搜档网
当前位置:搜档网 › 结构模态分析方法

结构模态分析方法

结构模态分析方法
结构模态分析方法

模态分析技术的发展现状综述

摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。

关键词:模态分析技术发展现状

Modality Analysis Technology Development Present Situation

Summary

Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development.

Key words:Modality analysis Technology Development status

0 引言

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。

1 数值模态分析的发展现状

数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。

正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。

70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

小型计算机为主体的数据采集处理系统,形成数字模态试验分析技术。在国内,近几年来也有所进展。在试验方法上,经典的多点稳态正弦激振方法和单点随机激振方法己达到它们能力的极限。为了能从可能获得的输人输出信息中去提高模态分辨能力和参数估计的精度,还开发了许多新的方法,如IBRAHIM时域辨识法(ITD法)、多输入随机激振法、多参考点法、直接参数辨识法、自回归滑动平均法( ARMA法)和模态确信准则法等。在应用上,已依据模态试验结果去修改和调整有限元模型,建立综合的试验分析模型和模态数据库,为结构动态设计提供合理的数学模数。

2 试验模态分析的发展现状

模态分析技术主要是指试验模态分析技术。所谓试验模态分析技术是利用振动测试、信号处理和参数识别的方法,获得表征结构动态特性的模态参数的一种动态分析方法。它通过对结构的输入激励和输出响应的测试,在物理参数未知的情况下,由计算机进行信号处理,通过参数识别找出振动系统的模态参数,建立结构的模态模型,非常直观地了解各阶模态振动的情况,可以为结构设计部门设计和改型提供结构动态基本参数,进行结构系统的振动特性分析,结构动力特性优化设计和修改等。正是由于试验模态分析技术巨大的工程实用价值,使其成为利用振动理论解决工程问题的最重要、应用最广泛的技术手段。

试验模态分析方法是用于分析复杂结构的动力特性。该方法的最终目的是从理论上解决建立机械结构的动力学模型。就目前应用来看,对于己有的机械产品进行模态分析可以对其动态特性作出评价,同时找出机械结构在动态特性上所存在的薄弱环节。由于近年来电子计算机和精密电子仪器的发展,特别是多通道、高分辨率的有限离散快速傅立叶分析技术的应用,使试验模态分析方法成为解决结构动力问题的有力方法和手段。在许多工程技术领域,尤其是航天、机械、造船和车辆等,该方法得到了广泛的使用。近些年来该方法在其它领域,如土木、房建和道桥方面也开始得到广泛应用。

“试验模态”这个名词是在其原理提出许多年后才被使用的,并经历了不同的阶段,曾使用过“共振试验”和“机械阻抗法”等名词来描述有关试验。这一课题的重要里程碑之一是1947年肯尼迪(Kenneyd)[1]和藩库(Pnauc)的论文,他们在论文中叙述的方法用来精确地确定航空结构的固有频率和阻尼比,此方法沿用了许多年,直到六十年代测量和分析技术的迅速发展,为更精密的测量和更有效且广泛的应用铺平了道路。1963年比晓普(Bihosp)[2]和格拉德威尔的论文描述了试验模态原理的现状,其理论大大超出了当时的实验水平。同一时期,塞尔特S(alter)所著的书中从完全不同的观点提出用非解析方法来处理测量数据。这种方法与现在借助计算机自动完成同样工作相比,需占用较多的人力,但它成功地在该项结构振动的研究中引入了重要的物理概念。到1970年,传感器、电子学和数字分析仪等方面都有了重要的发展,从而又建立了目前的试验模态分析技术。之后研究人员在这方面作了相应的发展和应用,并发表了大量的论文。

模态分析理论最初为实模态分析,以后由于对机械结构阻尼性质的深入了解,发展了复模态分析理论,它们分别适用于不同的阻尼情况。实模态分析适用于小阻尼或比例阻尼,复模态理论则适用于非比例阻尼,实模态实际上是复模态的一个特例。

试验模态分析可分为以下几个主要环节:激振技术、测试技术、模态识别。

3 工作模态分析现状及发展趋势

工作模态分析常称为环境激励下的模态分析、只有输出或激励未知条件下的模态分析,正是近年来模态分析领域发展活跃,新理论、新技术的应用层出不穷的一个研究方向,被视为对传统试验模态分析方法的创新和扩展[15]。工作模态分析的优点是:仅需

测试振动响应数据,由于这些数据直接来源于结构实际所经受的振动工作环境,因而识别结果更符合实际情况和边界条件;无需对输入激励进行测试,节省了测试费用;利用实时响应数据进行模态参数识别,其结果能够直接应用于结构的在线健康监测和损伤诊断。因此工作模态试验技术使试验模态分析,由传统的主要针对静止结构被扩展到处于现场运行状态的结构,不仅可以实现对那些无法测得载荷的工程结构进行所谓在线模态分析,而且利用实际工作状态下的响应数据识别的模态参数,能更加准确地反映结构的实际动态特性,已经在桥梁、建筑、机械领域取得实质性的进展。

工作模态分析的理论和思想的提出早在20世纪70年代初期就已开始。工作模态的主要手段都是基于响应信号的时域参数辨识技术。随机减量技术最早被用来处理环境激励下的结构响应数据,这一技术主要是将结构的随机响应转化为结构的自由响应。以此为基础,基于时域的辨识方法Ibrahim 时域法[16]被提出,极大推动了工作模态分析技术的发展。随着控制理论和计算机技术的发展,多输入、多输出(MIMO)参数辨识技术也被相继推出,广泛运用的时域模态辨识方法有多参考点复指数方法、特征系统实现算法等。目前工作模态辨识的其他主要方法还有功率谱密度函数的峰值提取方法、建立自回归滑动平均模型的时间序列分析法、结合时域参数识别的随机减量技术等。

1965年Clarkson和Mercer提出使用互相关函数估计承受白噪声激励下结构的频响特性,从而提出了当激励未知时使用相关函数替代脉冲响应函数的思想框架。20世纪9O年代以来,美国Sandia国家实验室结合时域模态辨识方法,提出了NExT技术,利用结构在环境激励下的响应的相关函数进行工作模态识别。

形成上述技术思路后,美国Sandia国家实验室已经将此分析成果成功运用于航天涡轮机、地面载重、高速公路大桥和濒海建筑的工况信号测量和结构分析中。

后来出现的时频分析为工作模态参数识别提供了一种新的途径,它克服了单纯的时域与频域分析法的不足,适用于平稳和非平稳激励信号。

在国内,南京航空航天大学振动工程研究所也一直从事着模态分析的研究工作,从传统的模态分析到工作模态分析,也包括只利用响应数据进行系统模态参数识别方法的研究,并且发表了多篇关于环境激励下工作模态参数识别的文章。中国振动协会,上海交通大学振动、冲击、噪声国家重点实验室,哈尔滨工业大学等也致力于研究工作模态参数识别方法。

现有和各种工作模态参数识别方法虽然都有一些很好的应用,但在理论上还需要完善。而且各种工作模态分析方法还有着各自的局限性,如时域法通常要求激励是平稳白噪声,结构系统具有线性时不变特性,其中Ibrihim法不易剔除噪声和虚假模态;而时间序列法的模型阶次较难确定;基于响应相关函数的最小二乘复指数法和特征系统实现法要求数据样本长、平均次数多;随机子空间法模型阶次的确定较为繁琐,在测点较多时Hankel矩阵阶次很高,所需要的数据采样量较大。频域法的弊病是要求频率分辨率高、样本长,结构是小阻尼的。时频分析法利用的响应信息太少,是一种局部识别法。

工作模态分析不仅在方法求解上还存在局限性,而且在方法考证中,针对的是较为简单的结构,但即使对于简单结构,现有的方法也不能说解决了所有的问题,当响应测试数据不完整或者测试数据信噪比较低,现有的方法将会遇到困难。同时工作模态识别方法同传统的模态识别方法相比,无论是理论模型、分析手段,还是计算方法都更为复杂,这就可能带来求解上的困难,因此在模型自由度较多时如何保证数值分析的稳定性,是值得进一步考虑的问题。再者如何将它与有限元分析相结合,以获得更加准确的反映结构在实际运行时的动态特性模型,也是目前没有解决的问题。其中的难点在于,现有的工作模态识别方法所得到的振型只是一个相对量,不以质量和刚度阵归一化,同有限元计算结果进行比较有困难。因此工作模态分析的方法还有待于进一步完

善。

4 模态分析技术的国内外研究现状

早在1982年,美国结构动力研究公司(SDRC)的Hvardar Vold[3]首先推出了多参考点复指数时域辨识法。它同时利用多个激励点与多个响应点之间的脉冲响应,构成脉冲响应矩阵,建立脉冲响应矩阵与振型矩阵、特征值矩阵、模态参与因子矩阵之间的复指数关系,求得振型、模态频率和模态阻尼[4]。该方法同时利用所有的激励点与响应点的数据进行分析,大大增加了参数辨识的信息量,并从总体上识别模态参数,使识别精度大大提高。该方法提出后,即发展成应用软件,并应用于航天飞机和伽利略航天器的模态分析中,并推广应用于飞机、汽车等工业部门。

美国国家宇航局[5]研究中心发展了一种多输入多输出时域模态参数辨识法。该方法移植了现代控制理论中的最小实现理论,利用实测脉冲响应或自由响应数据,构造一个矩阵,对它做奇异值分解,辨识系统状态方程及观测方程中的系统矩阵、测量矩阵与输出矩阵。通过求解系统矩阵的特征值问题,求得系统的特征值与特征向量,得到模态参数。该方法提出当年,即应用于伽利略航天器的模态分析,次年又在航天飞机机载巨型太阳能帆板的太空模态试验中应用,取得良好结构。

Ibrahim[6][7]则形成独具一格的时域模态参数辨识法,推动了时域模态参数辨识方法的发展。该方法利用结构自由响应采样数据建立特征矩阵的数学模型,通过求解特征矩阵方程求得特征值和特征向量,再利用模态频率和模态阻尼与特征值之间的关系求得振动系统的模态频率和模态阻尼比。采用全部测试数据同时辨识模态参数是这一方法的独特思想。在80年代[8][9][10]和90年代初,模态试验技术主要用于获取需要的固有频率和动态显示响应的振型;而现在人们已经将研究重心放在模态试验模型的应用上[11][12][13],包括:

(1)运用模态试验模型验证和修正理论模型或数值模型;

(2)对被试验模型进行结构优化;

(3)对各个子结构的模态模型和理论模型进行模态综合;

(4)对一些无法用直接方法测得的激励力进行载荷识别等。

与国外模态分析的研究水平相比较,我国在此类研究中起步较晚,科研的人力和物力投入相对较少。在该领域研究成果较多的是北京东方所和南京汽轮高新技术公司[14]。还有一些科研人员在解决实际工程问题过程中也总结了不少有用的经验。

5 结语

数值模态分析与试验模态分析是目前研究结构动力学特性的两大方法,已经成为解决现代复杂结构动态特性设计的相辅相成的重要手段,在以后的研究过程中,它们在应用领域会得到进一步的发展。工作模态分析作为目前模态分析领域中一个研究热点,尽管存在某些不足,但由于它所固有的、在工程应用上的巨大前景和优势,以技术创新和发展为基础,相信工作模态技术将会有更加广泛的发展和应用。

参考文献

[1] 傅志方,华宏星.模态分析理论与应用.上海:上

海交通大学出版社,2000.1~390

[2]D.JWEins.ModalTestingTheorynadPratiee.Researe

hStudiesPressLTD,1986:19~82

[3] 傅志方.振动模态分析与参数辨识.机械工业出

版社,1990年

[4]ChenJ.C.GalileoSPaeeeraftModalTestEvaluationof

TestingTeehniques,

J.P.L.CaleforniaInstituteofTeehnology.

[5]Kehoe,MiehaelW.AireraftGroundVibrationTestinga

tNASAMAES一RYDNEFlightReseareh Faeility,ProeeedingofthesthIMAC,V oll,P.728,1987 [6]Ibrahim5.R.ApptieationofRnadomTimeDomainAn

alysistoDyn助ieFlight

Measurements,ShoekandVibrationBullatin,V ol.2,1979 ,P.165~170

[7]Ibrhaim5.R.andMikuleikE.C.AMethodfortheDireet

IdentifieationofVibration

ParametersfromtheFreeResPonse,TheShoekandVibrati onBulletin,V ol.4,1977

[8]WEinsD.J.ModalTesting,TheoryandPraetiee,1986

[9]EykhoffP.SystemIdentifieation,Wiley,NewYork,198

7

[10]DoebelinE.0.SystemModelingnadResponse,NewY

ork,1980

[11] 阎文兵,樊文欣.LD48O柴油机试验模态分析.

车用发动机,2001,4:28~31

[12] 赵伟敏.5195柴油机机体的有限元分析和试

验模态分析.车用发动机,2001,1:10~13 [13] 江金寿.车载火箭发射系统整体结构振动模

态试验.强度与环境,2000,:32一13

[14] 南京汽轮高新技术公司.随机信号与振动分

析系统,1997年

[15] 杨景义,王信义.试验模态分析.北京:北京理工

大学出版社,1990

[16] 李德葆,陆秋海.实验模态分析及其应用.北京:

科学出版社,2001

DHMA实验模态分析系统的概述

DHMA实验模态分析系统的概述 江苏东华测试技术有限公司推出的“DHMA实验模态分析系统”, 从激励信号、传感器、适调器、数据采集和分析软件到实验报告的生成,构成了完整的进行实验模态分析的硬件和软件条件。专业的技术培训,保证了用户可靠、准确、合理的使用本系统。 DHMA实验模态分析系统汇集了公司多年来硬件、软件研发经验,和广大用户对实验模态分析系统的改进意见,参考国内外实验模态分析领域专家学者的研究成果和指导意见,功能强大,特点鲜明:采用内嵌专业知识的软件模式,即使是非专业的用户也可以成功地进行模态实验;内嵌的工作流程保证符合质量标准的重复实验过程;强大的模态参数提取技术保证了高质量、不受操作者经验多寡的影响,即使对模态高度密集或阻尼很大的结构也游刃有余。 汽车白车身现场图片

汽车白车身一阶振型 针对不同实验对象的特点,本公司提供了三种具体的解决方案,满足了大多数用户的需求: 方案一:不测力法(环境激励)实验模态分析系统 不测力法实验模态分析(OMA)可用于对桥梁及大型建筑、运行状态的机械设备或不易实现人工激励的结构进行结构特性的动态实验。仅利用实测的时域响应数据,通过一定的系统建模和曲线拟合的方法识别结构的模态参数。桥梁及大型建筑、运行状态下的机械设备等不易实现人工激励的结构均可采用不测力法来进行实验模态分析。

方案二:锤击激励法实验模态分析系统 DHMA实验模态分析系统可以提供用户完整的锤击激励法实验模态分析完整的解决方案,是对被测结构用带力传感器的力锤施加一个已知的输入力,测量结构各点的响应,利用软件的频响函数分析模块计算得到各点频响函数数据。利用频响函数,通过一定的模态参数识别方法得到结构的模态参数。锤击激励法实验模态分析可分为单点激励法和单点拾振法。

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

ansys模态分析步骤

模态分析步骤 第1步:载入模型 Plot>Volumes 第2步:指定分析标题并设置分析范畴 1 设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2 选取菜单途径 Main Menu>Preference ,单击 Structure,单击OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框,单击Add出现Library of Element Types 对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出

现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步:进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击 OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis对话框,选择频率的起始值,其他保持不变,单击OK。 第7步:施加边界条件. 选取Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply或OK即可。第8步:指定要扩展的模态数。选取菜单途径Main Menu>Solution>Load Step Opts>ExpansionPass>Expand Modes,出现Expand Modes对话框,在number of modes to expand 处输入第6步相应的数字,单击 OK即可。(当选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应

试验模态分析的两种方法

试验模态分析的两种方法 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 试验模态分析主要有以下两种方法,OROS模态分析软件MODEL 2 完全具备了这两种常用的模态方 法。 锤击法模态测试 用于满足锤击法结构模态试验,以简明、直观的方法测量和处理输入力和响应数据,并显示结果。提供两种锤击方法:固定敲击点移动响应点和固定响应点移动敲击点。用力锤来激励结构,同时进行加速度和力信号的采集和处理,实时得到结构的传递函数矩阵。能够方便地设置测量参数,如触发量级、测量带宽和加窗类型,同时对最优的设置提供建议指导。 激振器法模态测试 主要是通过分析仪输出信号源来控制激振器,激励被测试件,输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SIMO)与多点同时激励法(MIMO)。 1)几何建模 结构线架模型生成,节点数和部件数没有限制,测量点DOF自动加到通道标示;建立几何模型,以3维方式显示测量和分析结果。结构模型可以作为单个部件的装配,及采用不同的坐标系(直角、圆柱、球体坐标系),要求除点的定义外,还可定义线和面,真实的显示试验结构。结构线架模型生成,节点数和部件数没有限制,测量点自由度自动加到通道标示。

环境振动下模态参数识别方法综述.

环境振动下模态参数识别方法综述 摘要:模态分析是研究结构动力特性的一种近代方法,是系统识别方法在工程振动领域中的应用。环境振动是一种天然的激励方式,环境振动下结构模态参数识别就是直接利用自然环境激励,仅根据系统的响应进行模态参数识别的方法。与传统模态识别方法相比,具有显著的优点。本文主要是做了环境振动下模态识别方法的一个综述报告。 关键词:环境振动模态识别综述 Abstract: The modal analysis is the study of structural dynamic characteristics of a modern method that is vibration system identification methods in engineering applications in the field. Ambient vibration is a natural way of incentives, under ambient vibration modal parameter identification is the direct use of the natural environment, incentives, based only on the response of the system for modal parameter identification method. With the traditional modal identification methods, has significant advantages. This paper is a summary report of the environmental vibration modal identification method. Keywords: Ambient vibration ;modal parameters ;Review 随着我国交通运输事业的发展,各种形式的大、中型桥梁不断涌现,由于大型桥梁结构具有结构尺大、造型复杂、不易人工激励、容易受到环境影响、自振频率较低等特点,传统模态参数识别技术在应用上的局限性越来越突出。传统的振动试验采用重振动器或落锤激励桥梁,需要投入大量人力和试验设备,激励成本增高,难度大,而且对于桥梁这样的大型复杂结构,激励(输入)往往很难测得,也不适合长期监测的实验模态分析。 环境振动是指振幅很小的环境地面运动。系由天然的和(或)人为的原因所造成,例如风、海浪、交通干扰或机械振动等,受激结构的振幅较小,但响应涵盖频率丰富。系统或者结构的模态参数包括:模态频率、模态阻尼、模态振型等。模态参数识别是系统识别的一部分,通过模态参数的识别可以了解系统或结构的动力学特性,这些动力特性可以作为结构有限元模型修正、故障诊断、结构实时监测的评定标准和基础。环境振动下的模态参数识别就是利用自然环境激励,根据结构的动

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。近十多年来,由于计算机技术、

FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。2)数据采集。SISO 方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO 及MIMO 的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时

各种模态分析方法总结及比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选项。然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

汽车车身模态分析研究综述

汽车车身模态分析研究综述 北京信息科技大学研1202班姓名:曹国栋学号:2012020045 摘要:车身是汽车的关键总成。它的构造决定了整车的力学特性,对白车身进行模态分析不仅能考察车身结构的整体刚度特性,而且可以指导人们对车身结构进行优化以及响应分析。因此,研究车身模态分析具有重要的意义。本文综述了近几年国内外在车身模态分析领域内的研究,总结了研究理论和试验方法,并进行归纳。最后,对未来的研究工作提出了一些展望。 关键词:车身;模态分析;有限元模态;试验模态;结构优化 0 前言 随着计算机技术的发展和仿真技术、有限元分析技术的提高,计算机辅助设计和分析技术几乎涵盖了涉及汽车性能的所有方面,如刚度、强度、疲劳寿命、振动噪声、运动与动力性分析、碰撞仿真和乘员保护、空气动力学特性等,各种计算机辅助设计软件为汽车设计提供了一个工具平台,极大地方便了汽车的设计。 车辆在行驶过程中,车身结构在各种振动源的激励下会产生振动,如发动机运转、路面不平以及高速行驶时风力引起的振动等。如果这些振源的激励频率接近于车身整体或局部的固有频率,便会发生共振现象,产生剧烈振动和噪声,甚至造成结构破坏。为提高汽车的安全性、舒适性和可靠性,就必须对车身结构的固有频率进行分析,通过结构设计避开各种振源的激励频率。 车身结构模态分析是新车型开发中有限元法应用的主要领域之一,是新产品开发中结构分析的主要内容。尤其是车身结构的低阶弹性模态,它不仅反映了汽车车身的整体刚度性能,而且是控制汽车常规振动的关键指标,应作为汽车新产品开发的强制性考核内容。有限元模态分析和试验模态分析方法是辨识汽车结构动态性能的一种有效的手段,在汽车车身动态性能研究中得到了广泛应用。采用有限元方法对白车身进行模态分析,识别出车身结构的模态参数,并通过模态试验验证了有限元模型的正确性,为改型设计提供参考依据,是汽车开发设计与优化的一般流程。 因此,研究车身结构模态分析,进行车身轻量化设计和优化,对于提高国产轿车的自开发与科技创新能力,具有重要的理论意义和工程实用价值。 1 车身模态分析的一般理论 1.1 模态分析基本理论 模态分析的经典定义即以模态矩阵作为变换矩阵,将线性定常系统振动微分方程组中的物理坐标进行坐标转换变到模态坐标上,从而使系统在原来坐标下的耦合方程变成一组互相独立的二阶常微分方程进而成为一组以模态坐标及模态参数描述的独立方程[1]。 在实际的结构动力分析中,一般将连续结构离散化为一个具有n个有限自由

基于ANSYS WORKBENCH轴承的模态分析

基于ANSYS WORKBENCH轴承的模态分析 1有限元模型的建立 利用proe软件进行建模,可以从原件库里面直接调用,也可以重新建模,建模无需建立装配模型,只需要在单体零件中直接建立轴承内外圈和球体,选择不合并实体,从而形 成多实体的单体零件。轴承元件之间的间隙可以消除。 ?三维模型的建立 三维模型的建立是数值模拟分析中重要、关键的环节。UG软件能够方便地建立复杂的 三维模型,企业提供的初始的轴承三维模型主体钢结构是由不同厚度的钢板焊接而成,模 型钢板之间存在较多的焊缝,导致模型存在不同大小的间隙,给后继有限元分析带来困难,而且模型结构复杂,且为三维实体,建立有限元模型的过程中,要在符合结构力学特性的 前提下建立模型,有必要对结构做合理的简化。其主要简化说明如下: (1).忽略零件中一些微小特征。螺栓孔、倒圆角等一些微小的结构对结果准确性的 影响很小,所以建模时不考虑这些微小几何图元; (2).所有焊接位置不允许出现裂缝、虚焊等工艺缺陷,认为在焊接位置材料是连续的,直接填充间隙; (3).轴承模型附件品种繁多,形状复杂,且对机架的刚度和强度影响不大,在计算 模型中只要考虑其自重即可,例如料斗、辊子、走台、链板等其它辅助设备。 ?材料属性 结构用钢均采用Q235碳素结构钢材,Q235的弹性模量E=2.1e11N/m2,密度7830 kg/m3,剪切模量为81000MPa,泊松比为0.3,模型材料为各向同性。 表1 材料Q235许用应力一览表: MPa (N/mm2) Tab.1 List of Material Q235 Allowable stress: MPa (N/mm2)

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

机械结构的模态分析方法研究综述

机械模态分析与实验 学院:机电工程学院 专业:机械制造及其自动化 姓名:马阳 班级:研1302 学号:2013020049

机械结构的模态分析方法研究综述 马阳 摘 要:模态分析是研究机械结构动力特性的一种近代方法,是指通过计算或实验获得机构的固有频率、阻尼比和模态振型等模态参数的过程,是结构动态设计及设备的故障诊断的重要方法。本文对模态分析的基本概念、研究目的、分类、分析方法、发展历程、发展现状和展望一一作了阐述。 关键词:模态分析;模态参数;模态识别;非线性模态 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用[1]。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态析是结构动态设计及设备的故障诊断的重要方法[2]。 1 模态分析概述 1.1 模态分析定义 模态分析的经典定义是:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型[3]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊 断和预报以及结构动力特性的优化设计提供依据。 1.2 模态分析基础 1.2.1 无阻尼的情况 实际的机械结构在计算的过程中常常会被简化成多自由度系统。该系统为线性时不变系统。多自由度振动系统可以写成如下的耦合方程形式,可以用矩阵来表示如下: 上式中X 为系统每个自由度的位移向量,对应着系统的各个自由度,M 为系统的质量矩阵,C 为系统的阻尼阵,K 为系统的刚度矩阵,F(t)为系统所受的外力。 为了求解方便,首先考虑没有阻尼的特殊情况(C=0)。 []{()}{()}{()}M X t K X t f t ??+= (1) 设,st X e s jw ψ== 为了求解上式,考虑外力为0时的自由振动齐次解。得到特征方程: 2[][]0Det w M K -+= 由特征方程可以求得特征值(固有频率),与固有频率一一对应可以求得满足式(1)等于0的{}{}{}12,,n ψψψ值,即为求得的特征向量。振动模态之间有正交性,可以证明: ()M X C X KX F t ???++=

第10章 周期对称结构的模态分析

第十章周期对称结构的模态分析 ANSYS的周期对称分析支持静力(Static)分析和模态(Modal)分析。静力分析支持线性和大变形非线性;模态分析支持带有预应力的模态分析和不带有预应力的两种,关于带有预应力的模态分析本书第九章有专门讲述。本章只讲述不带有预应力的模态分析。在静力分析和模态分析这两种分析类型中,关于模型建立部分的要求是一致的,不同的是在进行模态分析时需要指定求解的节径数以及指定对于每个节径数的求解的模态阶数。对于每个节径,ANSYS均将其作为一个载荷步。ANSYS将周期对称边界条件施加于每一载荷步,并且每求解一个载荷步(即节径)后,都将构成周期对称边界条件的约束方程删除(保留任何用户自定义的约束方程)。在静力分析中ANSYS只求解零节径,而在模态分析中默认将求解全部节径。 本章中介绍的实例依然是第7章的轮盘,包括模型和边界条件。 10.1 问题描述 某型压气机盘,见7.1节的对其描述。要求查看其低阶频率结构和振动模态。 10.2 建立模型 在周期对称分析中,在建立模型后,划分网格之前,需要指定周期对称选项。 10.2.1 设定分析作业名和标题 在进行一个新的有限元分析时,通常需要修改数据库文件名(原因见第二章),并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。 (1)选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图10.1所示。

模态分析与参数识别

模态分析方法在发动机曲轴上的应用研究 xx (xx大学 xxxxxxxx学院 , 山西太原 030051) 摘要:综述模态分析在研究结构动力特性中的应用,介绍模态分析的两大方法:数值模态分析与试验模态分析。并着重介绍目前的研究热点一一工作模态分析。通过发动机曲轴的模态分析这一具体的实例,综述了运行模态分析国内外研究现状,指出了其关键技术、存在问题以及研究发展方向。 关键词:模态分析数值模态试验模态工作模态 Abstract :Sums up methods of model analysis applied on the research of configuration dynamic;al characteristio. It introduces two methods of model analysis: numerical value model analysis and experimentation model analysis. Then it stresses the hotspot-working model analysis.Some key techniques, unsolved problems and research directions of OMA were also discussed. Key words:Model analysis Numerical value model analysis Experimentation model analysis Working model analysis 1、引言 1.1模态分析的基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。

模态分析综述

模态分析综述 1、前言 最初是听师兄们说起“模态”这么名词的,但由于各种原因刚开始对模态没有过多的关注,后来选课的时候师兄们极力推荐褚老师的模态分析课,说以后用处很大,于是就毅然决然的选了褚老师的结构模态分析理论与应用这门课。初次上这课并不怎么听得懂,但却被褚老师幽默风趣的讲课风格所吸引!另外褚老师世界著名的振动噪声测量及分析解决方案供应商Brüel&K?jr中国公司外聘技术专家、技术总工程师的头衔也深深地震撼了我,并且也激发了我去深入了解模态的兴趣,于是在上网和查阅了一些书籍之后对模态分析有了一定的认识,然而遗憾的是目前对于常用的模态分析软件ansys还不是很熟练,所以也就只好先写一下自己对于模态分析的认知了,还望老师海涵! 模态分析是近代才被用来研究结构动力特性的一种方法,是被用在工程振动领域中的系统识别上的。模态是机械结构固有的振动特性,每一个模态都具有自己特定的固有频率、阻尼比和模态振型。我想这应该就像每个人都具有自己独特的DNA一样吧,可以根据这个特性来辨识每个人的身份。机械结构的这些模态参数通常是计算机或者实验分析来获得的,而进行计算或者分析的过程就被称之为模态分析。模态分析的过程应该和人类的DNA检测差不多吧。通常将通过试验把采集到的系统输入与输出信号经过参数识别获得模态参数的方法称为试验模态分析。通过模态分析的方法可以搞清楚结构物在某一个易受影响的频率范围内的各阶主要模态的特性,这样就可以预先知道结构在此频段内在外部或者内部各种振源作用下所产生的实际振动响应。也正因此模态分析成为了结构动态设计以及设备故障诊断的重要方法。其实这样看来,模态分析的过程真的和DNA检测相类似,通过DNA检测也可以知道某个人是否存在先天的生理病因,并及时的得到预防和治疗。 2、模态分析的发展过程 模态分析技术是起源于上世纪30年代所提出来的将机电进行比拟机械阻抗技术。然而在当时由于测试技术及计算机技术的限制,模态分析技术在很长的时期

模态分析基本内容简介

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。 概述 振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。 用处

模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 最佳悬挂点 模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。 最佳激励点 最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。 最佳测试点 模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。在最佳测试点位置其AD DOF(Average Driving DOF Displacement)值应该较大,一般可用EI(Effective Independance)法确定最佳测试点。 模态参数有那些 模态参数有:模态频率、模态振型、模态质量、模态向量、模态刚度和模态阻尼等。 主模态主空间主坐标 无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。 模态截断

相关主题