搜档网
当前位置:搜档网 › MC9S12XS128指令集

MC9S12XS128指令集

MC9S12XS128指令集
MC9S12XS128指令集

MC9S12XD指令集(字母检索表)

MC9S12XS128 AD转换详解

A/D转换模块详解 1、A/D转换原理 A/D转换的过程是模拟信号依次通过取样、保持和量化、编码几个过程后转换为数字格式。 a)取样与保持 一般取样与保持过程是同时完成的,取样-保持电路的原理图如图16所示,由输 入放大器A 1、输出放大器A 2 、保持电容C H 和电子开关S组成,要求 A V1 * A V2 = 1。原 理是:当开关S闭合时,电路处于取样阶段,电容器充电,由于 A V1 * A V2 = 1,所以 输出等于输入;当开关S断开时,由于A 2输入阻抗较大而且开关理想,可认为C H 没有 放电回路,输出电压保持不变。 图16 取样-保持电路 取样-保持以均匀间隔对模拟信号进行抽样,并且在每个抽样运算后在足够的时间内保持抽样值恒定,以保证输出值可以被A/D 转换器精确转换。 b)量化与编码 量化的方法,一般有舍尾取整法和四舍五入法,过程是先取顶量化单位Δ,量化单位取值越小,量化误差的绝对值就越小,具体过程在这里就不做介绍了。将量化后的结果用二进制码表示叫做编码。 2、A/D转换器的技术指标 a)分辨率 分辨率说明A/D转换器对输入信号的分辨能力,理论上,n位A/D转换器能区分的输入电压的最小值为满量程的1/2n 。也就是说,在参考电压一定时,输出位数越多,量化单位就越小,分辨率就越高。S12的ATD模块中,若输出设置为8位的话,那么转换器能区分的输入信号最小电压为19.53mV。 b)转换时间

A/D转换器按其工作原理可以分为并联比较型(转换速度快ns级)、逐次逼近型(转换速度适中us级)、双积分型(速度慢抗干扰能力强)。 不同类型的转化的A/D转换器转换时间不尽相同,S12的ATD模块中,8位数字 量转换时间仅有6us,10位数字量转换时间仅有7us。 S12内置了2组10位/8位的A/D模块:ATD0和ATD1,共有16个模拟量输入通道,属于逐次逼近型A/D转换器(这个转换过程与用天平称物的原理相似)。 1、功能结构图 图17 A/D 模块功能结构图 图17所示的是A/D 模块的功能结构,这个功能模块被虚线划分成为图示所示的虚线所隔离的三个部分:IP总线接口、转换模式控制/寄存器列表,自定义模拟量。 IP 总线接口负责该模块与总线的连接,实现A/D 模块和通用I/O 的目的,还起 到分频的作用; 转换模式控制寄存器列表中有控制该模块的所有的寄存器,执行左右对齐运行和连 续扫描。 自定义模拟量负责实现模拟量到数字量的转换。包括了执行一次简单转换所需的模 拟量和数字量。 2、HCS12中A/D转化模块特点 8/10 位精度;7 us, 10-位单次转换时间.;采样缓冲放大器;可编程采样时间;左/ 右对齐, 有符号/无符号结果数据;外部触发控制;转换完成中断;模拟输入8 通道复用;模拟/数字输入引脚复用;1到8转换序列长度;连续转换模式;多通道扫描方式。 ATD 模块有模拟量前端、模拟量转换、控制部分及结果存储等四部分组成。其中模拟前端包括多路转换开关、采样缓冲器、放大器等,结果存储部分主要有8个16 位的存储器和反映工作状态的若干标志位。 A/D转换应用实例 要让ATD 开始转换工作,必须经过以下三个步骤: 1.将ADPU 置1,使ATD 启动;

Android 应用程序内存泄漏的分析

Android 应用程序内存泄漏的分析以前在学校里学习Java的时候,总是看到说,java是由垃圾收集器(GC)来管理内存回收的,所以当时形成的观念是Java不会产生内存泄漏,我们可以只管去申请内存,不需要关注内存回收,GC会帮我们完成。呵呵,很幼稚的想法,GC没那么聪明啊,理论及事实证明,我们的Java程序也是会有内存泄漏的。 (一)Java内存泄漏从何而来 一般来说内存泄漏有两种情况。一种情况如在C/C++语言中的,在堆中的分配的内存,没有将其释放,或者是在没有将其释放掉的时候,就将所有能访问这块内存的方式都删掉(如指针重新赋值);另一种情况则是在内存对象明明已经不需要的时候,还仍然保留着这块内存和它的访问方式(引用)。第一种情况,在Java中已经由于垃圾回收机制的引入,得到了很好的解决。所以,Java中的内存泄漏,主要指的是第二种情况。 (二)需要的工具 1.DDMS—Update heap Gause GC Heap 是DDMS自带的一个很不错的内存监控工具,下图红色框中最左边的图标就是该 工具的启动按钮,它能在Heap视图中显示选中进程的当前内存使用的详细情况。下图 框中最右边的是GC工具,很多时候我们使用Heap监控内存的时候要借助GC工具,点 击一次GC按钮就相当于向VM请求了一次GC操作。中间的按钮是Dump HPROF file,它 的功能相当于给内存拍一张照,然后将这些内存信息保存到hprof文件里面,在使用我 们的第二个工具MAT的时候会使用到这个功能。 2.MAT(Memory Analyzer Tool) Heap工具能给我们一个感性的认识,告诉我们程序当前的内存使用情况和是否存在内存 泄漏的肯能性。但是,如果我们想更详细,更深入的了解内存消耗的情况,找到问题所 在,那么我们还需要一个工具,就是MAT。这个工具是需要我们自己去下载的,可以下 载独立的MAT RCP 客户端,也可以以插件的形式安装到Eclipse里面,方便起见,推荐 后者。 安装方法: A.登录官网https://www.sodocs.net/doc/0119167035.html,/mat/downloads.php B.下载MAT Eclipse插件安装包(红框所示,当然你也可是选择Update Site在线安装,个人觉得比较慢)

C++程序设计实践教程思考题答案

实验1 C++基础 6.编写程序,输入某大写字母的ASCII码值,输出该字母的对应小写字母。 #include using namespace std; int main() { int i; cin>>i; if(i>=65 && 1<=90 ) cout< #include using namespace std; int main()

{ float a,b,c; 潣瑵?请输入直角三角形的两条边长:; cin>>a>>b; c=sqrt(a*a+b*b); 潣瑵?直角三角形的斜边=< using namespace std; int main() { char c; 1 潣瑵?请输入一个字符:; cin>>c; if(c>='A'&& c<='Z') c+='a'-'A'; cout<

3.输入一个学生的成绩,如高于60分,则输出“pass”;否则,输出“failed”。 #include using namespace std; int main() { float grade; 潣瑵?请输入成绩:; cin>>grade; if(grade>=60) cout<

SDRAM内存详解(经典)

SDRAM内存详解(经典) 我们从内存颗粒、内存槽位接口、主板和内存之间的信号、接口几个方面来详细阐述SDRAM内存条和主板内存系统的设计思路... 虽然目前SDRAM内存条价格已经接底线,内存开始向DDR和Rambus内存过渡。但是由于DDR内存是在SDRAM基础上发展起来的,所以详细了解SDRAM内存的接口和主板设计方法对于设计基于DDR内存的主板不无裨益。下面我们就从内存颗粒、内存槽位接口、主板和内存之间的信号接口几个方面来详细阐述SDRAM内存条和主板内存系统的设计思路。 内存颗粒介绍 对于DRAM(Dynamic Random Access Memory)内存我想凡是对于计算机有所了解的读者都不会陌生。这种类型的内存都是以一个电容是否充有电荷来作为存储状态的标志,电容冲有电荷为状态1,电容没有电荷为状态0。其最大优点是集成度高,容量大,但是其速度相对于SRAM (Static Random Access Memory) 内存来说慢了许多。目前的内存颗粒封装方式有许多种,本文仅仅以大家常见的TSSOP封装的内存颗粒为例子。 其各个管脚的信号定义和我们所使用的DIMM插槽的定义是相同的,对于不同容量的内存,地址信号的位数有所不同。另外一个需要注意的地方就是其供电电路。Vcc和Vss是为内存颗粒中的存储队列供电,而VccQ和VssQ是为内存颗粒中的地址和数据缓冲区供电。两者的作用不同。 我们对内存颗粒关心的问题主要是其颗粒的数据宽度(数据位数)和容量(寻址空间大小)。而对于颗粒自检、颗粒自刷新等等逻辑并不需要特别深入的研究,所以对此我仅仅是一笔带过,如果读者有兴趣的读者可以详细研究内存颗粒的数据手册。虽然内存颗粒有这么多的逻辑命令方式,但是由于目前北桥芯片和内存颗粒的集成度非常高,只要在布线和元器件的选择上严格按照内存规范来设计和制造,需要使用逻辑分析仪来调试电路上的差错的情况比较少,并且在设计过程中尽量避免出现这种情况。 168线DIMM内存插槽的信号定义  我们目前PC和Server使用的内存大都是168 Pins的SDRAM,区别只是其工作频率有的可能是100MHz频率,有的可能是133MHz频率的。但是只要是SDRAM,其DIMM插槽的信号定义是一样的。而这些引脚得定义就是设计内存条和主板所必须遵从的规范。 内存引脚主要分为如下几类:地址引脚、数据引脚(包含校验位引脚)、片选等控制信号、时钟信号。整个内存时序系统就是这些引脚上的信号配合产生。下面的表中就是内存插槽的引脚数量和引脚定义,对于一些没有定义或者是保留以后使用的信号就没有列出来。 符号功能详细描述 DQ [0-63] I/O 数据输入/输出 CB [0-7] I/O ECC内存的ECC校验输入/输出 A [0-13] I/O 地址选择 BA [0-1] Control Bank选择 CS [0-3] Control 片选信号 RAS Control 行地址选择信号 CAS Control 列地址选择信号 DQMB [0-7] Control 数据掩码控制(DQ Mask)高有效* WE Control 写允许信号 CK [0-3] Clock 时钟信号 CKE [0-1] Clock 时钟允许信号** REGE Control 寄存器 (Registered) 允许信号

vb程序设计实验教程习题答案

实验教材实验一 1:单项选择题: A A C C C D C B B C 2:填空题: (1).bas (2).vbp,.frm (3)视图工具箱 (4)对象 (5)属性对象事件方法 (6)Windows (7)事件行为 (8)窗体模块 实验二 1:单项选择题: A D C C A B A B D C B B C B C B A B D C 2:基本运算题: (1)27 (2)3.33333333333333 (3)3 (4)0 (5)-3 (6)2 (7)ab33 (8)类型不匹配 (9)3 (10)AB3 实验三 1:单项选择题: B C B D C 2:填空题: (1)300 (2)321456 (3)Shanghai (4)6 7 6 (5)True (6)2+3=5 (7)”area=” 12.56 (8)VISUAL 实验四 1:单项选择题: C A A C A 2:填空题: (1)7 (2)3 5

(3)输入的数小于0 (4)3 (5)False (6)2010 is not leap year. 试验五 1:单项选择题: A C C A B A C C C B 2:填空题: (1)9 (2)①n ②1 (3)①Len(a) ②n\2 ③Mid(a,(n-i+1),1) ④Mid(a,(n-i+1),1) (4)①n Mod 3=1 And n Mod 5=1 And n Mod 7=1 ②While CountN<5 (5)Mid(c1,1,i) 实验六 1:单项选择题: D B D C D A C A D D 2:填空题: (1)30 (2)3 (3)①a(2) ②a(3) ③a(1) (4)①1 ②2 ③a(i)=a(6-i) (5)①i+j ②0 ③a(i,j) (6)①Print ②k ③a(k,j)=a(j,k) ④a(k,j); 实验七 1:单项选择题: A B B A C B 2:填空题: (1)15 (2)①Preserve a(n+1) ②a(i+1)=a(i) ③Exit For ④a(i+1)=m⑤0 to n+1 (或LBound(a) to UBound(a)) (3)d,c,b,a 实验八 1:单项选择题: C A D B D C A C B 2:填空题: (1)a=9 b=4 (2) 36 25 16 9 4 1 (3)①a ②UBound(b) ③

VB程序设计教程(第3版)课后实验答案最新版2

1、完成实验A(P.259)中的第1、 2、 3、5题。 2、参照第2章例2.6,建立一个类似记事本的应用程序,提供:(1) 剪切、复制和粘贴的编辑操作;(2) 字体大小的格式设置;此外,再对记事本的应用程序的功能进行一点扩允。 1.完成在实验B 顺序结构程序。(P.262)中的第1、2 、4 、5.、6题 2.完成实验C 选择结构(P.266)中的第1、2、4、5题 3.用上面实验B的第二题和实验C的第二题完成下面的实验报告。 1、完成实验D循环结构(P.268)中的第1、3、4、6题,其中第1题利用单循环结构显示如图D.1(P.268)所示的界面,而后将图形改为倒三角形。 2、选做实验E数组(P.271)中的第1、2、3题中的任意二题 3、以实验D中的第4题和实验E中的做完的某一题完成下面的实验报告。 A.1 Private Sub Command1_Click() Label3 = Text1 End Sub A.2 Private Sub Form_Load() Timer1.Interval = 0 End Sub Private Sub Command1_Click() '自动 Timer1.Interval = 200 End Sub Private Sub Command2_Click() '手动 Timer1.Interval = 0 Call MyMove End Sub Private Sub Timer1_Timer() Call MyMove End Sub Sub MyMove() Label1.Move Label1.Left - 50 If Label1.Left < 0 Then Label1.Left = Form1.Width End Sub A.3 Private Sub Form_Click() Text1 = Val(Text1) + 1 End Sub Private Sub Form_Load() Text1 = 0 End Sub A.5

飞思卡尔MC9S12XS128技术手册翻译AD

飞思卡尔MC9S12XS128技术手册(AD转换部分) 英文资料:飞思卡尔MC9S12XS256RMV1官方技术手册 1.1 XS12系列单片机的特点 XS12系列单片机特点如下: ·16位S12CPU —向上支持S12模糊指令集并去除了其中的MEM, WAV, WAVR, REV, REVW 五条指令; —模块映射地址机制(MMC); —背景调试模块(BDM); ·CRG时钟和复位发生器 —COP看门狗; —实时中断; ·标准定时器模块 —8个16位输入捕捉或输出比较通道;; —16位计数器,8位精密与分频功能; —1个16位脉冲累加器; ·周期中断定时器PIT —4具有独立溢出定时的定时器; —溢出定时可选范围在1到2^24总线时钟; —溢出中断和外部触发器; ·多达8个的8位或4个16位PWM通道 —每个通道的周期和占空比有程序决定; —输出方式可以选择左对齐或中心对其; —可编程时钟选择逻辑,且可选频率范围很宽; ·SPI通信模块 —可选择8位或16位数据宽度;

—全双工或半双工通信方式; —收发双向缓冲; —主机或从机模式; —可选择最高有效为先输出或者最低有效位先输出; ·两个SCI串行通信接口 —全双工或半双工模式 ·输入输出端口 —多达91个通用I/O引脚,根据封装方式,有些引脚未被引出; —两个单输入引脚; ·封装形式 —112引脚薄型四边引线扁平封装(LQFP); —80引脚扁平封装(QFP); —64引脚LQFP封装; ·工作条件 —全功率模式下单电源供电范围3.15V到5V; —CPU总线频率最大为40MHz —工作温度范围–40 C到125 C 第十章模拟—数字转换 10.1 介绍 ADC12B16C是一个16通道,12位,复用方式输入逐次逼近模拟—数字转换器。 ATD的精度由电器规格决定。 10.1.1 特点 ·可设置8位、10位、12位精度 ·在停止模式下,ATD转换使用内部时钟 ·转换序列结束后自动进入低耗电模式 ·可编程采样时间 ·转化结果可选择左对齐或右对齐

android如何查看cpu的占用率和内存泄漏

android如何查看cpu的占用率和内存泄漏 在分析内存优化的过程中,其中一个最重要的是我们如何查看cpu的占用率和内存的占用率呢,这在一定程度上很重要,经过查询资料,研究了一下,暂时了解到大概有以下几种方式,如果哪位高手有更好的办法,或者文中描述有错误,还望高手在下面留言,非常感谢! 一、通过eclipse,ADT开发工具的DDMS来查看(Heap) 在“Devices”窗口中选择模拟器中的一个需要查看的程序,从工具条中选“Update heap”按钮,给这个程序设置上“heap Updates”,然后在Heap视图中点击Cause GC就可以实时显示这个程序的一些内存和cpu的使用情况了。

然后就会出现如下界面: 说明: a) 点击“Cause GC”按钮相当于向虚拟机请求了一次gc操作; b) 当内存使用信息第一次显示以后,无须再不断的点击“Cause GC”,Heap视图界面会定

时刷新,在对应用的不断的操作过程中就可以看到内存使用的变化; c) 内存使用信息的各项参数根据名称即可知道其意思,在此不再赘述。 大致解析如下: 这个就是当前应用的内存占用,allocated 是已经分配的内存free是空闲内存, heap size 是虚拟机分配的不是固定值 heap size 的最大值跟手机相关的 有网友说, 一般看1byte的大部分就是图片占用的 如何判断应用是否有内存泄漏的可能性呢? 如何才能知道我们的程序是否有内存泄漏的可能性呢。这里需要注意一个值:Heap视图中部有一个Type叫做data object,即数据对象,也就是我们的程序中大量存在的类类型的对象。在data object一行中有一列是“Total Size”,其值就是当前进程中所有Java数据对象的内存总量,一般情况下,这个值的大小决定了是否会有内存泄漏。可以这样判断: a) 不断的操作当前应用,同时注意观察data object的Total Size值; b) 正常情况下Total Size值都会稳定在一个有限的范围内,也就是说由于程序中的的代码良好,没有造成对象不被垃圾回收的情况,所以说虽然我们不断的操作会不断的生成很多对象,而在虚拟机不断的进行GC的过程中,这些对象都被回收了,内存占用量会会落到一个稳定的水平; c) 反之如果代码中存在没有释放对象引用的情况,则data object的Total Size值在每次GC 后不会有明显的回落,随着操作次数的增多Total Size的值会越来越大, 直到到达一个上限后导致进程被kill掉。

DDR系列内存详解及硬件设计规范-Michael

D D R 系列系列内存内存内存详解及硬件详解及硬件 设计规范 By: Michael Oct 12, 2010 haolei@https://www.sodocs.net/doc/0119167035.html,

目录 1.概述 (3) 2.DDR的基本原理 (3) 3.DDR SDRAM与SDRAM的不同 (5) 3.1差分时钟 (6) 3.2数据选取脉冲(DQS) (7) 3.3写入延迟 (9) 3.4突发长度与写入掩码 (10) 3.5延迟锁定回路(DLL) (10) 4.DDR-Ⅱ (12) 4.1DDR-Ⅱ内存结构 (13) 4.2DDR-Ⅱ的操作与时序设计 (15) 4.3DDR-Ⅱ封装技术 (19) 5.DDR-Ⅲ (21) 5.1DDR-Ⅲ技术概论 (21) 5.2DDR-Ⅲ内存的技术改进 (23) 6.内存模组 (26) 6.1内存模组的分类 (26) 6.2内存模组的技术分析 (28) 7.DDR 硬件设计规范 (34) 7.1电源设计 (34) 7.2时钟 (37) 7.3数据和DQS (38) 7.4地址和控制 (39) 7.5PCB布局注意事项 (40) 7.6PCB布线注意事项 (41) 7.7EMI问题 (42) 7.8测试方法 (42)

摘要: 本文介绍了DDR 系列SDRAM 的一些概念和难点,并分别对DDR-I/Ⅱ/Ⅲ的技术特点进行了论述,最后结合硬件设计提出一些参考设计规范。 关键字关键字::DDR, DDR, SDRAM SDRAM SDRAM, , , 内存模组内存模组内存模组, , , DQS DQS DQS, DLL, MRS, ODT , DLL, MRS, ODT , DLL, MRS, ODT Notes : Aug 30, 2010 – Added DDR III and the PCB layout specification - by Michael.Hao

MATLAB程序设计教程课后答案

实验指导 1、 n=input('请输入一个三位数:'); a=fix(n/100); b=fix((n-a*100)/10); c=n-a*100-b*10; d=c*100+b*10+a 2(1) n=input('请输入成绩'); switch n case num2cell(90:100) p='A'; case num2cell(80:89) p='B'; case num2cell(70:79) p='C'; case num2cell(60:69) p='D'; otherwise p='E'; end price=p (2)n=input('请输入成绩'); if n>=90&n<=100 p='A'; elseif n>=80&n<=89 p='B'; elseif n>=70&n<=79 p='C'; elseif n>=60&n<=69 p='D'; else p='E'; end price=p (3)try n; catch price='erroe' end 3 n=[1,5,56,4,3,476,45,6,3,76,45,6,4,3,6,4,23,76,908,6]; a=n(1);

for m=2:20 if n(m)>a a=n(m); elseif n(m)=0 disp(A([n],:)); elseif n<0 disp(lasterr); else disp(A([6],:)); disp(lasterr); end 7(1) f=[]; for n=1:40

DDR内存时序设置详解

内存时序设置详解 内容概要 关键词:内存时序参数设置 导言:是否正确地设置了内存时序参数,在很大程度上决定了系统的基本性能。本文详细介绍了内存时序相关参数的基本涵义及设置要点。 与传统的SDRAM相比,DDR(Dual date rate SDRSM:双倍速率SDRAM),最重要的改变是在界面数据传输上,其在时钟信号上升缘与下降缘时各传输一次数据,这使得DDR 的数据传输速率为传统SDRAM的两倍。同样地,对于其标称的如DDR400,DDR333,DDR266数值,代表其工作频率其实仅为那些数值的一半,也就是说DDR400 工作频率为200MHz。 FSB与内存频率的关系 首先请大家看看FSB(Front Side Bus:前端总线)和内存比率与内存实际运行频率的关系。 FSB/MEM比率实际运行频率 1/1 200MHz 1/2 100MHz 2/3 133MHz 3/4 150MHz 3/05 120MHz 5/6 166MHz 7/10 140MHz 9/10 180MHz 对于大多数玩家来说,FSB和内存同步,即1:1是使性能最佳的选择。而其他的设置都是异步的。同步后,内存的实际运行频率是FSBx2,所以,DDR400的内存和200MHz的FSB正好同步。如果你的FSB为240MHz,则同步后,内存的实际运行频率为240MHz x 2 = 480MHz。

FSB与不同速度的DDR内存之间正确的设置关系 强烈建议采用1:1的FSB与内存同步的设置,这样可以完全发挥内存带宽的优势。内存时序设置 内存参数的设置正确与否,将极大地影响系统的整体性能。下面我们将针对内存关于时序设置参数逐一解释,以求能让大家在内存参数设置中能有清晰的思路,提高电脑系统的性能。 涉及到的参数分别为: ?CPC : Command Per Clock ?tCL : CAS Latency Control ?tRCD : RAS to CAS Delay ?tRAS : Min RAS Active Timing ?tRP : Row Precharge Timing ?tRC : Row Cycle Time ?tRFC : Row Refresh Cycle Time ?tRRD : Row to Row Delay(RAS to RAS delay) ?tWR : Write Recovery Time ?……及其他参数的设置 CPC : Command Per Clock 可选的设置:Auto,Enable(1T),Disable(2T)。 Command Per Clock(CPC:指令比率,也有翻译为:首命令延迟),一般还被描述为DRAM Command Rate、CMD Rate等。由于目前的DDR内存的寻址,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。

c语言程序设计实践教程答案完整版

4.2练习题 一、选择题 1.D 2.B 3.A 4.B和D 5.C 6.A 7.B 二、填空题 1.//或/* */ 2.主或main 3.函数首部和函数体4.编译和连接 5.分号 5.2练习题 一、选择题 1.A 2.D 3.B 4.B 5.C 6.C 7.D 8.A 9.B 10.B 11.D 12.B 13.A或B 14.C 15.B

17.D 18.D 19.C 20.D 21.B 22.A 23.D 24.C 25.C 26.B 27.C 28.D 29.A 30.B 二、填空题 1.102,10 2.#define 宏名字符串 3.1 4.n=1 5.-4 6.a=1,b= ,c=2 7.c=A 8.n1=%d\nn2=%d 9.a+b>c&&a+c>b&&b+c>a 10.ch>=’a’&&ch<=’z’|| ch>=’A’&&ch<=’Z’11.7 12.0 13.8,4 6.2练习题 一、选择题 1.A 2.C 3.D 4.C 5.A 6.B

8.D 9.B 10.C 11.A 12.A 13.C 14.B 15.正确答案为: 二、填空题 1.10 2.y=1 x%i==0 3.屏幕中间输出一个由星号组成的菱形4.1 5.13 6.(cx=getchar())!=-1 front=cx; 7.m%n 8.4 9.*p px=&x py=&y 三、读程序,写结果 1.-1 2.3,1,-1, 3.a=16,y=60 4.x=12,y=4 5.59 7.2练习题 一、选择题 1.B 2.C 3.C 4.A 5.D 6.C 7.D

MC9S12XS128终极例程

SCI程序 串行通信时MCU与外部设备之间进行通信的一种简单而有效的硬件方法。 无论用查询方式还是中断方式进行串行通信编程,在程序初始化时均必须对SCI进行初始化。初始化主要包括波特率设置、通信格式的设置、发送接收数据方式的设置等。 对SCI进行初始化,需要设置如下几部分: (1)定义波特率 一般选内部总线时钟为串行通信的时钟源。通过设置SCI波特率寄存器SCI0BD的波特率选择位SBR[12:0],来选择合适的分频系数。 (2)写控制字到SCI控制寄存器1(SCI0CR1) 设置是否允许SCI、数据长度、输出格式、选择唤醒方法、是否校验等。 (3)写控制字到SCI控制寄存器2(SCI0CR2) 设置是否允许发送与接收、是中断接收还是查询接收等。 串行通信程序如下: /** write in “Init.h” **/ #include /* common defines and macros */ #include "derivative.h" /* derivative-specific definitions */ //void InitBusClk(void); //可以不使用锁相环 void InitSci(void); /** write in “Init.c” **/ //初始化程序 #include "Init.h" /* //------------初始化Bus Clock------------// void InitBusClk(void) { DisableInterrupts; CLKSEL=0X00; //PLLSEL 1 : Bus Clock=PLLCLK/2 // 0 : Bus Clock=OSCCLK/2 PLLCTL_PLLON=1; //开启PLL SYNR=0; //OSCCLK=16MHz REFDV=0X0F; //PLLCLK=2*OSCCLK*[(1+SYNR)/(1+REFDV]=32/16=2MHz while(!(CRGFLG_LOCK==1)); //直到LOCK=1,when PLL is ready,退出循环 CLKSEL_PLLSEL=1; //PLLSEL 1 : Bus Clock=PLLCLK/2=2MHz/2=1MHz // 0 : Bus Clock=OSCCLK/2=16M/2=8MHz } */

安卓性能优化方案

随着技术的发展,智能手机硬件配置越来越高,可是它和现在的PC相比,其运算能力,续航能力,存储空间等都还是受到很大的限制,同时用户对手机的体验要求远远高于PC的桌面应用程序。以上理由,足以需要开发人员更加专心去实现和优化你的代码了。选择合适的算法和数据结构永远是开发人员最先应该考虑的事情。同时,我们应该时刻牢记,写出高效代码的两条基本的原则:(1)不要做不必要的事;(2)不要分配不必要的内存。 我从去年开始接触Android开发,以下结合自己的一点项目经验,同时参考了Google的优化文档和网上的诸多技术大牛给出的意见,整理出这份文档。 1. 内存优化 Android系统对每个软件所能使用的RAM空间进行了限制(如:Nexus o ne 对每个软件的内存限制是24M),同时Java语言本身比较消耗内存,d alvik虚拟机也要占用一定的内存空间,所以合理使用内存,彰显出一个程序员的素质和技能。 1) 了解JIT 即时编译(Just-in-time Compilation,JIT),又称动态转译(Dynamic Translation),是一种通过在运行时将字节码翻译为机器码,从而改善字节码编译语言性能的技术。即时编译前期的两个运行时理论是字节码编译和动态编译。Android原来Dalvik虚拟机是作为一种解释器实现,新版

(Android2.2+)将换成JIT编译器实现。性能测试显示,在多项测试中新版本比旧版本提升了大约6倍。 详细请参考https://www.sodocs.net/doc/0119167035.html,/cool_parkour/blog/item/2802b01586e22cd8a6ef3f6b. html 2) 避免创建不必要的对象 就像世界上没有免费的午餐,世界上也没有免费的对象。虽然gc为每个线程都建立了临时对象池,可以使创建对象的代价变得小一些,但是分配内存永远都比不分配内存的代价大。如果你在用户界面循环中分配对象内存,就会引发周期性的垃圾回收,用户就会觉得界面像打嗝一样一顿一顿的。所以,除非必要,应尽量避免尽力对象的实例。下面的例子将帮助你理解这条原则: 当你从用户输入的数据中截取一段字符串时,尽量使用substring函数取得原始数据的一个子串,而不是为子串另外建立一份拷贝。这样你就有一个新的String对象,它与原始数据共享一个char数组。如果你有一个函数返回一个String对象,而你确切的知道这个字符串会被附加到一个Stri ngBuffer,那么,请改变这个函数的参数和实现方式,直接把结果附加到StringBuffer中,而不要再建立一个短命的临时对象。 一个更极端的例子是,把多维数组分成多个一维数组: int数组比Integer数组好,这也概括了一个基本事实,两个平行的int数组比(int,int)对象数组性能要好很多。同理,这试用于所有基本类型的组合。如果你想用一种容器存储(Foo,Bar)元组,尝试使用两个单独的Foo[]

详解内存工作原理及发展历程

详解内存工作原理及发展历程 RAM(Random Access Memory)随机存取存储器对于系统性能的影响是每个PC 用户都非常清楚的,所以很多朋友趁着现在的内存价格很低纷纷扩容了内存,希望借此来得到更高的性能。不过现在市场是多种内存类型并存的,SDRAM、DDR SDRAM、RDRAM等等,如果你使用的还是非常古老的系统,可能还需要EDO DRAM、FP DRAM(块页)等现在不是很常见的内存。 虽然RAM的类型非常的多,但是这些内存在实现的机理方面还是具有很多相同的地方,所以本文的将会分为几个部分进行介绍,第一部分主要介绍SRAM 和异步DRAM(asynchronous DRAM),在以后的章节中会对于实现机理更加复杂的FP、EDO和SDRAM进行介绍,当然还会包括RDRAM和SGRAM等等。对于其中同你的观点相悖的地方,欢迎大家一起进行技术方面的探讨。 存储原理: 为了便于不同层次的读者都能基本的理解本文,所以我先来介绍一下很多用户都知道的东西。RAM主要的作用就是存储代码和数据供CPU在需要的时候调用。但是这些数据并不是像用袋子盛米那么简单,更像是图书馆中用有格子的书架存放书籍一样,不但要放进去还要能够在需要的时候准确的调用出来,虽然都是书但是每本书是不同的。对于RAM等存储器来说也是一样的,虽然存储的都是代表0和1的代码,但是不同的组合就是不同的数据。 让我们重新回到书和书架上来,如果有一个书架上有10行和10列格子(每行和每列都有0-9的编号),有100本书要存放在里面,那么我们使用一个行的编号+一个列的编号就能确定某一本书的位置。如果已知这本书的编号87,

C程序设计教程与实验实验答案

#include void main() { int i; static int a[8]={10,5,4,0,12,18,20,46}; void jhmaxmin(); printf("Original array:\n"); for(i=0;i<8;i++) printf("%5d",a[i]); printf("/n"); jhmaxmin(a,8); printf("Array after swapwing max and min: \n"); for(i=0;i<8;i++) printf("%5d",a[i]); printf("\n"); } void jhmaxmin(int p[],int n) { int t,*max,*min,*end,*q; end=p+n; max=min=p; for(q=p+1;q*max) max=q; if(*q<*min) min=q; } t=*max; *max=*min; *min=t; } Sy8-2 #include int len(char s[]) { char *p=s; while (*p!='\0')p++; return p-s; } main() { char s[80]; gets(s); printf("\"%s\"include %d characters.\n",s,len(s)); }

#include #include void main() { int i,a[26]; char ch,str[80],*p=str; gets(str); for(i=0;i<26;i++) a[i]=0; while(*p!='\0') { ch=*(p++); ch=ch>'A'&&ch<='Z'?ch+'a'-'A':ch; if('a' main() { int a[8],*p; int i,j,t,k; p=a; printf("Input the numbers:"); for(i=0;i<8;i++) scanf("%d",p+i); t=*p; for(i=0;i<8;i++) { for(j=i;j<8;j++) if(j==i||*(p+j)

内存基本知识详解

内存这样小小的一个硬件,却是PC系统中最必不可少的重要部件之一。而对于入门用户来说,可能从内存的类型、工作频率、接口类型这些简单的参数的印象都可能很模糊的,而对更深入的各项内存时序小参数就更摸不着头脑了。而对于进阶玩家来说,内存的一些具体的细小参数设置则足以影响到整套系统的超频效果和最终性能表现。如果不想当菜鸟的话,虽然不一定要把各种参数规格一一背熟,但起码有一个基本的认识,等真正需要用到的时候,查起来也不会毫无概念。 内存种类 目前,桌面平台所采用的内存主要为DDR 1、DDR 2和DDR 3三种,其中DDR1内存已经基本上被淘汰,而DDR2和DDR3是目前的主流。 DDR1内存 第一代DDR内存 DDR SDRAM 是Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。 DDR2内存

第二代DDR内存 DDR2 是DDR SDRAM 内存的第二代产品。它在DDR 内存技术的基础上加以改进,从而其传输速度更快(可达800MHZ ),耗电量更低,散热性能更优良。 DDR3内存 第三代DDR内存

DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit预读升级为8bit预读。DDR3目前最高能够1600Mhz的速度,由于目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,因而首批DDR3内存模组将会从1333Mhz的起跳。 三种类型DDR内存之间,从内存控制器到内存插槽都互不兼容。即使是一些在同时支持两种类型内存的Combo主板上,两种规格的内存也不能同时工作,只能使用其中一种内存。 内存SPD芯片 内存SPD芯片 SPD(Serial Presence Detect): SPD是一颗8针的EEPROM(Electrically Erasable Programmable ROM 电可擦写可编程只读存储器), 容量为256字节,里面主要保存了该内存的相关资料,如容量、芯片厂商、内存模组厂商、工作速度等。SPD的内容一般由内存模组制造商写入。支持SPD的主板在启动时自动检测SPD中的资料,并以此设定内存的工作参数。 启动计算机后,主板BIOS就会读取SPD中的信息,主板北桥芯片组就会根据这些参数信息来自动配置相应的内存工作时序与控制寄存器,从而可以充分发挥内存条的性能。上述情况实现的前提条件是在BIOS设置界面中,将内存设置选项设为“By SPD”。当主板从内存条中不能检测到SPD信息时,它就只能提供一个较为保守的配置。 从某种意义上来说,SPD芯片是识别内存品牌的一个重要标志。如果SPD内的参数值设置得不合理,不但不能起到优化内存的作用,反而还会引起系统工作不稳定,甚至死机。因此,很多普通内存或兼容内存厂商为了避免兼容性问题,一般都将SPD中的内存工作参数设置得较为保守,从而限制了内存性能的充分发挥。更有甚者,一些不法厂商通过专门的读

C#程序设计基础教程与实训习题答案

附录Ⅰ各章习题答案 第1章C#语言概述 一、判断题 1、√ 2、× 3、√ 4、× 5、√ 6、√ 7、× 8、× 二、选择题 1、C 2、B 3、C 4、A 5、A 6、B 7、B 8、B 三、填空题 1、最新的;面向对象 2、C和C++;JA V A 3、先进设计思想;安全性能 4、灵活性 5、集成开发环境(IDE)——Visual https://www.sodocs.net/doc/0119167035.html, 6、Microsoft .NET Framework(微软.NET框架体系) 7、最基本的通用语言运行时库CLR(Common Language Runtime);一些提供了具体功能的类库 8、需要开发和设计的项目文件;应用程序或组件 四、简答题 1、①简洁易用的语法。②自动的资源回收机制。③与Web的紧密结合。④完整的安全性与错误处理。⑤版本处理技术。⑥灵活性和兼容性。 2、C#程序必须包含一个Main方法,Main方法是程序的入口点,程序控制在该方法中开始和结束。该方法用来执行任务,并在任务完成后返回信息。 第2章常用标准控件 一、判断题 1、× 2、× 3、√ 4、× 5、√ 6、× 7、√ 8、√ 二、选择题 1、A 2、C 3、B 4、D 5、A 6、B 7、B 8、D 三、填空题 1、输入/输出信息 2、属性 3、事件 4、TextAlign 5、Click 6、文本框(TextBox) 7、保证数据标准化 8、Show 四、简答题 1、简述生成控件的操作过程。 (1)单击工具箱中相应的工具按钮,这一按钮呈现被按下状态,表明被选定。 (2)移动鼠标到窗体上,这时鼠标的指针变成十字形,在需要放置控件的左上角位置按下鼠标左键。 (3)在窗体范围内向下向右拖动鼠标,这时窗体上会显示一个矩形框,当其大小合适时,松开鼠标左键,窗体上就会显示一个相应大小的这种控件。 另外一种快捷的方法是在工具箱中相应的工具按钮上双击此按钮,窗体上就会出现一个系统默认大小的所选按钮。 2、消息框有多少种Button参数设置? OK:只显示“确定”按钮 OKCancel:显示“确定”和“取消”按钮 AbortRetryIgnore:显示“终止”、“重试”和“忽略”按钮 YesNoCancel:显示“是”、“否”和“取消”

相关主题