搜档网
当前位置:搜档网 › 煤的直接加氢液化工艺

煤的直接加氢液化工艺

煤的直接加氢液化工艺
煤的直接加氢液化工艺

煤直接液化法和煤液化的基础知识

煤直接液化 煤直接液化,煤液化方法之一。将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程。因过程主要采用加氢手段,故又称煤的加氢液化法。 沿革 煤直接液化技术早在19世纪即已开始研究。1869年,M.贝特洛用碘化氢在温度270℃下与煤作用,得到烃类油和沥青状物质。1914年德国化学家F.柏吉斯研究氢压下煤的液化,同年与J.比尔维勒共同取得此项试验的专利权。1926年,德国法本公司研究出高效加氢催化剂,用柏吉斯法建成一座由褐煤高压加氢液化制取液体燃料(汽油、柴油等)的工厂。第二次世界大战前,德国由煤及低温干馏煤焦油生产液体燃料,1938年已达到年产1.5Mt的水平,第二次世界大战后期,总生产能力达到4Mt;1935年,英国卜内门化学工业公司在英国比灵赫姆也建起一座由煤及煤焦油生产液体燃料的加氢厂,年产150kt。此外,日本、法国、加拿大及美国也建过一些实验厂。战后,由于石油价格下降,煤液化产品经济上无法与天然石油竞争,遂相继倒闭,甚至实验装置也都停止试验。至60年代初,特别是1973年石油大幅度提价后,煤直接液化工作又受到重视,并开发了一批新的加工过程,如美国的溶剂精炼煤法、埃克森供氢溶剂法、氢煤法等。 埃克森供氢溶剂法 简称EDS法,为美国埃克森研究和工程公司1976年开发的技术。原理是借助供氢溶剂的作用,在一定温度和压力下将煤加氢液化成液体

燃料。建有日处理250t煤的半工业试验装置。其工艺流程主要包括原料混合、加氢液化和产物分离几个部分(图1)。首先将煤、循环溶剂和供氢溶剂(即加氢后的循环溶剂)制成煤浆,与氢气混合后进入反应器。反应温度425~450℃,压力10~14MPa,停留时间30~100min。反应产物经蒸馏分离后,残油一部分作为溶剂直接进入混合器,另一部分在另一个反应器进行催化加氢以提高供氢能力。溶剂和煤浆分别在两个反应器加氢是EDS法的特点。在上述条件下,气态烃和油品总产率为50%~70%(对原料煤),其余为釜底残油。气态烃和油品中C1~C4约占22%,石脑油约占37%,中油(180~340℃)约占37%。石脑油可用作催化重整原料,或加氢处理后作为汽油调合组分。中油可作为燃料油使用,用于车用柴油机时需进行加氢处理以减少芳烃含量。减压残油通过加氢裂化可得到中油和轻油。图一: 溶剂精炼煤法

神华煤直接液化工艺技术特点和优势

神华煤直接液化工艺技术特点和优势 神华煤直接液化示范工程采用的煤直接液化工 艺技术是在充分消化吸收国外现有煤直接液化工艺 的基础上,利用先进工程技术,经过工艺开发创新,依靠自身技术力量,形成了具有自主知识产权的神 华煤直接液化工艺 神华煤直接液化工艺技术特点 1) 采用超细水合氧化铁(FeOOH)作为液化催 化剂。以Fe 2 + 为原料,以部分液化原料煤为载体,制成的超细水合氧化铁,粒径小、催化活性高。 2) 过程溶剂采用催化预加氢的供氢溶剂。煤 液化过程溶剂采用催化预加氢,可以制备45% ~50%流动性好的高浓度油煤浆;较强供氢性能的过 程溶剂防止煤浆在预热器加热过程中结焦,供氢溶 剂还可以提高煤液化过程的转化率和油收率。 3)强制循环悬浮床反应器。该类型反应器使 得煤液化反应器轴向温度分布均匀,反应温度控制 容易;由于强制循环悬浮床反应器气体滞留系数低, 反应器液相利用率高;煤液化物料在反应器中有较 高的液速,可以有效阻止煤中矿物质和外加催化剂4)减压蒸馏固液分离。减压蒸馏是一种成熟 有效的脱除沥青和固体的分离方法,减压蒸馏的馏 出物中几乎不含沥青,是循环溶剂的催化加氢的合 格原料,减压蒸馏的残渣含固体50%左右。 5) 循环溶剂和煤液化初级产品采用强制循环 悬浮床加氢。悬浮床反应器较灵活地催化,延长了 稳定加氢的操作周期,避免了固定床反应由于催化 剂积炭压差增大的风险;经稳定加氢的煤液化初级 产品性质稳定,便于加工;与固定床相比,悬浮床操作性更加稳定、操作周期更长、原料适应性更广。神华示范装置运行结果表明,神华煤直接液化 工艺技术先进,是唯一经过工业化规模和长周期运 行验证的煤直接液化工艺。 神华煤直接液化工艺技术优势 1)单系列处理量大。由于采用高效煤液化催 化剂、全部供氢性循环溶剂以及强制循环的悬浮床 反应器,神华煤直接液化工艺单系列处理液化煤量 为6000 t/d。国外大部分煤直接液化采用鼓泡床反 应器的煤直接液化工艺,单系列最大处理液化煤量 为每天2500 ~3000 t。 2)油收率高。神华煤直接液化工艺由于采用

煤炭直接液化技术总结

煤炭直接液化技术总结 洁净煤技术——直接液化技术 —、德国IGOR工艺 1981 年,德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进,建成日处理煤200 吨的半工业试验装置,操作压力由原来的70 兆帕降至30兆帕,反应温度450?480摄氏度;固液分离改过滤、离心为真空闪蒸方法,将难以加氢的沥青烯留在残渣中气化制氢,轻油和中油产率可达50%。 原理图: IGOR 直接液化法工艺流程 工艺流程:煤与循环溶剂、催化剂、氢气依次进入煤浆预热器和煤浆反应器,反应后的物料进入高温分流器,由高温分流器下部减压阀排出的重质物料经减压闪蒸,分出残渣和闪蒸油,闪蒸油又通过高压泵打入系统,与高温分离器分出的气体及清油一起进入第一固定床反应器,在此进一步加氢后进入分离器。中温分离器分出的重质油作为循环溶剂,气体和轻质油气进入第二固定床反应器再次加氢,通过低温分离器分离出提质后的轻质油品,气体经循环氢压机压缩后循环使用。为了使循环气体中的氢气浓度保持在所需的水平,要补充一定数量的新鲜氢气。 液化油经两步催化加氢,已完成提质加工过程。油中的氮和硫含量可降低到10-5 数量级。此产品经直接蒸馏可得到直馏汽油和柴油,再经重整就可获得高辛烷值汽油。柴油只需加少量添加剂即可得到合格产品。与其他煤的直接液化工艺相比,IGOR工艺的煤处理能力最大,煤液化反应器的空速为0. 36?0. 50 t /( m3 ? h)。在反应器相同的条件下,IGOR 工艺的生产能力可比其他煤液化工艺高出50%?100%由于煤液化粗油的提质加工与 煤的液化集为一体,IGOR煤液化工艺产出的煤液化油不仅收率高,而且油品质量好。 工艺特点:把循环溶剂加氢和液化油提质加工与煤的直接液化串联在一套高压系统中,避免了分立流程物料降温降压又升温升压带来的能量损失,并在固定床催化剂上使二氧化碳和一氧化碳甲烷化,使碳的损失量降到最小。投资可节约20%左右,并提高了能量效率。反应条件苛刻(温度470C,压力30MPa);催化剂使用铝工业的废渣(赤泥);液化反应和加氢精制在高压下进行,可一次得到杂原子含量极低的液化精制油;循环溶剂是加氢油,供 氢性能好,液化转化率高。 优点:(1)煤液化粗油的提质加工与煤的液化集为一体,IGOR煤液化工艺产出的煤 液化油不仅收率高,而且油品质量好。 (2)供氢性能好,液化转化率高 (3) 结构简单,投资少,克服了反应尺寸、能力、压力等诸多方面的局限 (4) 传热效果好,反应温度易控制.

煤直接液化工艺技术及工程应用

石油炼制与化工 。oo。年,月reTRc,-euM!竺!!!!!!!竺!兰!!!二!竺里!竺!!兰!!——兰!!兰竺:塑———————————————————————————————————————一 煤直接液化工艺技术及工程应用 范传宏 (中国石化工程建设公司,北京1000¨) 摘要介绍了目前世界上比较典型的煤直接液化工艺技术(IGOR+工艺、NEDOL工艺和HTl工艺)的特点。结台各工艺的特点,对工艺流程中循环溶剂的选择、各单元流程的选择和设计 进行了探讨,提出r合理建议。 美键词:煤液化工艺设计工程述评 l前言 煤炭的化学成分类似于石油,是含氢少,杂质多的固体燃料,可以通过在高温高压下的裂姆、加氢和分解等过程,直接转化成液体产品。自20世纪70年代以来,世界各国相继研究开发了多种煤直接液化新工艺,其中不少新工艺已发展到每天处理几十吨至几百吨的工业性试验装置,但由于80年代石油降价,各国均没有进行商业化煤液化装置的建设。但我国,煤炭保有储量远比石油丰富,价格便宜,采用煤直接液化技术制取各种油品是一种比较适合我国国情的能源途径,可以充分利用我国丰富的煤炭资源,调整我国能源消费结构,缓解石油进口压力。为加快我国煤直接液化工业化的步伐,应在充分r解和研究煤直接液化工艺的基础上,合理地在工程中加以优化和运用,降低技术风险和经济风险,提高工业化装置长周期稳定运转的可靠性。 2煤直接液化工艺技术 2.1煤炭液化原理 煤加氢液化的反应过程可分为两个步骤”]:第一步是通过加热使煤的结构单元之间的桥键断裂,形成以单个结构单元为主体的自由基;第二步是在催化剂的作用下通过加氢使自由基在溶剂中保持稳定,因此溶剂应具有较好的重质芳烃溶解性,并能够提供氢给自由基以阻止自由基聚合。另外,通过加氢还可使各结构单元继续脱除氧、氮、硫等杂原子,并使结构单元进一步裂解,使芳烃部分饱和以降低相对分子质量、提高氢碳原子比,从而得到与石油馏分十分相似的低相对分子质嚣的油品。 煤液化所得的油品含有较多的杂原子及芳烃,一般还要经过加氢精制或加氢裂化工艺才能得到台格的油品。 2.2典型的煤液化工艺技术 煤直接液化工艺的主要过程是把煤先磨成粉,再和自身产生的液化重油(循环溶剂)配成煤浆,在高温(430~470℃)和高压(15~30MPa)下直接加氢,将煤转化成液体产品。整个过程可分成4个主要工艺单元: (1)煤浆制备单元:将煤破碎至小于o.2mm以下,并与溶剂、催化剂一起制成煤浆; (2)反应单元:煤在高温、高压的反应器内进行加氢反应,生成液体产物; (3)分离单元:将反应生成的残渣、液化油、反应生成气分离; (4)稳定加氢单元:液化油加氢,提供供氢溶剂,并使液化油加氢稳定。 目前世界上典型的煤直接液化技术主要有德国IGoR+工艺、日本NEDOL工艺和美国H—CoAI。及HTI工艺。 2.2.1德国IGoR+工艺IGOR+(IntegratedGrossoilRe“ning)工艺是在德国原IG工艺基础上开发出的新一代煤炭液化技术。该液化工艺将反应压力由70MPa降低到30MPa,将煤的加工量提高了50%,此外在残渣处理方面,用现代蒸馏法取代了从环保和技术角度都有缺陷的机械分离 收稿日期:200303¨;修改稿收到H期,2003一04一02。 作者简介:范传宏,工程师.硕士,1996年毕业于石油大学,从事石油化工的工艺研究和工程设计工作,曾负责设计多套加氢裂化装置,班正负责煤液化工业装置的工艺设计工作。 万方数据

煤直接液化反应机理

煤直接液化反应机理 煤和石油主要都是由C、H、O等元素组成,不同的是:煤的氢含量和H/C 原子比比石油低,氧含量比石油高;煤的分子量大,一般大于5000,而石油约为200,汽油约为110;煤的化学结构复杂,一般认为煤有机质是具有不规则构造的空间聚合体,它的基本结构单元是缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧、氮、硫)、碱金属和微量元素。要把固体煤转化为液体油,就必须采用增加温度或其他化学方法以打碎煤的分子结构,使大分子物质变成小分子物质,同时外界要供给足够量的氢,提高其H/C原子比。 煤直接液化反应比较复杂,大致可分为热解、氢转移、加氢三个反应步骤, 如果煤在热解过程中外界不提供氢,煤热解产生的自由基碎片只能靠自身的氢再分配,使少量的自由基碎片形成低分子油和气,而大量的自由基碎片则发生缩聚反应生成固体焦。如果煤在热解过程中外界供给氢,而且煤热解产生的自由基碎片与周围的氢结合成稳定的H/C原子比较高的低分子物(油和气),这样就能抑制缩聚反应,使煤全部或绝大部分转化成油和气。一次加氢液化的实质是用高温切断化学结构中的C-C键,在断裂处用氢来饱和,从而使分子量减少和H/C原子比提高。反应温度要控制合适,温度太低,不能打碎煤分子结构或打碎的太少,油产率低。一般液化工艺的温度为400℃~470℃[4]。 与煤自由基碎片结合的氢必须是活化氢。活化氢的来源:(1)煤分子中的氢再分配;(2)供氢溶剂提供;(3)氢气中的氢分子被催化活化;(4)化学反应放出氢,如系统中供给CO+H2O,则发生变换反应(CO+H2O→CO2+H2)放出氢。据研究证明:系统中供CO+H2O或CO+H2的液化效果比单纯供H2的效果好,这主要是CO+H2O的变化反应放出的氢容易与煤的自由基碎片结合。为保证系统中有一定的氢浓度,使氢容易与碎片结合,必须有一定的压力(氢分压)。目前的液化工艺的一般压力为5MPa~30MPa。 对自由基碎片的加氢是液化反应的关键,可用如下方程式表示加氢反应[5] R-CH2-CH2-R’→ RCH2·+R’CH2· RCH2·+R’CH2·+2H·→ RCH3+R’CH3 煤加氢液化过程包括一系列的顺序反应和平行反应,但以顺序反应为主,每一级反应的分子量逐级降低,结构从复杂到简单,杂原子含量逐级减少,H/C原子比逐级上升。在发生顺序反应的同时,又伴随有副反应,即结焦反应的发生。煤加氢液化反应历程如图1-2所示。从沥青烯向油和气的转化是一个相当缓慢的过程,是整个反应的控制步骤。

煤炭液化技术

煤炭液化技术 [编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGO R工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成了新工艺技术的处理煤100t /d级以上大型中间试验,具备了建设大规模液化厂的技术能力。煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工艺原理 煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。 第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。

煤液化技术的重要性

煤液化技术的重要性 1.1 中国的能源现状 随着我国经济的快速发展,能源消费急剧增加,20世纪90年代我国已成为石油净进口国。2003年,我国已是全球仅次于美国的第二大石油进口国和消耗国,2008年我国石油净进口量超过19985万t,进口原由占国消费比重达53.1%。石油资源匮乏和国石油供应不足已成为中国能源发展的一个严峻现实, 随着国民经济的发展,石油供需矛盾将呈持续性扩大趋势。经济高速增长、石油资源缺乏的中国已经把石油安全置于能源战略的核心位置。 我国“多煤炭、少石油、缺天然气”的能源资源特点决定了我国能源在较长时期以煤为主的格局不会改变,确立我国的能源安全战略,必须从这一基本条件出发。充分利用我国丰富的煤炭资源解决石油短缺问题并保证能源安全供给,是我国能源安全战略的一条有效而又可行的途径。 1.2 煤液化技术在我国应用前景 在替代石油的化石资源中,只有煤炭可以在近中期满足与千万吨数量级的油品缺口相匹配的需要。在这样的背景下,合理利用中国丰富的煤炭资源, 开发“煤制油”技术, 作为石油资源的补充, 解决目前燃油短缺、环境污染两大难题, 对中国具有十分重要的战略意义[1]。 若以目前已查证的煤炭资源量的2 0 %作为直接液化原料,则相当于为中国增加了约4 5 0亿吨的原油资源量。有专家预计,到2 0 2 0 年中国的“煤制油”项目将形成年产5 0 0 0万吨油品的生产能力,加上届时将有年产2 0 0 0万吨的生物质油品投入使用,中国原油对外依赖程度有望从6 0 %以上下降到45%以下。到2030 年,在全球替代能源中非石油替代能源将达到日产1 0 0 0万桶,其中煤制油将占2 9%。就中国来说,煤炭储量丰富,政府有意愿发展这一产业,煤制油工业有着光明的前景。 1.3 煤液化技术在我国中战略地位 中国将长期坚持能源供应基本立足国的方针, 把煤炭作为主体能源, 这是中国能源安全的基石。长期以来, 中国政府坚持能源生产、消费与环境保护并重的方针, 把支持清洁煤技术的开发应用作为一项重要的战略任务。煤炭直接液化是中国能源战略的组成部分, 对充分利用国资源, 解决石油安全具有重要的战略和现实意义。 2 煤液化的发展状况 2.1 煤液化技术简介 煤液化工艺大致可分为两大部分,即在高温高压条件下把粉煤催化加氢生产液化粗油的液化工艺和把液化粗油加氢裂解的提质加工精制工艺。其中煤液化技术又包括直接液化技术和间接液化技术。 2.1.1 煤直接液化技术 煤的直接液化法,就是以煤为原料,在高温高压条件下,通过催化加氢直接

神华煤直接液化项目的综合评价

摘要 神华煤制油项目是世界上首个建设的工业化项目,工程分为先期和一期,总建设规模为年生产油品500万t,自2004年8月先期工程开工建设,到2009年一期工程第一条生产线基本完成,并计划于2009年5月正式投产。 本文对神华煤直接液化工艺项目进行了综合评价,主要分为3个部分,包括经济分析、技术分析和环境分析。同时,本文还介绍了煤直接液化的工艺流程,重点介绍了煤制油工艺的特殊的单元,例如:煤液化单元,煤制氢单元,T-star工艺单元。 经济分析部分,采用技术经济学的知识,计算了项目的总投资、总成本、项目销售收入和税金以及现金流量。计算出了项目的内部收益率为13.13%,全投资的回收期为7.73年,大于石油化工项目的平均内部收益率10%。从经济方面,神华煤制油项目是有优势的。 技术分析部分,主要从煤直接液化工艺的技术方案,工程放大和项目的建设进行了研究。重点分析了液化工艺核心技术—采用美国的HTI工艺,液化工艺的催化剂制备单元—采用新型高效“863”合成催化剂,液化工艺煤制氢单元—采用Shell粉煤加压气化工艺等先进的技术。神华煤制油项目在产品分离、加氢改质、空分、水处理方面都采用了先进的技术。同时项目的工程放大和项目的建设都保证了神华煤制油项目的有条不紊的建设。 环境分析部分,重点研究了神华项目污水和液化残渣的利用。对这两部分分别提出了建议意见。 最后,本文对神华项目提出了发展建议,提出了神华项目要加大自主技术研究,完善绿化方案,建立水库储备水源,研究煤、电和化工的结合。 关键词:煤制油;直接液化;综合评价

Abstract Shenhua coal to oil was the first industrialization project on construction in the world, which was divided into two stages,including the early one and the first one.the gross of project is five million tons/year in petroleum product. The early stage started to be constructed since August, 2004, the first stage will be finshed in 2009, and plan to put into production in may. The comprehensive evaluation of the project in direct liquefaction process on shenhua coal was studied in this paper, which mainly was divided into three parts, including the economic analysis, technical analysis and environmental analysis. At the same time, this paper also introduced the process flow in coal liquefaction, major introduced special unit of coal to oil, for example: coal liquefaction unit, hydrogen unit, T-star process unit. Economic analysis, using knowledge of technical economics, the project total investment, total cost, project sales income and tax and cash flow were calculated,then the internal rate of return and investment recoupment period of project were 13.13% and 7.73 years respectively.The internal rate of return was more than the one for petrochemical industry which was 10%. From the economic aspect, the project was profitable. Technical analysis, mainly studied from coal direct liquefaction technical scheme, engineering enlargement and project construction. The core technology liquefaction process - HTI process employing the America technology, catalyst preparation process - using new efficient "863" synthesis catalyst, coal liquefaction process for hydrogen production unit by adding pressurized gasification - employing Shell advanced pressurized gasification technology were emphatically analyzed. Shenhua coal to oil project in product separation unit, hydrogenation modification uint,air

现代化煤直接液化技术进展(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 现代化煤直接液化技术进展(最 新版)

现代化煤直接液化技术进展(最新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842亿t,石油资源探明剩余经济可采储量为20.4亿t,天然气资源探明剩余经济可采储量为23900亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重 视和青睐。 “煤制油”的科学名称为“煤液化”,实施煤液化目是事关国家能源安全的重大战略选择。煤直接液化是国家“十五”期间12个高技术工程项目之一,受到各方关注,国外专家也积极参与[1-3]。所谓煤液化,就是指把固体的煤炭通过化学加工的方法,使其转化为液体燃

现代化煤直接液化技术进展

安全管理编号:LX-FS-A49592 现代化煤直接液化技术进展 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

现代化煤直接液化技术进展 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842 亿t,石油资源探明剩余经济可采储量为20.4 亿t,天然气资源探明剩余经济可采储量为23900 亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重

煤炭直接液化技术总结

洁净煤技术——直接液化技术 一、德国IGOR工艺 1981年,德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进,建成日处理煤200吨的半工业试验装置,操作压力由原来的70兆帕降至30兆帕,反应温度450~480摄氏度;固液分离改过滤、离心为真空闪蒸方法,将难以加氢 的沥青烯留在残渣中气化制氢,轻油和中油产率可达50%。 原理图: IGOR直接液化法工艺流程 工艺流程:煤与循环溶剂、催化剂、氢气依次进入煤浆预热器和煤浆反应器,反应后的物料进入高温分流器,由高温分流器下部减压阀排出的重质物料经减压闪蒸,分出残渣和闪蒸油,闪蒸油又通过高压泵打入系统,与高温分离器分出的气体及清油一起进入第一固定床反应器,在此进一步加氢后进入分离器。中温分离器分出的重质油作为循环溶剂,气体和轻质油气进入第二固定床反应器再次加氢,通过低温分离器分离出提质后的轻质油品,气体经循环氢压机压缩后循环使用。为了使循环气体中的氢气浓度保持在所需的水平,要补充一定数量的新鲜氢气。 液化油经两步催化加氢,已完成提质加工过程。油中的氮和硫含量可降低到10-5数量级。此产品经直接蒸馏可得到直馏汽油和柴油,再经重整就可获得高辛烷值汽油。柴油只需加少量添加剂即可得到合格产品。与其他煤的直接液化工艺相比,IGOR工艺的煤处理能力最大,煤液化反应器的空速为0. 36~0. 50 t /( m3·h)。在反应器相同的条件下,IGOR工艺的生产能力可比其他煤液化工艺高出50%~100%。由于煤液化粗油的提质加工与煤的液化集为一体,IGOR煤液化工艺产出的煤液化油不仅收率高,而且油品质量好。 工艺特点:把循环溶剂加氢和液化油提质加工与煤的直接液化串联在一套高压系统中, 避免了分立流程物料降温降压又升温升压带来的能量损失,并在固定床催化剂上使二氧化碳和一氧化碳甲烷化,使碳的损失量降到最小。投资可节约20%左右,并提高了能量效率。反应条件苛刻(温度470℃,压力30MPa);催化剂使用铝工业的废渣(赤泥);液化反应和加氢精制在高压下进行,可一次得到杂原子含量极低的液化精制油;循环溶剂是加氢油,供

现代化煤直接液化技术进展通用版

安全管理编号:YTO-FS-PD683 现代化煤直接液化技术进展通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

现代化煤直接液化技术进展通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842 亿t,石油资源探明剩余经济可采储量为20.4 亿t,天然气资源探明剩余经济可采储量为23900 亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重 视和青睐。 “煤制油”的科学名称为“煤液化”,实施煤液化目是事关国家能源安全的重大战略选择。煤直接液化是国家“十五”期间12 个高技术工程项目之一,受到各方关注,国外专家也积极参与[1-3]。所谓煤液化,就是指把固体的煤炭通过化学加工的方法,使其转化为液体燃料、化工原料等产品。根据加工路线的不同,通常把煤液化分为直接

煤加氢液化的研究进展

第一章发展煤炭直接液化技术的意义 直接液化:将煤在较高温度(400℃以上)、和压力(10MPa以上),下与氢反应使其降解和加氢,从而转化为液体油类的工艺,故又称加氢液化。 1.煤炭与石油是世界围最主要的能源, 被视为工业的粮食和血液, 占世界一次能源消费的67%,其中石油占40.1 %,煤炭占27.2 %。但在世界围,煤炭资源比石油资源要丰富得多;1994 年底,世界煤炭的探明可采储量为1043.86 Gt,煤炭总产量为4.45Gt/a ,储采比235;而世界石油的探明可采储量为137.3G t ,原油总产量为3.21Gt/a ,储采比为42。可见, 世界一次能源的资源结构与消费构成之间比例失调, 即储量较低的石油消费比例过大。同时, 随着世界经济的不断增长, 尤其是发展中国家经济的高速增长, 将使石油的消费比例进一步增加,从而使一次能源的资源结构与消费构成之间的矛盾更加突出。在世界煤炭探明可采储量中, 可用于直接液化的次烟煤和褐煤总储量在500Gt 以上, 液化后相当于石油资源250Gt 左右, 是现有石油探明可采储量的近2倍。因此, 发展煤炭直接液化技术具有全球战略意义。 2.我国是发展中国家, 经济的高速发展举世瞩目,煤炭与石油占一次能源消费的92% 以上, 其中煤炭占75%, 石油占17.4 %随着经济的进一步高速增长, 一次能源消费中石油的消费比例将快速增加。然而总体上说, 我国是个富煤贫油的国家, 到1994 年底, 累计探明石油地质储量为 3.3Gt,1994 年原油开采量为145 Mt ,储采比小于23。目前, 我国已从石油出口国转变成了石油进口国,1995 年净进口油量达10 Mt 以上。预计到2000 年, 国石油总需求量将达到20Mt /a 以上, 而总供给量只能达到“1Mt/a ,缺口将达30 ~ 50 Mt/a 以上。因此, 石油短缺在我国已经成可回避的严峻现实, 寻求石油代用品已经成为当务之急。我国的煤炭资源要

【知识】煤炭液化工艺

煤制油关键技术:煤炭液化 2014-03-01化化网煤化工 煤炭液化是把固态状态的煤炭通过化学加工,使其转化为液体产品(液态烃类燃料,如汽油、柴油等产品或化工原料)的技术。煤炭通过液化可将硫等有害元素以及灰分脱除,得到洁净的二次能源,对优化终端能源结构、解决石油短缺、减少环境污染具有重要的战略意义。 煤炭液化是将煤经化学加工转化成洁净的便于运输和使用的液体燃料、化学品或化工原料的一种先进的洁净煤技术。煤炭液化方法包括直接液化和间接液化。 煤直接液化 煤在氢气和催化剂作用下,通过加氢裂化转变为液体燃料的过程称为直接液化。裂化是一种使烃类分子分裂为几个较小分子的反应过程。因煤直接液化过程主要采用加氢手段,故又称煤的加氢液化法。 比较著名的直接液化工艺有:溶剂精炼法(SRC-1、SRC-2),供氢溶剂法(EDS)、氢煤法(H-Coal )、前苏联可燃物研究所法(NTN)、德国液化新工艺、日澳褐煤液化、煤与渣油联合加工法、英国的溶剂萃取法和日本的溶剂分离法等,它们在工艺和技术上都取得了不同程度的突破。 直接液化是目前可采用的最有效的液化方法。在合适的条件下,液化油收率超过70%(干燥无矿物质煤)。如果允许热量损失和其它非煤能量输入的话,现代液化工艺总热效率(即转化成最终产品的输入原料的热值比例,%)一般为60-70%。 煤间接液化 间接液化是以煤为原料,先气化制成合成气,然后,通过催化剂作用将合成气转化成烃类燃料、醇类燃料和化学品的过程。 煤炭间接液化技术主要有:南非Sasol公司的F-T合成技术、荷兰Shell 公司的SMDS技术、Mobil公司的MTG合成技术等。还有一些先进的合成技术,如丹麦TopsФe公司的Tigas法和美国Mobil公司的STG法等。煤炭液化的可行性主要决定于液化工艺的经济性。这需要大量的品位低、价格低的煤炭,且石油和天然气缺乏或成本较高。也就是说,未来石油价格的上涨将引起人们重新对煤炭液化技术的极大兴趣,并可能导致大规模的商业化煤炭液化生产。 反应机理 1、直接液化机理。煤加氢液化的机理是煤受热分解及产生的不稳定自由基碎片进行加氢裂解,使结构复杂的高分子煤转化成H/C原子比较高的低分子液态产物和少量的气态烃。一般认为,煤的直接液化的反应历程以顺序反应链为主,主要反应可用以下方程式表示:

煤直接液化工艺条件对液化反应的影响

煤直接液化工艺条件对液化反应的影响 煤直接液化的技术从诞生到应用至今已经有100多年的历史了,随着科学技术的发展,煤直接液化的工艺技术也在不断的进步。本文对煤直接液化的反应原理以及煤直接液化的工艺流程等进行了相应的介绍,针对工艺条件对于煤直接液化反应的影响进行了研究,采用定性定量相结合的方式对温度、压力、干煤空速以及气液比对于煤直接液化的影响进行了分析,得到了这些条件对于煤直接液化的影响,为煤直接液化工艺的提升提供了理论基础。 标签:煤直接液化工艺条件液化反应原理影响 引言 早在1913年德国人就发明了煤直接液化的技术,在二战期间该技术就得到的实际的应用和推广。在二次世界大战结束之后,由于中东地区大量廉价的石油涌入市场,煤直接液化企业在其面前没有丝毫的抵御能力纷纷倒闭了。大约在20世纪70年代的时候,在世界范围内出现了经济的危机,煤炭的直接液化技术又开始被重新重视起来。尤其是美国、日本以及德国等国家在煤直接液化的技术的基础上对其进行了工艺方面的极大的改良,这些工作的目的只有一个那就是尽可能的降低煤直接液化的反应的苛刻的条件,进而在最大程度上降低煤直接液化所耗费电的成本。目前世界上比较有代表性的煤直接液化的技术流派主要分为三种分别为美国、德国以及日本的技术。这些煤液化的新技术中所具有的共性就是,反应的条件和原来相比已经不是那么苛刻。神华集团的液化工艺是具有完全自主知识产权的煤直接液化的技术,该技术不论是从反应条件或者是反应的出油上和其他技术相比都具有相当的优势。 一、煤直接液化反应的原理以及相应的工艺流程 1.煤直接液化的反应机理 将煤炭处于高温、高压以及氢气的环境下,通过催化剂的反应的催化作用,会发生煤炭和氢气之间的反应,然后对反应后的产品进行液化蒸馏将其分成轻重两个部分。通过大量的理论研究与实践证明,煤炭在高温、高压以及氢气的环境下和氢气发生反应液化的过程大致可以分为三个步骤。首先煤炭所处的温度在300摄氏度以上的时候,煤炭就是开始受热分解,在煤炭中大分子结构的较弱的连接键开始断裂,这使得煤炭的分子结构产生了相应的变化,通过煤炭的这种分解产生了较大数量的单元分子结构的自由基,自由基的分子的数量在数百左右(虽然其不带电但是有自身所带电子的碎片)。接着在供氢溶剂比较充足并且氢气的压力较大的环境下,自由基通过和氢气进行结合形成较为稳定的结构,最终成为沥青烯及液化油的分子。氢气分子本身并不能与相应的自由基结合,能够和自由基相结合的是氢气的自由基,也就是氢气的原子,或者是经过活化的氢气分子,氢原子或者是活化的氢气分子的来源是煤炭中的氢、以及供氢溶剂碳氢键断裂产生的氢自由基、氢气中的氢气分子被催化激活、或者是化学反应放出的氢等。

煤直接液化综述

煤直接液化综述 摘要:本文总结了煤直接液化原理。通过实验研究,在煤油浆体制备和加氢液化反应效果上有重大突破,并提出了新的观点和看法。在浆体制备上,选用元宝山煤和煤焦油馏分油为溶剂,制备出具有良好流动性和稳定性的煤浆,降低了生产设备因沉积,堵塞而产生的维修费用,延长了生产周期;在加氢液化方面,选用高效的催化剂,使总转化率,出油率显著提高,残渣明显减少,增加了产量,降低了残渣处理量,由于反应时间的需求小,使得生产装置空速高,生产效率大大提高。 关键字:煤直接液化;流动性;稳定性;催化剂; 煤直接液化的原理 煤炭直接加氢液化一般是在较高温度(>400℃),高压(17MPa),氢气(或CO+H2,CO+H2O)、催化剂和溶剂作用下,将煤加氢,直接转化为液体油的加工过程。煤和石油主要都是由C、H、O等元素组成,不同的是:煤的氢含量和H/C原子比比石油低,氧含量比石油高;煤的分子量大,一般大于5000。而石油约为200,汽油约为110;煤的化学结构复杂,一般认为煤有机质是具有不规则构造的空间聚合体,它的基本结构单元是缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧、氨、硫)、碱金属和微量元素。根据其组成结构,可将煤在液化反应中的转化过程如图表示: 注:上述反应历程中C1表示煤有机质的主体,C2表示存在于煤中的低分子化合物,C3表示惰性成分。 二、制浆阶段各种要求 2.1煤种的选择 国内外大量的煤直接液化实践证明,由于煤的结构极其复杂,煤中有机质不是以一定的分子形式存在,而是以多样复杂的高分子化合物的混合形式存在,所以,不能客观的确定其化学结构。煤种不同,即煤的体相、表面形貌、内水含量、矿物质种类和含量等不同,直接液化难易程度也有很大差别。其中煤的分子结构、组成、岩相组分含量及煤灰成分等对煤直接液化均有很大影响。 综上所述,选择适宜直接液化的煤种一般应满足下述条件中的大部分: ①年青烟煤和年老褐煤,褐煤比烟煤活性高,更易液化;

现代化煤直接液化技术进展

编订:__________________ 审核:__________________ 单位:__________________ 现代化煤直接液化技术进 展 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2023-90 现代化煤直接液化技术进展 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842 亿t,石油资源探明剩余经济可采储量为20.4 亿t,天然气资源探明剩余经济可采储量为23900 亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重 视和青睐。 “煤制油”的科学名称为“煤液化”,实施煤液化目是事关国家能源安全的重大战略选择。煤直接液化

煤炭液化技术复习资料.docx

第三章 1.什么是煤炭直接液化? 定义:煤经化学加工转化成洁净的便于运输和使用的液体燃料、化学品或化工原料的一种先进的洁净煤技术。煤在氢气和催化剂作用下,通过加氢裂化转变为液体燃料的过程称为直接液化。 2.煤炭直接液化的途径是什么?如何实施? 途径:煤先经加氢裂解等过程转化为液化油,再提质加工得到成品油。具体实施:先热解反应产生自由基碎片再由自由基碎片加氢得到的油再经脱杂(S,N,O等杂原子),缩合反应得到成品油。 3.煤炭直接液化反应有哪些?主要反应是什么? 煤的热解反应自由基碎片的加氢反应脱杂原子反应缩合反应 4.什么是自由基碎片? 在直接液化过程中,煤的大分子结构首先受热分解,而使煤分解成以结构单元缩合芳烃为单个分子的独立的自由基碎片 5.自由基碎片加氢反应中氢的来源是什么?哪些是主要来源? 供给自由基的氢源主要有: (1)外界供给的氢在催化剂作用下变为活性氢; (2)溶剂可供给的或传递的氢; (3)煤本身可供应的氢(煤分子内部重排、部分结构裂解或缩聚形成的氢); (4)化学反应生成的氢,如CO和H2O反应生成的氢等。 6.煤直接液化研究中油,沥青烯,前沥青烯,残渣是如何定义的? (1)油:可溶于正己烷的物质 (2)沥青烯:不溶于正己烷而溶于苯 (3)前沥青烯:不溶于苯而溶于四氢呋喃或吡啶 (4)残渣:不溶于四氢呋喃或吡啶的物质 7.描述煤炭直接液化反应的历程? 首先,煤在溶剂中膨胀形成胶体系统,有机质进行局部溶解,发生煤的解体破坏,350~400℃左右发生分解、加氢、解聚、聚合以及脱杂原子等一系列反应,生成沥青质含量很多的高分子物质。 当温度达到450~480℃时,溶剂中氢的饱合程度增加,使氢重新分配程度也相应增加,从而使煤加氢液化过程逐步加深,使高分子物质(沥青质)转变为低分子产物—油和气。这个过程中也是存在分解、加氢、解聚、聚合以及脱杂原子等一系列反应 1)先裂解后加氢。 2)反应以顺序进行为主。虽然在反应初期有少量气体和轻质油生成,不过数量不多。 3)前沥青烯和沥青烯是主要中间产物。 4)结焦反应的发生。当反应温度过高,氢压不足或反应时间过长,已形成的前沥青烯、沥青烯以及煤裂解生成的自由基碎片可能缩聚成不溶于任何有机溶剂的焦;油亦可裂解、聚合生成气态烃和分子量更大的产物。

相关主题