搜档网
当前位置:搜档网 › 免疫抑制药物的作用和机制及临床应用

免疫抑制药物的作用和机制及临床应用

免疫抑制药物的作用和机制及临床应用
免疫抑制药物的作用和机制及临床应用

抗肿瘤药物的作用机制

抗肿瘤药物的作用机制 1.细胞生物学机制 几乎所有的肿瘤细胞都具有一个共同的特点,即与细胞增殖有关的基因被开启或激活,而与细胞分化有关的基因被关闭或抑制,从而使肿瘤细胞表现为不受机体约束的无限增殖状态。从细胞生物学角度,诱导肿瘤细胞分化,抑制肿瘤细胞增殖或者导致肿瘤细胞死亡的药物均可发挥抗肿瘤作用。 2.生化作用机制 (1)影响核酸生物合成:①阻止叶酸辅酶形成;②阻止嘌呤类核苷酸形成;③阻止嘧啶类核苷酸形成;④阻止核苷酸聚合;(2)破坏DNA结构和功能;(3)抑制转录过程阻止RNA 合成;(4)影响蛋白质合成与功能:影响纺锤丝形成;干扰核蛋白体功能;干扰氨基酸供应;(5)影响体内激素平衡。 烷化剂烷化剂可以进一步分为: 氮芥类:均有活跃的双氯乙基集团,比较重要的有氮芥、苯丁酸氮芥、环磷酰胺(CTX)、异环磷酰胺(IFO)等。其中环磷酰胺为潜伏化药物需要活化才能起作用。目前临床广泛用于治疗淋巴瘤、白血病、多发性骨髓瘤,对乳腺癌、肺癌等也有一定的疗效。 该药除具有骨髓抑制、脱发、消化道反应,还可以引起充血性膀胱炎,病人出现血尿,临床在使用此药时应鼓励病人多饮水,达到水化利尿,减少充血性膀胱炎的发生。还可以配合应用尿路保护剂美斯纳。 亚硝脲类:最早的结构是N-甲基亚硝脲(MNU)。以后,合成了加入氯乙集团的系列化合物,其中临床有效的有ACNU、BCNU、CCNU、甲基CCNU等,链氮霉素均曾进入临床,但目前已不用。其中ACNU、BCNU、CCNU、能通过血脑屏障,临床用于脑瘤及颅内转移瘤的治疗。主要不良反应是消化道反应及迟发性的骨髓抑制,应注意对血象`的观测,及时发现给予处理。 乙烯亚胺类:在研究氮芥作用的过程中,发现氮芥是以乙烯亚胺形式发挥烷化作用的,因此,合成了2,4,6-三乙烯亚胺三嗪化合物(TEM),并证明在临床具有抗肿瘤效应,但目前在临床应用的只有塞替派。此药用于治疗卵巢癌、乳腺癌、膀胱癌,不良反应主要为骨髓抑制,注意对血象定期监测。 甲烷磺酸酯类:为根据交叉键联系之复合成的系列化合物,目前临床常用的只有白消安(马利兰)。临床上主要用于慢性粒细胞白血病,主要不良反应是消化道反应及骨髓抑制,个别病人可引起纤维化为严重的不良反应。遇到这种情况应立即停药,更换其它药物。 其他:具有烷化作用的有达卡巴嗪(DTIC)、甲基苄肼(PCZ)六甲嘧胺(HHN)等。环氧化合物,由于严重不良反应目前已被淘汰。 抗代谢药物抗代谢类药物作用于核酸合成过程中不同的环节,按其作用可分为以下几类药物: 胸苷酸合成酶抑制剂:氟尿嘧啶(5-FU)、呋喃氟尿嘧啶(FT-207)、二喃氟啶(双呋啶FD-1)、优氟泰(UFT)、氟铁龙(5-DFUR)。 抗肿瘤作用主要由于其代谢活化物氟尿嘧啶脱氧核苷酸干扰了脱氧尿嘧啶苷酸向脱氧胸腺嘧啶核苷酸转变,因而影响了DNA的合成,经过四十年的临床应用,成为临床上常用的抗肿瘤药物,成为治疗肺癌、乳腺癌、消化道癌症的基本药物。 不良反应比较迟缓,用药6-7天出现消化道粘膜损伤,例如:口腔溃疡、食欲不振、恶心、呕吐、腹泻等,一周以后引起骨髓抑制。而连续96小时以上粘腺炎则成为其主要毒性反应。临床上如长时间连续点滴此类药物应做好病人的口腔护理,教会病人自己学会口腔清洁的方法,预防严重的粘膜炎发生。

重金属镉毒性作用机制研究报告进展

重金属镉的毒性作用机制研究进展 环境科学11级龙家寰 2018021256 摘要:近年来,随着工业三废排放和污水污泥农用的增多,土壤镉污染问题日益严重,而土壤中过量的镉会对作物产生毒害,尤其是在可食部分的残留将会通过食物链危害人类的健康。本文综述了镉的危害,归纳了影响镉在土壤中的生物毒性的主要因素, 如土壤性质、复合污染及植物种类等。 关键词:镉,生物毒性机制,土壤镉污染 Abstract:In recent years,cadmium pollution of soil is increasingly serious with the growing of three industrial wastes and sewage sludge agricultural use.However,excessive cadmium pollution of soil can poison the crops,especially residual in the edible parts.And humans may be endangered by the poisoned crops through food chain.The review has summarized the harm of cadmium and conclude the main factors of the biotoxicity of the cadmium in soil,e.g.soil property,soil combined pollution of other heavy metal and floristics. Keywords:Cadmium,biotoxicity,Cadmium pollution of soil 随着现代工业的迅猛发展,环境污染对人体健康的影响日益严重,有关环境有毒物质对机体的毒性作用及其机制的研究受到普遍关注。镉作为一种重要的工业、环境污染物,因其对环境水、空气和土壤的污染而在动植物体内蓄,最终导致对人类健康的危害。镉的环境污染问题自20世纪20年代就已伴随锌的生产开始出现,但直到1968年在日本的富山县神通川流域出现了痛痛病之后,有关镉污染及其生物毒性问题才真正引起全世界的关注。镉污染问题已受到世界各国高度重视,美国毒性管理委员会(ATSRD>已把镉列为第六位危害人体健康的有毒物质<杨劲松,2006),联合国环境规划署(DNFP>也把镉列入重点研究的环境污染物,世界卫生组织(WTO>则将其作为优先研究的食品污染物。 1.重金属镉 镉位于周期系第II B族,是一种灰色而有光泽的金属,原子量为112.41,密度为 8.642g/cm3,镉的熔点为321.03℃,沸点为765℃,有延性和展性,可弯曲。镉的化合价为2,常温下镉在空气中会迅速失去光泽,表面上生成棕色氧化镉,可防止镉进一步氧化。镉不溶于水,能溶于硝酸、醋酸,在稀盐酸和稀硫酸中缓慢溶解。镉盐大多数为无色, 但硫化物为黄色或橙色。镉(Cd>是生物毒性最强的重金属元素,在环境中的化学活性强,移动性大,毒性持久,容易通过食物链的富集作用危及人类健康,对人体具有三致( 致病、致癌、致突变>作用,能诱发肾衰变、关节炎、癌症等病

药理学抗菌药物概论

第三十八章 抗菌药物概论 基本要求 重点难点 讲授学时 内容提要 1.1掌握①抗菌药物的常用术语;②抗菌药物的作用机制;③细菌耐药性。 1.2熟悉抗菌药物合理应用原则。 2 重点难点 [TOP] 2.1 重点 抗菌药物的常用术语;抗菌药物的作用机制。 细菌耐药性。 1. 抗菌药 能抑制或杀灭细菌,用于预防和治疗细菌性感染的药物。抗菌药包括人工 合成抗菌药(喹诺酮类等)和抗生素。 2. 抗生素 是微生物(细菌、真菌和放线菌属)的代谢产物,分子量较低( <5000), 低浓度时能杀灭或抑制其他病原微生物。抗生素包括天然抗生素和人工半合成抗生素两类。 3?抗菌谱 抗菌药抑制或杀灭病原微生物的范围。 4?抗菌活性药物抑制或杀灭细菌的能力。可用体内和体外两种方法测定。 5. 抑菌药(bacteriostatic drugs ) 是指仅具有抑制细菌生长繁 殖而无杀灭细菌作用的 抗菌药物。 6. 杀菌药(bactericidal drugs ) 是指不但具有抑制细菌生长、繁殖的作用而且具有杀 灭细菌作用的抗菌药物,如青霉素类、头孢菌素类、氨基苷类等。 7. 最低抑菌浓度(MIC ) 药物能够抑制培养基内细菌生长的最低浓度。 &最低杀菌浓度(MBC ) 药物能够杀灭培养基内细菌的最低浓度。 3讲授学时 [TOP] 抗菌药物的基本概念

9.化疗指数一般可用动物实验的LD 50/ED 50或LD 5/ED 95的比值表示。 10.抗菌后效应将细菌暴露于浓度高于MIC 的某种抗菌药后,再去除培养基中的抗菌药,去除抗菌药后的一定时间范围内细菌繁殖不能恢复正常,这种现象称为抗菌后效应或抗生素后效应。 11.首次接触效应( first expose effect ) 是抗菌药物指在初次接触细菌时有强大的抗菌效应,再度接触或连续与细菌接触,并不明显地增强或再次出现这种明显的效应,需要间隔相当时间(数小时)以后,才会再起作用 第二节各类抗菌药物的作用机制 1. 化疗药物对病原体的作用,主要是与干扰病原体的生化代谢过程,影响病原体的结构与功能。 2. 抗菌药物作用机制以及主要作用的药物 (1)干扰细菌细胞壁的合成: 3 -内酰胺类抗生素。 (2)损伤细菌细胞膜及其功能:多肽类抗生素中的多黏菌素B、多黏菌素E,多烯类抗生素的两性霉素B、制霉菌素。 (3)影响细菌蛋白质的合成:①影响核糖体循环多个环节:氨基苷类抗生素;②抑制 核糖体30s 亚基功能:四环素类抗生素;③抑制核糖体50s 亚基功能:氯霉素、林可霉素类、大环内酯类抗生素。 (4)影响细菌体内叶酸和核酸的代谢合成:①影响细菌的叶酸代谢:磺胺类药物;② 抑制细菌的核酸合成:喹诺酮类抗菌药,利福平。 第三节细菌的耐药性 耐药性分为固有耐药性 (天然耐药性) 与获得耐药性两种。固有耐药性是指基于药物作用机制的一种内在的耐药性。获得耐药性是指某种细菌对某种抗菌药不具有固有耐药性,其耐药基因是后天获得的。使用抗菌药是形成获得耐药性的重要原因之一,也是抗菌药物临床应用中的一个严重问题。 1.获得耐药性的几种表现 (1)产生灭活酶,水解酶:3 -内酰胺酶使3 -内酰胺类抗生素耐药。 ( 2)产生合成酶氨基苷类抗生素钝化酶,氯霉素乙酰转移酶。 (3)抗菌药物作用靶位的改变:青霉素结合蛋白(PBPs)改变导致对3 -内酰胺类抗生 素的亲和力下降。 (4)细菌胞浆膜通透性改变:多黏菌素类抗生素难通过革兰阳性球菌的细胞壁。

免疫抑制剂

免疫抑制剂的用药护理 免疫抑制剂定义 是一类通过抑制细胞及体液免疫反应,而使组织损伤得以减轻的化学或生物物质。其具有免疫抑制作用,可抑制机体异常的免疫反应,目前广泛应用于器官移植抗排斥反应和自身免疫性疾病的治疗。 免疫抑制剂的分类 1、钙调素抑制剂类:环孢菌素CsA类、他克莫司(FK506) 2、抗代谢类:硫唑嘌呤、霉酚酸脂(MMF) 3、激素类:甲强龙、醋酸泼尼松 4、生物制剂:抗T细胞球蛋白(ATG)、抗淋巴细胞球蛋白(ALG) 免疫抑制剂用药原则 1、预防性用药:环孢素A、FK506、霉酚酸脂(MMF)等。 2、治疗/逆转急性排斥反应(救治用药):MP(甲基强的松龙)、ALG或ATG、霉酚酸脂(MMF)、FK506等。 3、诱导性用药(因急性肾小管坏死而出现延迟肾功能、高危病人、二次移植、环孢素肾毒性病人):ATG、ALG等。 4、二联:激素(醋酸泼尼松)+抗代谢类(骁悉) 三联:激素(醋酸泼尼松)+抗代谢类(骁悉)+环孢素A(新山地明) 激素(醋酸泼尼松)+抗代谢类(骁悉)+FK506(他克莫司) 常用免疫抑制剂 1、环孢素(CsA):新山地明(进口)田可、赛斯平(国产) 作用机理

属于钙神经蛋白抑制剂,可以选择性抑制免疫应答,通过破坏使T细胞活化的细胞因子的表达,阻断参与排斥反应的体液和细胞效应机制,防止排斥反应的发生。 药物的吸收和代谢 新山地明受进食和昼夜节律的影响较山地明小,所以服药时间不必将用餐考虑在内。 环孢素A依靠胆汁排泄,肝功能障碍,胆汁淤积症或严重胃肠功能障碍都会影响环保素A的吸收和代谢。只有极少部分药物经肾脏排出,且不能经透析去除,所以对于肾脏功能不全者和需透析治疗的患者,均不需调整药物浓度。 副作用 (1)肾毒性:血清肌酐、尿素氮增高;肾功能损害。个体差异大,临床表现不典型,与其他原因引起的移植肾损害很难鉴别。且发生肾损害时,血药浓度可能正常,甚至偏低。 (2)接近半数的患者会出现肝脏毒性,其发生率与用药量密切相关。 (3)神经毒性:表现为肢体震颤、失眠、烦躁等。 (4)胃肠道反应:恶心、呕吐。 (5)其他并发证:高血压、高胆固醇血症、高钾血症、牙龈增生、糖尿病、多毛症。 用量 联合用药时:初始剂量为6~8mg/kg/d,Q12h,以后根据血药浓度调整。 注意事项 (1)严格按医嘱服药,定时服药,禁忌自行调整用药剂量。

抗菌药物的分类及其机制 附抗菌表

抗菌药物的分类及其机制附抗菌表 (一)分类 1.β-内酰胺类抗生素 2.氨基糖苷类抗生素 3.大环内酯类抗生素 4.林可霉素和克林霉素 5.多肽类抗生素 6.喹诺酮类抗菌药 7.抗真菌药物 (二)简介 1.β-内酰胺类抗生素 特点:结构上均含β-内酰胺环 包括:(1)青霉素类,(2)头孢菌素类,(3)头霉素类,(4)碳青霉烯类,(5)单环β-内酰胺类,(6)与β-内酰胺酶抑制剂的合剂。 (1)青霉素类 青霉素G及口服青霉素V钾片 耐酶青霉素(苯唑西林、氯唑西林、双氯西林、氟氯西林等)针对产青霉素酶葡萄球菌;耐甲氧西林金黄色葡萄球菌株(MRSA)对本品耐药。

广谱青霉素(氨苄西林、替卡西林、阿洛西林、美洛西林及哌拉西林等)抗G-杆菌活力强,对绿脓杆菌亦有良效。 美洛西林对G+球菌作用较强。 近年新合成的氨基酸青霉素阿扑西林(Aspoxicillin)抗菌谱更广,除MRSA及耐药肠球菌外,其他G+、G-球菌杆菌对本品均敏感,针对胞壁、胞膜有双重杀菌作用,生物利用度好。 抗G-菌青霉素有美洛西林、替莫西林(temocillin)及福米西林(fomidacilli n),前者仅对部分肠杆菌科细菌有高效,后两者对β-内酰胺酶稳定,对G-球、杆菌和绿脓杆菌活力强,比其他青霉素类强10~20倍。 (2)头孢菌素类 第一代头孢菌素对G+球菌作用强,炭疽杆菌和白喉杆菌也高度敏感,对G-菌中的脑膜炎球菌、克雷伯杆菌、大肠杆菌、流感杆菌和奇异变形杆菌也有活力。头孢唑啉和头孢拉定可作为第一代的代表。 第二代头孢菌素对酶的稳定性增强,主要作用于大部分肠杆菌科、流感杆菌和奈瑟菌属等G-菌,对G+球菌略逊于第一代,对绿脓杆菌、沙雷杆菌、不动杆菌及阴沟杆菌多无效。品种有头孢呋辛、头孢孟多及头孢替安(cefotian),后者抗菌谱广,对除脆弱类杆菌外的厌氧菌也有较高活力。头孢克洛为口服制剂,可抑制所有流感杆菌和90%卡他莫拉菌,常用于呼吸道感染。 第三代头孢菌素对β-内酰胺酶更稳定,抗G-菌作用更强,对沙雷杆菌、绿脓杆菌也有效,常用于重症感染、院内感染和颅内感染。

抗癫痫药物的作用机制包括

肾上腺皮质激素 一、糖皮质激素 1、作用机制:脂溶性糖皮质激素透过细胞膜,与胞浆中糖皮质激素受体GR结合,移位进入细胞核,与特异性DNA位点—糖皮质激素反应成分(GRE)或负性糖皮质激素反应成分(nGRE)结合,启动基因转录,增加或减少相关蛋白的表达水平,发挥生理或药理作用。 2、根据半衰期长短,糖皮质激素可分为: 短效型:氢化可的松、可的松; 中效型:泼尼松、泼尼松龙; 长效型:倍他米松、地塞米松。 3、药理作用: 1)对代谢的影响: - 糖代谢:升高血糖(促进糖异生,减少组织对葡糖糖的利用,减慢糖氧化); - 脂质代谢:升高胆固醇,脂肪向心性分布(大剂量长期应用); - 蛋白质代谢:促进分解,负氮平衡;抑制合成(大剂量); - 水和电解质:盐皮质激素样作用,保钠排钾;钙离子排出增加。 2)抗炎作用: 急性抗炎作用: - 增加炎症抑制蛋白或酶,抑制NOS,COX2,增加脂皮素、血管内皮素等抗炎介质的生成,减少前列腺素、白三烯、NO等炎症介质的生成; - 抑制细胞因子的合成:TNFα, IL-1, IL-2, IL-5, IL-6, IL-8; - 抑制黏附因子的合成; - 诱导炎症细胞凋亡。 慢性抗炎作用:抑制成纤维细胞增生和胶原蛋白沉积,抑制瘢痕形成防止粘连 3)免疫抑制和抗过敏作用:诱导T淋巴细胞核B淋巴细胞凋亡和DNA降解,抑制DNA 和蛋白质合成;抑制转录因子NF- B;抑制肥大细胞(抗过敏) 4)允许作用:本身对某些组织细胞无作用,但可给其他激素的发挥作用创造有利条件,如儿茶酚胺的缩血管作用和胰高血糖素升高血糖的作用。 5)抗休克:特别是中毒性休克、过敏性休克等:抑制炎症反应,提高机体对内毒素耐受力,改善微循环,稳定溶酶体膜,兴奋心脏。 6)其他作用:解热作用;刺激骨髓造血;增加中枢神经系统兴奋性;促进消化;骨质疏松;增强应激能力。 4、临床应用 1)自身免疫性疾病、器官移植排斥反应和过敏性反应; 2)严重急性感染或预防炎症后遗症; 3)抗休克治疗:及早、短时、大剂量使用; 4)血液病:儿童急性淋巴细胞性白血病、再障、血小板减少症、过敏性紫癜等; 5)替代疗法:原发性或继发性肾上腺皮质功能减退症; 6)局部应用:皮肤病、封闭、滴鼻; 7)恶性肿瘤:晚期或转移性乳腺癌、前列腺癌。 5、不良反应和注意事项: 1)医源性肾上腺皮质功能亢进; 2)诱发和加重感染; 3)高血压、动脉粥样硬化、脑卒中;

常见药物的药理作用特点与机制

第一重点:药物的药理作用(特点)与机制 1. 毛果芸香碱:M样作用,M受体激动药(用阿托品拮抗)。缩瞳、调节眼内压和调节痉挛。用于青光眼。 2. 新斯的明:胆碱脂酶抑制剂。用于重症肌无力,术后腹气胀及尿潴留,阵发性室上性心动过速,肌松药的解毒。禁用于支气管哮喘,机械性肠梗阻,尿路阻塞。M样作用可用阿托品拮抗。 3. 碘解磷定:胆碱脂酶复活药,有机磷酸酯类中毒的常用解救药。应临时配置,静脉注射。 4. 阿托品:M受体阻滞药。竞争性拮抗Ach或拟胆碱药对M胆碱受体的激动作用。用于解除平滑肌痉挛,抑制腺体分泌,虹膜睫状体炎,眼底检查,验光,抗感染中毒性休克,抗心律失常,解救有机磷酸酯类中毒。禁用于青光眼及前列腺肥大患者禁用。用镇静药和抗惊厥药对抗阿托品的中枢兴奋症状,同时用拟胆碱药毛果芸香碱或毒扁豆碱对抗“阿托品化”。同类药物莨菪碱。合成代用品:扩瞳药:后马托品。解痉药:丙胺太林。抑制胃酸药:哌纶西平。溃疡药:溴化甲基阿托品。 5. 东莨菪碱山莨菪碱作用特点:东莨菪碱中枢镇静及抑制腺体分泌作用强于阿托品。还有防晕止吐作用,可治疗帕金森氏病。山莨菪碱可改善微循环。主要用于各种感染中毒性休克,也用于治疗内脏平滑肌绞痛,急性胰腺炎。 6. 筒箭毒碱:肌松作用,全麻辅助药。呼吸肌麻痹用新斯的明解救。 7. 琥珀胆碱:速效短效肌松药,插管时作为全麻辅助药。禁用于胆碱酯酶缺乏症病人,与氟烷合用体温巨升的遗传病人,青光眼,高血钾患者(持续去极化,释放K过多)如偏瘫、烧伤病人,以免引起心脏意外。使用抗胆碱脂酶药患者禁用。 8. 去甲肾上腺素:α受体激动药。用于休克,上消化道出血。不良反应有局部组织坏死,急性肾功能衰竭,停药后的血压下降。禁用于高血压、动脉粥样硬化,器质性心脏病,无尿病人与孕妇。主要机理为收缩外周血管。 9. 去氧肾上腺素(苯肾上腺素):α1受体激动药,防治脊髓麻醉或全身麻醉的低血压。速效短效扩瞳药。 10. 可乐定:α2受体激动药。用于降血压。中枢性降压药。降压快而强,使用于中度高血压。尚可用于偏头痛以及开角型青光眼的治疗,也用于吗啡类镇痛药成瘾者的戒毒。(见后) 11. 肾上腺素:α、β受体激动药。用于心脏停搏,过敏性休克,支气管哮喘,减少局麻药的吸收,局部止血。不良反应:剂量过大可发生心律失常,脑溢血,心室颤动。禁用于器质性心脏病,高血压,冠状动脉粥样硬化,甲状腺机能亢进及糖尿病。主要机理为兴奋心脏,兴奋血管,舒张支气管平滑肌。 12. 多巴胺:α、β受体激动药。作用特点:主要激动多巴胺受体,也能激动α和β1受体,用于抗休克。可与利尿药合用治疗急性肾功能衰竭。(对肾脏的特色是直接激动肾脏的多巴胺受体,增加肾脏血流量,排钠利尿,注意补充血容量,纠正酸中毒)。可用于抗慢性心功能不全。 13. 间羟胺作用特点:激动α受体,作用弱而持久,用于各种休克早期。 14. 麻黄碱:α、β受体激动药,较肾上腺素弱而持久。特点是有中枢作用。可产生快速耐药性,停药一定时间后可恢复。用于防止低血压,治疗鼻塞,过敏,缓解支气管哮喘。大量长期应用可引起失眠、不安、头痛、心悸。

常用免疫抑制剂

常用免疫抑制剂 一、激素类药物 主要为甲基强的松龙(methylprednisolone)和强的松(prednisolone),前者在术后近期及急性排斥时静脉注射,以预防和治疗急性排斥;后者为术后口服维持。 作用机制:对免疫反应的许多环节均有影响,主要是抑制巨噬细胞对抗原的吞噬和处理;也阻碍淋巴细胞DNA合成和有丝分裂,破坏淋巴细胞,使外周淋巴细胞数明显减少,并损伤浆细胞,从而抑制细胞免疫反应和体液免疫反应,缓解变态反应对人体的损害。 副作用:骨质疏松、溃疡病、糖尿病、高血压等。 二、细胞毒类药物 1.硫唑嘌呤,Azathioprine (依木兰,Imuran) 作用机制:主要抑制DNA、RNA和蛋白质合成。对T细胞的抑制较明显,并可抑制两类母细胞,故能抑制细胞免疫和体液免疫反应,但不抑制巨噬细胞的吞噬功能。 副作用:抑制骨髓使白细胞、血小板减少;肝功能损害;感染等。 2.霉酚酯酸(mycophenolate mofetil, MMF,商品名:骁悉CellCept) 作用机制:特异性抑制T和B淋巴细胞增殖,抑制抗体形成和细胞毒T细胞的分化。 副作用:1)消化道不适:食道炎、胃炎、腹痛、腹泻和消化道出血。2)血液:中性白细胞减少症、血小板减少症和贫血。 三、钙调素抑制剂 1.环孢素(ciclosporin,cyclosporinA) 作用机制:可选择性作用于T淋巴细胞活化初期。辅助性T细胞被活化后可生成增殖因子白细胞介素2(interleukin2,IL-2),环孢素可抑制其生成;但它对抑制性T细胞无影响。它的另一个重要作用是抑制淋巴细胞生成干扰素。 副作用:多毛、震颤、胃肠道不适、齿龈增生以及肝、肾毒性;亦可见乏力、厌食、四肢感觉异常、高血压、闭经及抽搐发作等。 2.普乐可复(Prograf),又称FK506或他克莫司(tacrolimus) 作用机制:作用机制与环孢素相同,主要是抑制白细胞介素-2的合成,作用于T细胞,抑制T细胞活化基因的产生(对 -干扰素和白细胞介素-2等淋巴因子的mRNA转录有抑制作用),同时还抑制白细胞介素-2受体的表达,但不影响抑制型T细胞的活化。与环孢素相比,有如下特点:1)免疫作用是环孢素的数十倍到数百倍。2)可减少肝、肾移植受体的急、慢性排斥反应。3)细菌和病毒感染率也较环孢素治疗者低,尤其是本品有较强的亲肝性,对肝移植的功效高100倍,因而大大降低了临床使用剂量,可降低原治疗费用1/3~1/2,同时不良反应也明显降低。 副作用:最常见的不良反应有震颤、思维紊乱、低磷血症、失眠、视力障碍和呕吐等,偶见中枢神经系统和感觉异常,消化系统、呼吸系统、心血管系统失调,皮肤瘙痒等。 四、生物制剂类

第二章 第二节 药物作用机制

第二节药物作用机制 一、非特异性药物作用机制 非特异性药物的作用与化学结构无关,而与药物理化性质有关。如:1.渗透压作用硫酸镁的导泻作用,甘露醇的脱水作用 2.脂溶作用全麻药对CNS的麻醉作用 3.影响pH 抗酸药治疗溃疡(弱碱性化合物,中和胃酸)4.络合作用络合剂解除金属、类金属的中毒 5.沉淀蛋白醇、酚、醛、酸可致细菌蛋白变性、沉淀而杀菌 二、特异性药物作用机制 特异性药物的作用与化学结构密切相关。如: 1.干扰或参与代谢过程 影响酶的活性新斯的明抑制胆碱酯酶;碘解磷定复活胆碱酯酶。2.影响生物膜的功能 抗心律失常药影响Na+、Ca2+或K+的转运而发挥作用。 多粘菌素损伤细菌的胞浆膜,使膜通透性增加而产生抗菌作用。3.影响体内活性物质 乙酰水杨酸抑制体内PG的合成而发挥解热、镇痛和抗炎作用。4.影响递质释放或激素分泌 麻黄碱既直接激动Ad受体,又促NE能神经末梢释放递质。 格列齐特可促进胰岛素分泌而使血糖降低。

5.影响受体功能 受体:(receptor) 是存在于细胞膜或细胞内的一种能选择性地与相应配体结合,传递信息并产生特定生理效应的大分子物质(主要为糖蛋白或脂蛋白,也可以是核酸或酶的一部分)。 受点(receptor-site) 受体上与配体立体特异性结合的部位。 配体:(ligand) 内源性配体:神经递质、激素、自体活性物质 外源性配体:药物 D + R ===== DR →??????→E 【受体类型】 根据分布部位 1.细胞膜受体 2.胞浆受体 3.胞核受体 根据受体蛋白结构、信息转导过程、效应性质、受体位置等特点 1.含离子通道的受体 2.G蛋白偶联受体 3.具有酪氨酸激酶活性的受体 4.调节基因表达的受体 【受体命名】 药物受体和受体亚型,目前兼用药理学和分子生物学的命名方法。【受体学说】 (一)占领学说 (二)备用受体学说 (三)速率学说 (四)变构学说 (五)能动受体学说

抗病毒药作用机制及应用范围

抗病毒药作用机制及应用范围 1、核苷类似物抗病毒药 利巴韦林 利巴韦林(病毒唑)是一种合成的核苷类似物,它可抑制多种RNA和DNA病毒。其作用机制尚未完全确定,并且对不同的病毒作用机制相异。利巴韦林-5'-单磷酸酯能阻断肌苷-5'-单磷酸酯向黄嘌呤核苷-5'-单磷酸酯的转化,并干扰鸟嘌呤核苷酸以及RNA和DNA的合成。利巴韦林-5'-单磷酸酯在某些病毒,也抑制病毒特异性信息RNA的加帽(capping)过程。 此药在儿科主要用于治疗住院婴幼儿呼吸道合胞病毒(RSV)肺炎和毛细支气管炎,用雾化吸入法给药。利巴韦林还被用于治疗青少年的副流感病毒和甲型及乙型流感病毒感染。口服利巴韦林治疗流感无效。但静脉或口服利巴韦林减低了拉沙热病人的病死率,特别是在发病6天以内用药时。另外,用静脉内利巴韦林治疗汉坦病毒引起的出血热肾病综合征和阿根廷出血热,有临床益处。而且已有人建议用口服利巴韦林方法预防刚果-克里米亚出血热。用干扰素与利巴韦林联合治疗慢性丙型肝炎病人,疗效显著优于单独用其中的任何一种药的疗效。上述这些病毒都是RNA病毒。香港和加拿大的研究者已将利巴韦林用于治疗SARS病人,并取得一定疗效,但加拿大研究者报告在一定比例病人引起溶血。 用大剂量口服利巴韦林治疗时,可出现对造血系统的毒性,包括溶血性贫血。利巴韦林有致突变性、致畸性和对胚胎的毒性,所以此药对妊娠妇女禁用;在用此药的病区,如医务人员中有妊娠者,有对胚胎发生毒性的危险。 阿糖腺苷 主要被用于治疗疱疹病毒属的病毒和乙肝病毒等DNA病毒的感染;它通过抑制病毒DNA聚合酶发挥抗病毒作用。其三磷酸酯水溶性差,需在大量液体中静滴,其单磷酸酯水溶性强,可作肌注。但其疗效有限、毒性作用相对大。 阿昔洛韦和伐昔洛韦阿昔洛韦(无环鸟苷)对若干疱疹病毒(均为DNA病毒),包括单纯疱疹病毒1和2型(HSV-1和-2)、水痘-带状疱疹病毒(ZV)和EB病毒的复制有强烈的选择性抑制作用,但对人类巨细胞病毒感染的疗效相对差。伐昔洛韦(valacyclovir)是阿昔洛韦的左旋缬氨酸酯,在口服后几乎完全转变为阿昔洛韦。阿昔洛韦的高度选择性与其作用机制相关,它首先被磷酸化为阿昔洛韦单磷酸酯。这种磷酸化在受HSV感染的细胞中,通过病毒基因编码的胸腺嘧啶核苷激酶的作用而高效率地进行。而在未受感染的细胞中阿昔洛韦几乎不发生磷酸化。因此,该药被集中在受HSV感染细胞内。阿昔洛韦单磷酸酯其后受细胞内激酶的作用而变为三磷酸酯,它对病毒DNA聚合酶有很强的抑制作用,但对宿主细胞的DNA聚合酶的作用相对小。阿昔洛韦三磷酸酯也可结合到病毒DNA中,使病毒DNA链过早终止。 更昔洛韦 更昔洛韦(ganciclovir)是阿昔洛韦的类似物,对HSV和VZV感染有效,但对CMV感染显著地比阿昔洛韦更有效。更昔洛韦进入体内后经磷酸化,成为其单磷酸酯、二磷酸酯,最终成为三磷酸酯才能发挥抗病毒作用。更昔洛韦三磷酸酯通过以下两种机制抑制CMVDNA的合成:1)竞争性抑制病毒DNA聚合酶;2)结合到CMVDNA中,最终使其延伸终止。该药被广泛用于其他CMV相关的综合征,包括肺炎、食管胃肠感染、肝炎和“消耗性”疾病。但尚未见用于RNA病毒感染治疗的报告。 泛昔洛韦和Penciclovir泛昔洛韦口服吸收良好,生物利用度为77%,通过去乙酰和氧化作用,被迅速转化为penciclovir。此药的抗病毒谱和作用机制与

第二章 第二节 药物作用机制

第二节药物作用机制 药物的作用机制或原理(mechanism of action;principle of action),指药物在何处起作用及如何起作用。研究药物的作用机制,对提高疗效、防止不良反应及开发新药等都有重要意义。 药物的作用机制可分为药物作用的受体机制和非受体机制。 图2-5 各种药物作用机制的分布示意图 一、药物作用的受体机制 受体:(receptor) 是存在于细胞膜或细胞内的一种能选择性地与相应配体结合,传递信息并产生特定生理效应的大分子物质(主要为糖蛋白或脂蛋白,也可以是核酸或酶的一部分)。 受点(receptor-site) 受体上与配体立体特异性结合的部位。 配体:(ligand) 内源性配体:神经递质、激素、自体活性物质 外源性配体:药物 D + R ===== DR →??????→E 【受体类型】 根据分布部位 1.细胞膜受体 2.胞浆受体

3.胞核受体 根据受体蛋白结构、信息转导过程、效应性质、受体位置等特点 1.含离子通道的受体 2.G蛋白偶联受体 3.具有酪氨酸激酶活性的受体 4.调节基因表达的受体 【受体命名】 药物受体和受体亚型,目前兼用药理学和分子生物学的命名方法。【受体学说】 (一)占领学说 (二)备用受体学说 (三)速率学说 (四)变构学说 (五)能动受体学说 【药物与受体结合作用的特点】 1)高度特异性(specificity) 2)高度敏感性(sensitivity) 这需要包括第二信使在内的信号转导系统的参与。 3)受体占领的饱和性(saturality) 4)可逆性(reversibility) 复合物解离出药物原形。 5)变异性(multiple-variation) 分布、效应、亚型 6)亲和力与内在活性 (1)亲和力(affinity,亲合力) 是指药物与受体结合的能力。 是效价强度的决定因素。 (2)内在活性(intrinsic activity;效应力,efficacy) 是药物本身内在固有的,激动受体产生效应的能力。 是药物最大效应或作用性质的决定因素。

抗菌药物作用机制教案

一、抗菌作用机制 抗菌药物的抗菌作用主要是干扰病原菌的生化代谢过程,从而影响其结构与功能,致使其失去生长繁殖的能力而产生抑制或杀灭病原菌的作用。见图20-1。 图20-1抗菌药物作用机制示意图 (1)抑制细菌细胞壁合成 青霉素类、头孢菌素类、万古霉素等抗生素通过抑制转肽酶的功能,干扰病原菌细胞壁基础成分黏肽的合成,造成新生细菌胞壁缺损。而受菌体的高渗透压影响,水分由外界不断渗入,致使细胞膨胀、变形,在自溶酶的影响下,细胞破裂溶解而死亡。 (2)影响胞浆膜的通透性 多黏菌素、两性霉素B等能选择性地与病原菌胞浆膜中的磷脂或固醇类物质结合,使胞浆膜通透性增加,导致菌体内蛋白质、核酸等重要物质外漏,造成细菌死亡。 (3)抑制细菌细胞蛋白质合成 氨基苷类、四环素类、大环内酯类等均对细菌的核蛋白体具有高度的选择性作用,从而抑制细菌的蛋白质合成,呈现抑菌或杀菌作用,但不影响哺乳动物的核蛋白体的功能和蛋白质的合成。 (4)抑制核酸合成 喹诺酮类、利福平等通过抑制菌体核酸合成,妨碍菌体细胞的正常分裂生长。 (5)抗叶酸代谢 磺胺类、甲氧苄啶(TMP)分别通过选择性抑制叶酸代谢过程中二氢叶酸合成酶和二氢叶酸还原酶,影响四氢叶酸合成,导致核酸合成障碍而抑制细菌的生长、繁殖。 二、耐药性 耐药性又称抗药性,多指病原菌与抗菌药多次接触后,病原菌对抗菌药的敏感性降低甚至消失的现象。一种病原菌仅对一种抗菌药产生耐药性者称为单药耐药;一种病原菌同时对

两种以上抗菌药产生耐药性者称为多重耐药(又称交叉耐药性)。耐药性给临床用药带来困难,对公众健康构成严重威胁。耐药性的产生大致有下列几种方式。 (1)细菌产生灭活酶 灭活酶可分为水解酶和合成酶两类。水解酶如β-内酰胺酶,能使青霉素类和头孢菌素类抗生素的β-内酰胺环水解裂开而失活。但β-内酰胺酶有青霉素型和头孢菌素型,青霉素型主要水解青霉素类抗生素,对头孢菌素类抗生素作用很微弱;头孢菌素型主要水解头孢菌素类抗生素,但对青霉素类抗生素也能水解。 合成酶又称钝化酶,多数对氨基苷类抗生素耐药的革兰阴性杆菌能产生此种酶。该酶将某些基团转移到氨基苷类抗生素分子上,使其抗菌活性丧失。 (2)细菌改变外膜屏障及主动外排机制 细菌通过降低膜通透性而阻止药物进入菌体,如绿脓杆菌对氨苄西林耐药;或者通过增强主动排出系统,把已进入菌体的药物泵出菌体外,如金葡菌对大环内酯类耐药。 (3)细菌改变药物作用靶位 革兰阳性菌对β-内酰胺类抗生素耐药,是菌体内作用靶位青霉素结合蛋白(penicillin bindingproteins,PBPs)与药物亲和力下降,PBPs数量减少,或出现新的低亲和力的PBPs 等,而使药物不能与靶部位结合。 (4)细菌改变代谢途经 细菌通过改变自身代谢途径而改变对营养物质的需要,如对磺胺耐药的细菌,不再利用对氨苯甲酸(PABA)及二氢蝶啶合成自身需要的叶酸,而是直接利用环境中的叶酸;也可能通过产生抗菌药的拮抗物(PABA)而呈现耐药。

西医化疗药物的药理作用机制

西医化疗药物的药理作用机制 (2008-05-06 21:55:21) 转载▼ 标签: 分类:健康 健康 第一节西医抗恶性肿瘤药的药理作用机制 一、抗肿瘤作用的细胞生物学机制 细胞周期(cell cycle)是指亲代细胞有丝分裂结束到下一代有丝分裂结束之间的间隔。有丝分裂后产生的子代细胞,经过长短不等的间隙期,也称DNA合成前期(G1期),进入DNA合成期(S期),完成DNA合成倍增后,再经短暂的休止期,也称DNA合成后期(G2期),细胞又再进入有丝分裂期(M期)。有时细胞周期明显延长,细胞长期处于静止的非增殖状态,称为G0期。G0期细胞与G1期细胞的区别在于前者对正常启动DNA合成的信号缺乏反应。但是,处于G0期的细胞并非死细胞,它们继续合成DNA和蛋白质,还可以完成某一特殊细胞类型的分化功能。这些细胞作为储备细胞,一旦有合适的条件,即可重新进入增殖的细胞群中并补充到组织中。 正常细胞和肿瘤细胞都经历细胞周期。然而,正常组织和肿瘤组织的区别之一,是处于不同细胞周期中的细胞数目不同。处于增殖期的肿瘤细胞在肿瘤全细胞群中的比率称生长比率(growth fraction, GF)。增长迅速的肿瘤GF值较大(接近1),对化疗药物敏感,如急性白血病等;增长缓慢的肿瘤GF值较小(约0.01~0.5),对化疗药物不敏感,如多数实体瘤。体内的肿瘤组织一般早期生长较快,但当肿瘤体积增大到一定程度后,由于缺血、营养不良和血管生成减慢等原因,使其生长变慢。这时通过手术或放射治疗可减轻肿瘤负荷,同时促使剩余的肿瘤细胞重新又进入活跃的增殖状态,也提高了肿瘤对化疗药物的敏感性。 根据各种抗恶性肿瘤药物对各期肿瘤细胞的杀灭作用不同,将抗恶性肿瘤药物分为两大类: 1. 周期特异性药物(cell cycle specific agents, CCSA)是指仅对增殖期某一期细胞有杀灭作用的药物。如抗代谢药(antimetabolites)、拓扑异构酶抑制药(topoisomerase inhabitors)等主要作用于S期细胞,属于S期特异性药物;长春碱类(vinca alkaloids)、紫杉碱类(taxanes)等主要作用于M期细胞,属于M期特异性药物;博来霉素(bleomycin)等主要作用于G2期细胞,属于G2期特异性药物。

汇总抗生素的作用机理.docx

专业课件 1 抗菌药物的作用机制主要是通过干扰病原体的生化代谢过程,影响其结构和功能,使其失去正常生长繁殖的能力而达到抑制或杀灭病原体的作用。 一、抑制细菌细胞壁的合成 细菌细胞壁位于细胞浆膜之外,是人体细胞所不具有的。它是维持细菌细胞外形完整的坚韧结构,它能适应多样的环境变化,并能与宿主相互作用。细胞壁的主要成分为肽聚糖(peptidoglycan ),又称粘肽,它构成网状巨大分子包围着整个细菌。革兰阳性菌细胞壁坚厚,肽聚糖含量大约50%~80%,菌体内含有多种氨基酸、核苷酸、蛋白质、维生素、糖、无机离子及其它代谢物,故菌体内渗透压高。革兰阴性菌细胞壁比较薄,肽聚糖仅占1%~10%,类脂质较多,占60%以上,且胞浆内没有大量的营养物质与代谢物,故菌体内渗透压低。革兰阴性菌细胞壁与阳性菌不同,在肽聚糖层外具有脂多糖,外膜及脂蛋白等特殊成分。外膜在肽聚糖层的外侧,由磷脂、脂多糖及一组特异蛋白组成,它是阴性菌对外界的保护屏障。革兰阴性菌的外膜能阻止penicillin 等抗生素、去污剂、胰蛋白酶与溶菌酶的进入,从而保护外膜内侧的肽聚糖。 青霉素类(penicillins )、头孢菌素类(cephalosporins )、磷霉素(fosfomycin )、环丝氨酸(cycloserine )、万古霉素(vancomycin )、杆菌肽(bacitracin )等通过抑制细胞壁的合成而发挥作用。Penicillins 与cephalosporins 的化学结构相似,它们都属于β-内酰胺类抗生素,其作用机制之一是与青霉素结合蛋白(penicillin binding proteins ,PBPs )结合,抑制转肽作用,阻碍了肽聚糖的交叉联结,导致细菌细胞壁缺损,丧失屏障作用,使细菌细胞肿胀、变形、破裂而死亡。 二、改变胞浆膜的通透性 多肽类抗生素如多粘菌素E (polymyxins),含有多个阳离子极性基团和一个脂肪酸直链肽,其阳离子能与胞浆膜中的磷脂结合,使膜功能受损;抗真菌药物制霉菌素(nystatin )和两性霉素B (amphotericin )能选择性地与真菌胞浆膜中的麦角固醇结合,形成孔道,使膜通透性改变,细菌内的蛋白质、氨基酸、核苷酸等外漏,造成细菌死亡。 三、抑制蛋白质的合成 细菌核糖体的沉降系数为70S ,可解离为50S 和30S 两个亚基,而人体细胞的核糖体的沉降系数为80S ,可解离为60S 和40S 两个亚基。人体细胞的核糖体与细菌核糖体的生理、生化功能不同,因此,抗菌药物能选择性影响细菌蛋白质的合成而不影响人体细胞的功能。 细菌蛋白质的合成包括起始、肽链延伸及合成终止三阶段,在胞浆内通过核糖体循环完成。抑制蛋白质合成的药物分别作用于细菌蛋白质合成的不同阶段: ①起始阶段:氨基苷类(aminoglycosides )抗生素阻止30S 亚基和70S 亚基合成始动复合物的形成;②肽链延伸阶段:四环素类(tetracyclines )抗生素能与核糖体30S 亚基结合,阻止氨基酰tRNA 在30S 亚基A 位的结合,阻碍了肽链的形成,产生抑菌作用;③终止阶段:氨基苷类(aminoglycosides )抗生素阻止终止因子与A 位结合,使合成的肽链不能从核糖体释放出来,致使核糖体循环受阻,合成不正常无功能的肽链,因而具有杀菌作用。 四、影响核酸代谢 喹诺酮类(quinolones )抑制DNA 回旋酶(gyrase),从而抑制细菌的DNA 复制和mRNA 的转录;利福平(rifampicin )特异性地抑制细菌DNA 依赖的RNA 多聚酶,阻碍mRNA 的合成;核酸类似物如抗病毒药物阿糖腺苷(vidarabine)、更昔洛韦(ganciclovir )等抑制病毒DNA 合成的酶,使病毒复制受阻,发挥抗病毒作用。 五、影响叶酸代谢 细菌不能利用环境中的叶酸(folic acid ),而必须利用对氨苯甲酸和二氢蝶啶在二氢叶酸合成酶的作用下合成二氢叶酸,再经二氢叶酸还原酶的作用形成四氢叶酸,磺胺类(sulfonamides )和甲氧苄啶(trimethoprim )可分别抑制folacin 合成过程中的二氢叶酸合成酶和二氢叶酸还原酶,影响细菌体内的叶酸代谢,由于folacin 缺乏,细菌体内氨基酸、核苷酸的合成受阻,导致细菌生长繁殖不能进行。抗结核药对氨基水杨酸(para-aminosalicylic )竞争二氢叶酸合成酶,抑制结核杆菌的生长繁殖。 Ж-2 β-内酰胺类抗生素 β-内酰胺类(β-lactams)抗生素是临床上最常用的抗菌药物。它们的化学结构中均含有β-内酰胺环,最为常用的是青霉素类(penicillins )和头孢菌素类(cephalosporins ),近年来还开发了一类非典型的β-内酰胺类抗生素,如碳青霉烯类(carbapenems )、头霉素类(cephamycin )、氧头孢烯类(oxacephems )及单环β-内酰胺类(monobactamic acid )。它们的共同作用机制是抑制细菌细胞壁的肽聚糖合成,共同特点是除了对革兰阳性菌、阴性菌有作用外,还对部分厌氧菌有抗菌作用,具有抗菌活性强、毒性低、适应证广及临床疗效好

抗生素种类及作用和机制汇总

: 抗生素种类近年来内酰胺环。青霉素类和头孢菌素类的分子结构 中含有β-一)β-内酰胺类:-β)、单内酰环类(monobactams),又有较大发展,如硫酶素类(thienamycins (β-lactamadeinhibitors)、甲氧青霉素类(methoxypeniciuins)等。内酰酶抑制剂(二)氨基糖甙类:包括链霉素、庆大霉素、卡那霉素、妥布霉素、丁胺卡那霉素、新霉素、核糖霉素、小诺霉素、阿斯霉素等。(三)四环素类:包括四环素、土霉素、金霉素及强力霉素等。(四)氯霉素类:包括氯霉素、甲砜霉素等。乙酰螺旋霉素、白霉素、临床常用的有红霉素、无味红霉素、(五)大环内脂类:麦迪霉素、交沙霉素等、阿奇霉素。 细菌的其它抗生素,如林可霉素、氯林可霉素、万古霉素、杆(六)作用于G+ 菌肽等。 菌的其它抗生素,如多粘菌素、磷霉素、卷霉素、环丝氨酸、(七)作用于G 利福平等。 (八)抗真菌抗生素:如灰黄霉素。 D、博莱霉素、阿霉素等。(九)抗肿瘤抗生素:如丝裂霉素、放线菌素(十)具有免疫抑制作用的抗生素如环孢霉素。: 内酰胺类抗生素β-内酰胺环的一大类抗生素,包括临床--lactams) 系指化学结构中具有ββ-内酰胺类抗生素(β内酰胺类等其他-最常用的青霉素与头孢菌素,以及新发展的头霉素类、硫霉素类、单环β内酰胺类抗生素。此类抗生素具有杀菌活性强、毒性低、适应症广及临床疗效好-非典型β特别是侧链的改变形成了许多不同抗菌谱和抗菌作用以及各种 临本类药化学结构,的优点。床药理学特性的抗生素。各种β-内酰胺类抗生素的作用机制: 各种β-内酰胺类抗生素的作用机制均相似,都能抑制胞壁粘肽合成酶,即青霉素结合蛋白(penicillin binding proteins,PBPs),从而阻碍细胞壁粘肽合成,使细菌胞壁缺损,菌体膨胀裂解。除此之外,对细菌的致死效应还应包括触发细菌的自溶酶活性,缺乏自溶酶的突变株则表现出耐药性。哺乳动物无细胞壁,不受β-内酰胺类药物的影响,因而本类药具有对细菌的选择性杀菌作用,对宿主毒性小。近十多年来已证实细菌胞浆膜上特殊蛋白PBPs是β-内酰胺类药的作用靶位,PBPs的功能及与抗生素结合情况归纳于图38-1。各种细菌细胞膜上的PBPs 数目、分子量、对β-内酰胺类抗生素的敏感性不同,但分类学上相近的细菌,其PBPs类型及生理功能则相似。例如大肠杆菌有7种PBPs,PBP1A,PBP1B与细

相关主题