和公式、不等式、函数等方法求解最值或参数范围问题. 考题导航题组一等差数列、等比数列的基本量及基本运算 1.记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=________. 2.设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 1.已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________. 2.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2 =________.题组二等差数列、等比数列的判定与证明 1.已知数列{a n }的首项a 1=1,且满足a n +1=a n 4a n +1 ,则a n =________.2.已知数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明:{b n }是等差数列; (2)求数列{a n }的通项公式.

1.记S n为数列{a n}的前n项和,若S n=2a n+1,则S6=________. 2.设数列{a n}中,S1=1,S2=2,S n+1-3S n+2S n-1=0(n≥2),则命题“{a n}是等比数列”是________命题.(填“真”或“假”) 题组三与等差数列、等比数列有关的最值、参数范围问 题 1.设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为________. 2.已知数列{a n}为等差数列,若a7 a6 <-1,且它们的前n项和S n有最大值,则使S n>0的n的最大值为________. 3.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为________. 1.已知首项为3 2的等比数列{a n }不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列. (1)求数列{a n}的通项公式; (2)设T n=S n-1 S n (n∈N*),求数列{T n}最大项的值与最小项的值.

高中数学必修五导学案-第二课时 等比数列的性质

第2课时 等比数列的性质 1.掌握等比数列的性质及其应用.(重点) 2.熟练掌握等比数列与等差数列的综合应用.(难点、易错点) 3.能用递推公式求通项公式.(难点) [基础·初探] 教材整理 等比数列的性质 阅读教材P 51例4~P 53,完成下列问题. 1.“子数列”性质 对于无穷等比数列{a n },若将其前k 项去掉,剩余各项仍为等比数列,首项为a k +1,公比为q ;若取出所有的k 的倍数项,组成的数列仍为等比数列,首项为a k ,公比为q k . 2.等比数列项的运算性质 在等比数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m ·a n =a p ·a q . ①特别地,当m +n =2k (m ,n ,k ∈N *)时,a m ·a n =a 2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a 1·a n =a 2·a n -1=…=a k ·a n -k +1=…. 3.两等比数列合成数列的性质 若数列{a n },{b n }均为等比数列,c 为不等于0的常数,则数列{ca n }, {a 2 n }{a n ·b n },? ??? ??????a n b n 也为等比数列. 1.等比数列{a n }中,a 4=4,则a 2·a 6=________. 【解析】 ∵{a n }是等比数列, ∴a 2a 6=a 24=42 =16. 【答案】 16 2.若a ,b ,c 既成等差数列,又成等比数列,则它们的公比为________.

【解析】 只有非零常数列才满足题意,∴公比q =1. 【答案】 1 3.正项等比数列{a n }中,a 2a 5=10,则lg a 3+lg a 4=___________________. 【解析】 lg a 3+lg a 4=lg(a 3a 4) =lg(a 2a 5) =lg 10=1. 【答案】 1 4.在等比数列{a n }中,a 2=2,a 6=16,则a 10=________. 【解析】 ∵数列{a n }是等比数列,∴a 10·a 2=a 26, 即a 10=a 26 a 2=1622 =128. 【答案】 128 [小组合作型] 等比数列性质的应 用 已知{a n }为等比数列, (1)等比数列{a n }满足a 2a 4=1 2 ,求a 1a 23a 5; (2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5; (3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值. 【精彩点拨】 利用等比数列的性质,若m +n =p +q ,则a m ·a n =a p ·a q 求解. 【自主解答】 (1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=1 2, 所以a 1a 2 3a 5=14 . (2)由等比中项,化简条件得 a 23+2a 3a 5+a 25=25,即(a 3+a 5)2 =25, ∵a n >0,∴a 3+a 5=5. (3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)

(完整版)等比数列前n项和公式的性质导学案

等比数列前n 项和的性质导学案 知识目标:掌握等比数列前n 项和的性质,灵活的应用等比数列前n 项和公式的性质解决问题。 方法与过程:通过自主探究的方式,培养学生团队精神,勇于探索的精神。 教学过程: 复习: 1、 等比数列前n 项和公式: (1) (2) 2.数学思想: 课前练习: 1.数列()项和的前n a a a a n 13 2............,,,1- a a A n --11. B a a n --+111 C a a n ---111 D.以上答案都不对。 2.求和()() )(.......212n a a a n -++-+- 新课探究: 探究一: 性质1。数列{}n a 的前n 项和A Aq S n n -=()1,0,0≠≠≠q q A 探究{}n a 是否为等比数 列。 例题1:若等比数列{}n a 的前n 项和,4a S n n +=求a 的值。 变式:若等比数列{}n a 的前n 项和13-=n n S +a 2,求a 的值。 探究二: 我们知道,等差数列有这样的性质: 数列{}n a 是等差数列,则K K K K K S S S S S 232,,--................也成等差数列; 则新的等差数列的首项是K S ,公差为d k 2 。 那么,在等比数列中,也有类似的性质吗? 等比数列前n 项和的性质二: 数列{}n a 是等比数列,则K K K K K S S S S S 232,,--...............是否也构成成等比数列; 则新的等比数列的首项是K S ,公比( ) 例题2 :已知等比数列{}n a 中,前10项和10S =10,前20项和20S =30,求30S 变式训练: 1. 等比数列{}n a 10S =20,20S =80,求30S =?.

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈) 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推导过程:叠加法 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项: 数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211 ()22 d n a d n =+-2An Bn =+ 前N 相和的推导:当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。

5、等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法或者等差中项发? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、 n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0。

等比数列的概念及通项公式导学案

1 等比数列的概念及通项公式 基本概念 新知: 1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1 n n a a -= (q ≠0) 2. 等比数列的通项公式: 21a a = ; 3211()a a q a q q a === ;24311()a a q a q q a === ; … … ∴ 11n n a a q a -==? 等式成立的条件 3. 等比数列中任意两项n a 与m a 的关系是: 3、等比数列的性质:对于等比数列}{n a ,若.,n m q p a a a a n m q p =+=+则 4、等比数列的}{n a 的单调性————————与首项和公比都有关 11-=n n q a a 例题 例一:判断数列是否为等比数列,若是请指出公比 (1)1,-1,1,-1,1,…(2)0,1,2,4,8,…(3)13 181-4121-1,,, 例二、指出下列等比数列中的未知项 (1)2,a ,8 (2)-4,b ,c ,2 1 问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G b G ab G a G =?=?= 新知1:等比中项定义 如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a , b 同号). 试试:数4和6的等比中项是 . 例三、(1)在等比数列}{n a 中,是否有)2(112 ≥=+-n a a a n n n ? (2)如果数列}{n a 中,对于任意的正整数),2(,2112 ≥=≥+-n a a a n n n n n 都有) (那么}{n a 一定是等比数列 吗?

2020高中数学 第二章 数列 2.4 等比数列 第1课时 等比数列学案5

第1课时 等比数列 学习目标:1.理解等比数列的定义(重点).2.掌握等比数列的通项公式及其应用(重点、难点).3.熟练掌握等比数列的判定方法(易错点). [自 主 预 习·探 新 知] 1.等比数列的概念 (1)文字语言: 如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(q ≠0). (2)符号语言: a n +1a n =q (q 为常数,q ≠0,n ∈N * ). 思考:能将定义中的“每一项与前一项的比”理解为“每相邻两项的比”吗? [提示] 不能. 2.等比中项 (1)前提:三个数a ,G ,b 成等比数列. (2)结论:G 叫做a ,b 的等比中项. (3)满足的关系式:G 2 =ab . 思考:当G 2 =ab 时,G 一定是a ,b 的等比中项吗? [提示] 不一定,如数列0,0,5就不是等比数列. 3.等比数列的通项公式 一般地,对于等比数列{a n }的第n 项a n ,有公式a n =a 1·q n -1 .这就是等比数列{a n }的通项公式,其中a 1为首 项,q 为公比. 4.等比数列与指数函数的关系 等比数列的通项公式可整理为a n =a 1q ·q n ,而y =a 1q ·q x (q ≠1)是一个不为0的常数a 1q 与指数函数q x 的乘积,从图象上看,表示数列a 1q ·q n 中的各项的点是函数y =a 1q ·q x 的图象上的孤立点. 思考:除了课本上采用的不完全归纳法,还能用什么方法求数列的通项公式. [提示] 还可以用累乘法. 当n >2时, a n a n -1=q ,a n -1a n -2=q ,…,a 2 a 1 =q , ∴a n =a 1·a 2a 1·a 3a 2 …… a n -1a n -2·a n a n -1 =a 1·q n -1 . [基础自测] 1.思考辨析

等差、等比数列以及数列求和专题(汇编)

§6.2 等差数列 一.课程目标 1.理解等差数列的概念; 2.掌握等差数列的通项公式与前n 项和公式; 3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题; 4.了解等差数列与一次函数的关系. 二.知识梳理 1.定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 2.通项公式 若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 3.前n 项和公式 等差数列的前n 项和公式:2 2111)() (n n a a n d n n na S +=-+=其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 3.等差数列的常用性质 已知数列{a n }是等差数列,S n 是{a n }的前n 项和.

(1)通项公式的推广:*),()(N m n d m n a a m n ∈-+= (2)若m +n =p +q (m ,n ,p ,q ∈N *),则有q p n m a a a a +=+。特别的,当p n m 2=+时,p n m a a a 2=+ (3)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列. (4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (5)若}{},{n n b a 是等差数列,则}{n n qb pa +仍是等差数列. 4.与等差数列各项和相关的性质 (1)若}{n a 是等差数列,则}{n S n 也是等差数列, 其首项与}{n a 的首项相同,公差为}{n a 的公差的 2 1。 (2)数列m m m m m S S S S S 232--,,…也是等差数列. (3)关于非零等差数列奇数项与偶数项的性质。 a .若项数为n 2,则1 +==-n n a a S S nd S S 偶奇奇偶, 。 b .若项数为12-n ,则n a n n S )(1-=偶,n na S =奇,1 += =-n n S S a S S n 偶奇奇偶, 。 (4)若两个等差数列}{},{n n b a 的前n 项和分别为n n T S ,,则 1 21 2--=n n n n T S b a 5.等差数列的前n 项和公式与函数的关系: (1)n d a n d S )(2 212-+= ,数列{a n }是等差数列? S n =An 2+Bn (A ,B 为常数). (2)在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

2018年秋高中数学第二章数列2.4等比数列第2课时等比数列的性质学案新人教A版必修5

第2课时 等比数列的性质 学习目标:1.掌握等比数列的性质及其应用(重点).2.熟练掌握等比数列与等差数列的综合应用(难点、易错点).3.能用递推公式求通项公式(难点). [自 主 预 习·探 新 知] 1.推广的等比数列的通项公式 {a n }是等比数列,首项为a 1,公比为q ,则a n =a 1q n -1 ,a n =a m ·q n -m (m ,n ∈N * ). 2.“子数列”性质 对于无穷等比数列{a n },若将其前k 项去掉,剩余各项仍为等比数列,首项为a k +1,公比为q ;若取出所有的k 的倍数项,组成的数列仍为等比数列,首项为a k ,公比为q k . 思考:如何推导a n =a m q n -m? [提示] 由a n a m =a ·q n -1a ·q m -1 =q n -m , ∴a n =a m ·q n -m . 3.等比数列项的运算性质 在等比数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N * ),则a m ·a n =a p ·a q . ①特别地,当m +n =2k (m ,n ,k ∈N * )时,a m ·a n =a 2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a 1·a n =a 2·a n -1 =…=a k ·a n -k +1=…. 4.两等比数列合成数列的性质 若数列{a n },{b n }均为等比数列,c 为不等于0的常数,则数列{ca n },{a 2 n }{a n ·b n },???? ??a n b n 也 为等比数列. 思考:等比数列{a n }的前4项为1,2,4,8,下列判断正确的是 (1){3a n }是等比数列; (2){3+a n }是等比数列; (3)???? ?? 1a n 是等比数列; (4){a 2n }是等比数列. [提示]由定义可判断出(1),(3),(4)正确. [基础自测] 1.思考辨析 (1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积.( ) (2)当q >1时,{a n }为递增数列.( ) (3)当q =1时,{a n }为常数列.( ) [答案] (1) √ (2)× (3)√

《等比数列》学案1

等比数列的前n 项和(两课时) 一 知识梳理 新知:等比数列的前n 项和公式 设等比数列123,,,n a a a a 它的前n 项和是n S =123n a a a a +++ ,公比为q ≠0, 公式的推导方法一: 公式的推导方法二: 二 问题探究 知识点一、等比数列前n 项和的基本计算:“知三求二”问题,即:已知等比数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个. 例1“一尺之棰,日取其半,万世不竭”。怎样用学过的知识来说明它? 例2、等比数列{}n a 的公比,12 18== a q ,求前八项的和8s 例3、求和: 9 999999999999个n +++

例4、某工厂去年1月份的产值为a 元,月平均增长率为p(p>0),求这个工厂去年产值的总和。 练习: 1、13a =,548a =. 求此等比数列的前5项和. 2、在等比数列{a n }中,S 3=72S 6=63 2 ,求a n . 3、 等比数列中,33139,.22 a S a q == ,求及 4、在等比数列}{n a 中,661=+n a a ,12822=-n a a ,前n 项和126=n S ,求n 和公比q 5、某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)?

知识点二、利用等比数列前n 项和的性质解题 例5 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,求证:n S ,2n n S S -, 32n n S S -()1-≠q 也成等比. 练习: 1、 在等比数列中,已知248,60n n S S ==,求3n S . 2、等比数列{}n a 中,301013S S =,1030140S S +=,求20S . 3、等比数列的前n 项和为S n ,若S 10=10,S 20=30,S 60=630,求S 70的值.

等差等比数列专项练习题(精较版)

等差数列、等比数列同步练习题 等差数列 一、选择题 1、等差数列-6,-1,4,9,……中的第20项为() A、89 B、-101 C、101 D、-89 2、等差数列{a n}中,a15 = 33,a45 = 153,则217是这个数列的() A、第60项 B、第61项 C、第62项 D、不在这个数列中 3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为 A、4 B、5 C、6 D、不存在 4、等差数列{a n}中,a1 + a7 = 42,a10 - a3 = 21,则前10项的S10等于() A、720 B、257 C、255 D、不确定 5、等差数列中连续四项为a,x,b,2x,那么a:b等于() A、1 4B、 1 3C、 1 3或 1 D、 1 2 6、已知数列{a n}的前n项和S n = 2n2 - 3n,而a1,a3,a5,a7,……组成一新数列{ C n },其通项公式为()A、C n= 4n - 3 B、C n= 8n - 1 C、C n= 4n - 5 D、C n= 8n - 9

7、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30,若此数列的最后一项比第1项大10,则这个数列共有() A、6项 B、8项 C、10项 D、12项 8、设数列{a n}和{b n}都是等差数列,其中a1 = 25,b1 = 75,且a100 + b100 = 100,则数列{a n + b n}的前100项和为() A、0 B、100 C、10000 D、505000 二、填空题 9、在等差数列{a n}中,a n = m,a n+m= 0,则a m= ______。 10、在等差数列{a n}中,a4 +a7 + a10 + a13 = 20,则S16 = ______ 。 11、在等差数列{a n}中,a1 + a2 + a3 +a4 = 68,a6 + a7 +a8 + a9 + a10 = 30,则从a15到a30的和是 ______ 。 12、已知等差数列 110,116,122,……,则大于450而不大于602的各项之和为 ______ 。 13、在等差数列{a n}中,已知a1=2,a2 + a3 = 13,则a4 + a5 +a6 = 14、如果等差数列{a n}中,a3 +a4 + a5 = 12,那么a1 + a2 +…+ a7 = 15、设S n是等差数列{a n}的前n项和,已知a1 = 3,a5 = 11,S7 = 16、已知{a n}为等差数列,a1 + a3 + a5 = 105,a2 +a4 + a6 = 99,则a20 =

高三数学章节专题基础梳理导学案42(等差数列等比数列的性质)

高考要求 等差、等比数列的性质是等差、等比数列的概念,通项公式,前n 项和公式的引申 应用等差、等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视 高考中也一直重点考查这部分内容 重难点归纳 1 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用 2 在应用性质时要注意性质的前提条件,有时需要进行适当变形 3 “巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果 典型题例示范讲解 例1已知函数f (x )= 4 12 -x (x <-2) (1)求f (x )的反函数f --1(x ); (2)设a 1=1, 1 1+n a =-f --1(a n )(n ∈N *),求a n ; (3)设S n =a 12+a 22+…+a n 2,b n =S n +1-S n 是否存在最小正整数m ,使得对任意n ∈N *,有b n <25 m 成立?若存在,求出m 的值;若不存在,说明理由 命题意图 本题是一道与函数、数列有关的综合性题目,着重考查学生的逻辑分析能力 知识依托 本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题 错解分析 本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{ 2 1n a }为桥梁求a n ,不易突破 技巧与方法 (2)问由式子4112 1 += +n n a a 得 2 2 1 11n n a a - +=4,构造等差数列{ 2 1n a },从 而求得a n ,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想 解 (1)设y = 412 -x ,∵x <-2,∴x =- 2 14y + , 即y =f --1(x )=-2 14y + (x >0) (2)∵411 ,1412 2 1 2 1 =- ∴+ =++n n n n a a a a , ∴{ 2 1 n a }是公差为4的等差数列, ∵a 1=1, 2 1n a =2 1 1a +4(n -1)=4n -3,∵a n >0,∴a n = 3 41-n

等比数列的前n项和(教学设计)

等比数列的前n项和 (第一课时) 一.教材分析。 (1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。 二.学情分析。 (1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 三.教学目标。 根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。 (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

等比数列的性质教学设计

3.1.2等比数列性质 【课程分析】等数列是又一特殊数列,它与前面我们刚刚所探讨过的等差数列仅有一字之差,所以我们可用比较法来学习等比数列的相关知识。在深刻理解等差数列与等比数列的区别与联系的基础上,牢固掌握等比数列的性质。 【学情分析】学生已经学习了等差数列,对于等比数列学生对比等差数列学习较容易接受。 【学习目标】掌握等比数列的性质 一.导入新课 (一)回顾等比数列的有关概念 (1) 定义式:32121 (0)n n a a a q q a a a -====≠ (2) 通项公式:11n n a a q -= 导入本课题意:与等差数列类似,等比数列也是特殊的数列,它还有一些规律性质,本节课,就让我们一起来探寻一下它到底有一些怎样的性质。 二.推进新课 题:就任一等差数列{a n },计算a 7+a 10和a 8+a 9,a 10+a 40和a 20+a 30,你发现了什么一般规律,能把你发现的规律作一般化的推广吗?类比猜想一下,在等比数列中会有怎样的类似结论? 引导探:… 性质1(板书):在等比数列中,若m+n =p+q ,有a m a n =a p a q 探究二. (引导学生通过类比联想发现进而推证出性质2) 已知{a n }是等比数列. (1)2537a a a =?是否成立?2519a a a =?成立吗?为什么? (2)211(1)n n n a a a n -+=?>是否成立?你据此能得到什么结论?2()n n k n k a a a n k -+=?>是否成立?你又能得到什么结论?) 合作探:… 性质2(板书):在等比数列中2()n n k n k a a a n k -+=?>(本质上就是等比中项) 探究三:一位同学发现:若n S 是等差数列{}n a 的前n 项和,则232,,k k k k k S S S S S --也是等差数列。在等比数列中是否也有这样的结论?为什么? 性质 数列{}n a 是公比为q )0(>q 的等比数列,n S 为{}n a 的前n 项之和,则新构成的数列,......,...,,,)1(232n k kn n n n n n S S S S S S S ----仍为等比数列,且公比为n q 证明 ①当1=q 时,1na S n =, 则1)2()1()1(1 11111)2()1()1(==-----=-----na na na k na k na k kna S S S S n k n k n k kn (常数),所以数列}{)1(n k kn S S --是

相关主题