搜档网
当前位置:搜档网 › (完整版)光电材料

(完整版)光电材料

(完整版)光电材料
(完整版)光电材料

目录

目录 ------------------------------------------------------------------------------------------- 1 1前言----------------------------------------------------------------------------------------- 2 2 有机光电材料 ------------------------------------------------------------------------------ 2

2.1光电材料的分类 --------------------------------------------------------------------- 2

2.2有机光电材料的应用 ---------------------------------------------------------------- 3

2.2.1有机太阳能电池材料--------------------------------------------------------- 3

2.2.2有机电致发光二极管和发光电化学池 --------------------------------------- 4

2.2.3有机生物化学传感器--------------------------------------------------------- 4

2.2.4有机光泵浦激光器 ----------------------------------------------------------- 4

2.2.5有机非线性光学材料--------------------------------------------------------- 5

2.2.6光折变聚合物材料与聚合物信息存储材料 ---------------------------------- 5

2.2.7聚合物光纤------------------------------------------------------------------- 6

2.2.8光敏高分子材料与有机激光敏化体系 --------------------------------------- 6

2.2.9 有机光电导材料 ------------------------------------------------------------- 6

2.2.10 能量转换材料 -------------------------------------------------------------- 7

2.2.11 染料激光器----------------------------------------------------------------- 7

2.2.12 纳米光电材料 -------------------------------------------------------------- 7

3 光电转化性能原理 ------------------------------------------------------------------------- 7

4 光电材料制备方法 ------------------------------------------------------------------------- 8

4.1 激光加热蒸发法 ------------------------------------------------------------------- 8

4.2 溶胶-凝胶法 ---------------------------------------------------------------------- 8

4.3 等离子体化学气相沉积技术(PVCD)------------------------------------------ 9

4.4 激光气相合成法 ------------------------------------------------------------------ 9

5 光电材料的发展前景---------------------------------------------------------------------- 10

1前言

有机光电材料是一类具有光电活性的特殊有机材料。通常是富含碳原子,具有大π键共轭键的有机小分子和聚合物,与无机光电材料相比,有机光电功能材料可以实现大面积制备和柔性期间制备;具有多样化的结构组成和更宽广的性能调节空间,可以进行分子设计来获得所需要的性能,并通过自组装的方式制备分子级甚至纳米级别的器件;材料密度小,价格低廉且结构易修饰强。成为了全球新材料、新能源和电子信息领域最富活力的前沿领域之一。

2 有机光电材料

2.1光电材料的分类

2.1.1 按用途分类

①光电转换材料:根据光生伏特原理,将太阳能直接转换成电能的一种半导体光电材料.目前,小面积多结G aA s太阳能电池的效率超过40%.

②光电催化材料:在光催化下将吸收的光能直接转变为化学能的半导体光电材料.它使许多通常情况下难以实现或不可能实现的反应在比较温和的条件下能够顺利进行.

2.1.2 按组成分类

①有机光电材料:由有机化合物构成的半导体光电材料.主要包括酞青及其衍生物、卟啉及其衍生物、聚苯胺、噬菌调理素等。

②无机光电材料:由无机化合物构成的半导体光电材料.主要包括Si、Ti O2、ZnS、La F eO3、KCuPO4 6 H2O、CuInSe2等。

③有机-无机光电配合物:由中心金属离子和有机配体形成的光电功能配合物.主要有2,2-联吡啶合钌类配合物等.

2.1.3 按尺度分类

①纳米光电材料:是指颗粒尺度介于1—1 00 nm之间的光电材料.

②块体光电材料:是指颗粒尺度大于100 nm的光电材料.

2.2有机光电材料的应用

光电材料的研究应用已经在太阳能电池、光电开关、图象记录、光存储、以及光催化合成、环境保护等各方面取得了重要的进展,为太阳能及其它光能的利用开辟了广泛的途径.

2.2.1有机太阳能电池材料

有机太阳能电池是20世纪90年代在导电聚物发现的基础上发展起来的新型光伏产品,有机光伏材料包括多种有机高分子材料和有机小分子材料,用于太阳能电池的阳极缓冲层、给体、受体、阴极修饰层、电极等不同功能结构中,目前已经发现的导电高分子材料有聚乙炔(PA)聚吡咯(PPY)、聚噻吩(PTH)、聚对苯乙烯(PPV)、聚苯胺(PANI)及其各类衍生物。

2.2.2有机电致发光二极管和发光电化学池

有机电致发光二极管,简称OLED,它是一种在电场下有机共轭化合物被激发并辐射出可见光的元件。OLED的发光过程大致可以分为以下几个步骤:载流子注入;载流子输运;载流子相互俘获形成激子;激子迁移并衰减驰豫;光子输出。

发光电化学池,简称LEC,则依赖于另一种发光机制,一般的LEC器件发光层是由两种聚合物共混而成的聚合物薄膜。其中一种聚合物是发光二极管中常用的发光聚合物,另一种则是具有离子传导特性的聚合物。

2.2.3有机生物化学传感器

由于有机P-π共轭分子具有可见区的荧光性质,因此可以用来作为生物或化学的传感器。通常的策略是利用检测物对有机共轭分子荧光的淬灭行为,从而能够很直观地判断检测物的存在。一般而言荧光淬灭的机理主要是有机共轭分子的激发态与检测物的能级之间存在的能量转移或电子转移,使其激发态失活而不能发生荧光过程所致。

2.2.4有机光泵浦激光器

与无机材料相比,有机半导体激光材料更近似四能级系统,这使其吸收峰与发射峰偏离较大,自吸收引起的损耗比较小,有机材料带间直接跃迁具有很大的相交密度,因而通常具有大的受激截面,其受激辐射相对于自发辐射占有明显优势。在较低的光泵浦能量作用下就可以实现粒子数反转,从而具有了产生激光辐射的先决条件之一.199 2年,已成功使用液体染料激光器在共轭聚合物(M EH-P PV)上产生激光。

1996年初,又首次使用固态共轭聚合物(如PPV及其衍生物)实现了光泵浦激光;而几乎同时,剑桥大学卡文迪许实验室也在一个非掺杂共轭聚合物微腔激光器结构上获得了光泵浦绿色激光,从而正式揭开了有机激光研究的大幕。到目前为止,红绿蓝三种波段的固态有机半导体光泵浦激光器都已经实现,性能也得到了大幅的提高。

2.2.5有机非线性光学材料

有机非线性光学材料的发展是建立在激光技术的应用之上的。根据光波的电磁理论,组成介质的分子、原子或离子的运动状态和电荷分布等都要发生一定形式的变化,从而形成电偶极子并产生电偶极矩,即介质被光波诱导产生了极化。其具体应用也非常广泛,如光限幅器、倍频转换以及电光调制解调器和电光开关等。

2.2.6光折变聚合物材料与聚合物信息存储材料

在激光辐照下材料折射率发生变化的现象称为光折变,在激光均匀照射下折射率变化会消除.利用这种作用能实现用激光对聚合物材料折射率调制而记录信息,折射率变化消除过程就成了光信息的擦除.光折变聚合物材料可用于全息存储、光学图像处理和光学相位共扼等.

有机固体信息存储材料是指能制成具有信息写人、读取和擦除等功能器件的材料,它具有存储密度高、体积小、品种多、易制备、价格低的特点.可分为光致变色、光折变、光化学或光物理光谱烧孔等类型.

有机光致变色分子存储原理有:分子内或分子间氢转移,如水杨醛

缩苯胺类化合物;二聚反应;顺反异构,如烯烃、偶氮类及靛类化合物;电荷转移;苯酚酒昆转变等。有机光致变色存储材料主要有:俘精酸醉、叫噪琳唾喃、螺毗喃、二芳基乙烯和聚丁二炔,存在的问题有稳定性、抗疲劳性和组份相容性等。

2.2.7聚合物光纤

塑料光纤的优点是柔软性好、易加工,但在光传输损耗和耐热性方面比石英光纤差,适用于短距离通讯,世界上非常重视塑料光纤在医院及其他局域网短距离信息传输中的应用,对下世纪光纤人户具有重要意义。

2.2.8光敏高分子材料与有机激光敏化体系

光刻胶主要用于大规模集成电路,在光照下,光刻胶发生交联或降解,使溶解度降低(称正一性光刻胶)或提高(负性光刻胶).其分辨力是集成电路集成度的关键.

激光技术的发展带来对激光光敏材料的需求.光敏材料的研究转向适合不同激光源的引发体系或分解体系,一般感光高分子体系只对紫外光敏感,在敏化光引发聚合体系感光范围与激光光源匹配的研究已寻找到多种引发体系如染料与胺类复合体系、方酸或著增感剂、光酸等。

2.2.9 有机光电导材料

在受光辐射时,具有电导率增加效应的材料称为光电导材料,一般将具有光电导效应的有机化合物类与高分子类通称为有机光电导材料.光激发下光电导材料产生电子、空穴载流子后,在外加电场作用

下,电子移向正极,空穴移向负极,因而在电路中有电流流过。光电导体可将光信号转换成电信号,即将光能转换成电能,通过增感,光电导材料的响应光波长可调,如聚乙烯咔哇与三硝基药酮混合后,响应波长从紫外区移至可见区。

2.2.10 能量转换材料

①隐身材料:雷达隐身最为重要,有机隐身材料分为导电聚合物、席夫碱盐和有机金属络合物等.导电高聚物微波吸收剂材料有望用作隐身战斗机和侦察机的蒙皮,这类吸波材料是以电磁损耗原理来消耗电磁波能量.

②光一电转换材料:纳米多晶光电转换材料、染料光敏材料、有机超导体、有机铁磁性材料、有机压电材料、有机铁电体材料、有机液晶材料、有机分子器件如分子开关、分子导线等方面。

2.2.11 染料激光器

功能染料在高技术中的最早应用是作为激光染料。染料激光器是一种以染料为工作介质,将染料受激辐射所产生的光辐射,沿某一特定方向反复传播、放大,使之形成一束强度大、方向集中的光束光电发生装置。

2.2.12 纳米光电材料

纳米光电材料是指能够将光能转化为电能或化学能等其它能量的一种纳米材料。

3 光电转化性能原理

光作用下的电化学过程即分子、离子及固体物质因吸收光使电子

处于激发态而产生的电荷传递过程.当一束能量等于或大于半导体带隙(E g)的光照射在半导体光电材料上时,电子(e)受激发由价带跃迁到导带,并在价带上留下空穴(h+),电子与空穴有效分离,便实现了光电转化.大于或等于带隙宽度的光的激发,产生非平衡载流子,它们在自建电场的作用下,发生定向移动,导致表面电荷量发生改变。对于P型半导体,光生电子移向表面,光生空穴移向体相,n型半导体则与之相反。

4 光电材料制备方法

光电和信息功能材料由于其不同的性能和尺寸要求,制备方法是多种多样的.

4.1 激光加热蒸发法

激光加热蒸发法是以激光为快速加热源,使气相反应物分子内部很快地吸收和传递能量,在瞬间完成气相反应的成核、长大和终止.该方法可以迅速生成表面洁净、粒径小(<50nm)且粒度均匀可控的纳米微粒。

4.2 溶胶-凝胶法

溶胶-凝胶法的原理在于利用含成膜物质的溶胶的水解进而在衬底上得到需要的薄膜.其基本步骤是先用金属无机盐或有机金属化合物在低温下液相合成为溶胶,然后采用提拉法或旋涂法,使溶液吸附在衬底上,经胶化成凝胶,凝胶经一定温度处理后即可得到纳米晶复合薄膜,目前已采用sol-ge l法得到的纳米镶嵌复合薄膜主要有Co(Fe,Ni,M n)/S iO2,CdS(ZnS,PbS)/SiO2。由于溶胶的先驱体可以

提纯且溶胶-凝胶过程在常温下可液相成膜,设备简单,操作方便.因此,溶胶-凝胶法是常见的纳米复合薄膜制备方法之一.

4.3 等离子体化学气相沉积技术(PVCD)

借助等离子体使含有薄膜组成原子的气态物质发生化学反应,而在基板上沉积薄膜的一种方法,特别适合于半导体薄膜和化合物薄膜的合成,被视为第2代薄膜技术.PVCD技术是通过反应气体放电来制备薄膜的,这就从根本上改变了反应体系的能量供给方式,能够有效地利用非平衡等离子体的反应特征.由于等离子体中的电子温度高达104K,有足够的能量通过碰撞过程使气体分子激发、分解和电离,从而大大提高了反应活性,能在较低的温度下获得纳米级的晶粒,且晶粒尺寸也易于控制,所以被广泛应用于纳米镶嵌复合膜的制备,尤其是硅系纳米复合薄膜的制备.

4.4 激光气相合成法

激光气相合成纳米材料的原理是采用高速流动的反应物气体与高能量的CO2激光垂直正交,发生交互作用产生能量的共振、吸收,在气流喷射的下方形成稳定、可控的高温反应火焰,反应物在瞬间发生分解、化合,生成物经气相凝聚、成核和生长,在气流惯性和与反应气同轴的载气带动下,由真空泵抽吸,进入粉体收集器内.

4.5 水热合成法

在密闭体系中,以水为溶剂,在一定温度和水的自生压强下,原始混合物进行反应的一种合成方法.由于反应在高温、高压、水热条件下,反应物质在水中的物性与化学反应性能发生了很大变化,而不同于

一般制备方法.能直接制得结晶完好,原始粒度小、分布均匀,团聚少的纳米粉体,制备工艺相对简单.无需焙烧处理,但是高温高压下的合成设备较贵,投资较大.

5 光电材料的发展前景

从有机光电活性材料和无机光电材料本质上的异同点出发,建立并发展有机光电材料能带理论;基于结构与性能相关性的研究,通过制备新材料,进一步优化材料性能;研究影响材料性能稳定性的因素,探索提高光电性能持久性的途径;在对称共轭结构双光子吸收方面的研究有望得到新型光敏性有机材料,带有C60链节的聚合物的研究有望得到具有光电导性和三阶非线性的聚合物材料;在技术方面,材料加工、器件制作技术及提高成品率的技术保障、延长器件使用寿命等方面的进步将导致更多有机光电材料的实用化和产业化,有机信息材料的发展将为突破无机材料集成度极限提供物质基础,如硅基半导体集成电路极限为线宽0.1чm,有机聚合物分子导线比此极限小几个数量级;从电子信息传输向光子信息传输的转变等信息科学的发展将对光电材料提出新的要求,同时将促进有机光电材料的发展。

有机光电材料以其响应速度快、存储密度高、价格低廉、易加工等优点成为正在崛起的新一代光电信息材料,替代无机材料已成必然之势。以有机光电材料为基础的光电器件的开发和产业化将推动有机光电产业达到一个新的高度,甚至有预言“光电产业的未来属于有机光电材料”。

(完整版)光电材料

目录 目录 ------------------------------------------------------------------------------------------- 1 1前言----------------------------------------------------------------------------------------- 2 2 有机光电材料 ------------------------------------------------------------------------------ 2 2.1光电材料的分类 --------------------------------------------------------------------- 2 2.2有机光电材料的应用 ---------------------------------------------------------------- 3 2.2.1有机太阳能电池材料--------------------------------------------------------- 3 2.2.2有机电致发光二极管和发光电化学池 --------------------------------------- 4 2.2.3有机生物化学传感器--------------------------------------------------------- 4 2.2.4有机光泵浦激光器 ----------------------------------------------------------- 4 2.2.5有机非线性光学材料--------------------------------------------------------- 5 2.2.6光折变聚合物材料与聚合物信息存储材料 ---------------------------------- 5 2.2.7聚合物光纤------------------------------------------------------------------- 6 2.2.8光敏高分子材料与有机激光敏化体系 --------------------------------------- 6 2.2.9 有机光电导材料 ------------------------------------------------------------- 6 2.2.10 能量转换材料 -------------------------------------------------------------- 7 2.2.11 染料激光器----------------------------------------------------------------- 7 2.2.12 纳米光电材料 -------------------------------------------------------------- 7 3 光电转化性能原理 ------------------------------------------------------------------------- 7 4 光电材料制备方法 ------------------------------------------------------------------------- 8 4.1 激光加热蒸发法 ------------------------------------------------------------------- 8 4.2 溶胶-凝胶法 ---------------------------------------------------------------------- 8 4.3 等离子体化学气相沉积技术(PVCD)------------------------------------------ 9 4.4 激光气相合成法 ------------------------------------------------------------------ 9 5 光电材料的发展前景---------------------------------------------------------------------- 10

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

半导体材料导论结课复习题

半导体材料复习题 1、半导体材料有哪些特征? 答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。 (1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。 (2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。 (3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。 2、简述半导体材料的分类。 答:对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。 3、化合物半导体和固溶体半导体有哪些区别。 答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。 4、简述半导体材料的电导率与载流子浓度和迁移率的关系。 答:s = nem 其中: n为载流子浓度,单位为个/cm3; e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。 m为载流子的迁移率,它是在单位电场强度下载流子的运动速度,单位为cm2/V.s; 电导率s的单位为S/cm(S为西门子)。 5、简述霍尔效应。 答:将一块矩形样品在一个方向通过电流,在与电流的垂直方向加上磁场(H),那么在样品的第三个方向就可以出现电动势,称霍尔电动势,此效应称霍尔效应。 6、用能带理论阐述导体、半导体和绝缘体的机理。 答:按固体能带理论,物质的核外电子有不同的能量。根据核外电子能级的不同,把它们的能级划分为三种能带:导带、禁带和价带(满带)。 在禁带里,是不允许有电子存在的。禁带把导带和价带分开,对于导体,它的大量电子处于导带,能自由移动。在电场作用下,成为载流子。因此,导体载流子的浓度很大。 对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量价带中的电子越过禁带,跃迁到导带上去成为载流子。 绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里的电子

半导体材料(精)

半导体材料 概要 半导体材料(semiconductor material) 导电能力介于导体与绝缘体之间的物质称为半导体。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电阻率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。半导体材料按化学成分和内部结构,大致可分为以下几类。1.元素半导体有锗、硅、硒、硼、碲、锑等。50年代,锗在半导体中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。2.化合物半导体由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。其中砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。3.无定形半导体材料用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。4.有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。 特性和参数半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。杂质半导体靠导带电子导电的称N型半导体,靠价带空穴导电的称P型半导体。不同类型半导体间接触(构成PN结)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。利

光电功能材料知识点剖析

知识点补遗 1,光电功能材料按物质分类 答:根据材料的物质性进行分类:金属功能材料;无机非金属功能材料;有机功能材料;复合功能材料。 2,晶体的主要特征有哪些? 答:晶体在宏观上的基本特性:自范性、均一性、对称性、异向性、稳定性。自范性:是指晶体具有自发地形成封闭的几何多面体外形,并以此为其占有空间范围的性质。 均一性:晶体在它的各个不同部分上表现出相同性质的特性,是晶体内部粒子规则排列的反映。 异向性:晶体内部粒子沿不同方向有不同的排列情况,从而导致在不同方向上表现出不同的宏观性质。 对称性:晶体的性质在某一方向上有规律地周期的出现 稳定性: 3,介电晶体的效应有哪些?分别有多少个点群? 答: (1)压电效应:压电模量,三阶张量,非中心对称晶体。 (2)电致伸缩效应:电致伸缩稀疏,四阶张量, 所有晶体。 (3)热释电效应:热释电稀疏,一介张量,极性 晶体,可自发计划。 (4)铁电晶体:自发极化能随外加电场改变的晶 体。 各种介电晶体(数字表示此类性质的晶类数): 压电效应: 晶体在受到机械应力的作用时,在其表面上会出现电荷,成为正压电效应。应力是二阶对称张量,其两个下标可以对调,压电模量是三阶张量,从而导致压 电模量中的后两个下标可以对调,此时压电效应可以写成: 逆压电效应:当电场加到具有压电效应的晶体上时,晶体将发生应变。 电致伸缩效应 当作用在晶体上的电场很强时,晶体的应变与电场不是线性关系,必须考虑

平方项,引起应变中的平方项称为电致伸缩效应。, iljk V 成 为电致伸缩系数。 热释电效应 晶体在温度发生变化时,产生极化现象,或其极化强度发生变化,称为热释电效应。当温度较小时,晶体极化强度变化与温度为线性关系。 电热效应:热释电效应的逆效应,即将某种热释电晶体置于电场中,会观察到温度变化。热释电材料主要用于红外探测。 晶体的铁电性质 在外场的作用下,自发极化的方向可以逆转或可以重新取向的热释电晶体。 铁电晶体的分类: (1)无序-有序型铁电晶体(软铁电体) (2)位移型铁电体(硬铁电体):含有氧八面体构造基元者,也称钙铁矿型铁电体,如铌酸锂、钛酸钡等。 铁电体的宏观特性: (1)电滞回线:铁电体和非铁电体的判据。 非铁电晶体:P-E 关系为线性的。 铁电晶体:P-E 存在电滞回线。 (2)居里温度:晶体的铁电性质在一定的温度范围内存在,如钛酸钡晶体,温度低于120摄氏度是铁电项,高于120摄氏度铁电性消失。实际上是一个相变过程。 部分铁电晶体没有居里温度点,因为未达到相变温度时晶体已经溶解。 4,光率体的表达式和特征,三个轴与椭球截距的意义,折射率面,不沿主轴方向,通过晶体后引起的光程差的判定。 答:上册P-31 5,晶体的非线性光学——香味匹配条件以及实现相位匹配的途径(一种) 答:当激光的光强较强时,其通过物质时,物质内部极化率的非线性响应会对光波产生反作用,可能产生入射光波在和频和差频处的谐波,这种与强光有关不同于非线性光学现象的效应称为非线性效应。 混频效应:和频、差频 当作用于晶体的光场包含两种不同的频率ω1和ω2时,就会产生第三种频率ω 3的光, ω3 =ω1 +ω2相加的称为和频,ω3 =ω1 ?ω2相减的称为差频。 位相匹配: 在二级非线性极化的倍频过程中,入射光波在它经过的各个地方产生二次极化波,各个位置的二次极化波都发射出二次谐波,这些二次谐波在晶体中传播并相互于涉,相互干涉的结果,就是在 实验中观察到的二次谐波强度.这个强度与这些二次谐波的位相差有关.如果位相差为零,即各个二次谐波的位相一致,则相干加强,我们就能观察到产生的二次谐波.反之,则相干相消,我们就观察不到二次谐波。只有当入射光波的传播

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

半导体材料

半导体材料 应用物理1001 20102444 周辉 半导体材料的电阻率界于金属与绝缘材料之间的材料。这种材料在某个温度 范围内随温度升高而增加电荷载流子的浓度,电阻率下降。由化合物构成的半导 体材料,通常是指无机化合物半导体材料。比起元素半导体材料来它的品种更多, 应用面更广。 半导体材料结构特征主要表现在化学键上。因为化合物至少由两个元素构 成,由于它们彼此间的原子结构不同,价电子必然向其中一种元素靠近,而远离 另一种元素,这样在共价键中就有了离子性。这种离子性会影响到材料的熔点、 带隙宽度、迁移率、晶体结构等。 化合物半导体的组成规律一般服从元素周期表排列的法则。对已知的化合物 半导体材料,其组成元素在同一族内垂直变换,其结果是随着元素的金属性增大 而其带隙变小,直到成为导体。反之,随着非金属性增加而其带隙变大,直至成 为绝缘体。 类别按其构成元素的数目可分为二元、三元、四元化合物半导体材料。它 们本身还可按组成元素在元素周期表中的位置分为各族化合物,如Ⅲ—V族,I —Ⅲ—Ⅵ族等。下面介绍二元化合物,其中主要的类别为Ⅲ—v族化合物半导体 材料,Ⅱ—Ⅵ族化合物半导体材料,Ⅳ—Ⅳ族化合物半导体材料。 Ⅳ—Ⅵ族化合物半导体材料。已发现具有半导体性质的有格式,GeSe,GeTe, SnO ,SnS,SnSe,SnTe,Pb0,PbS,PbSe,PbTe,其中PbO,PbS,PbSe,PbTe 2 已获重要用途。

V—Ⅵ族化合物半导体材料。已发现具有半导体性质的有Bi 2O 3 ,Bi 2 S 3 ,Bi 2 Se 3 , Bi 2Te 3 ,Sb 2 O 3 ,Sb 2 S 3 ,Sb 2 Te 3 、As 2 O 3 ,As 2 S 3 ,其中Bi 2 Te 3 ,Bi 2 Se 3 等已获实际应用。 I—Ⅵ族化合物具有半导体性质的有Cu 2 O,Cu 2 S,Ag 2 S,Ag 2 Se,Ag 2 Te等,其 中Cu 20,Cu 2 S已获应用。 三元化合物种类较多,如I—Ⅲ—Ⅵ、I—v—Ⅵ、Ⅱ—Ⅲ—Ⅵ、Ⅱ—Ⅳ—V 族等。多数具有闪锌矿、纤锌矿或黄铜矿型晶体结构,黄铜矿型结构的三元化合 物多数具有直接禁带。比较重要的三元化合物半导体有CuInSe 2,AgGaSe 2 , CuGaSe 2,ZnSiP 2 ,CdSiP 2 ,ZnGeP 2 ,CdGaS 4 ,CdlnS 4 ,ZnlnS 4 和磁性半导体。后者 的结构为AB 2X 4 (A—Mn,Co,Fe,Ni;B—Ga,In;X—S,Se)。 四元化合物研究甚少,已知有Cu 2FeSnS 4 ,Cu 2 FeSnSe 4 ,Cu 2 FeGeS 4 等。 应用化合物及其固溶体的品种繁多,性能各异,给应用扩大了选择。在光电子方面,所有的发光二极管、激光二极管都是用化合物半导体制成的,已获工业应用的有GaAs,GaP,GaAlAs,GaAsP,InGaAsP等。用作光敏元件、光探测器、光调制器的有InAsP,CdS,CdSe,CdTe,GaAs等。一些宽禁带半导体(SiC,ZnSe等)、三元化合物具有光电子应用的潜力。GaAs是制作超高速集成电路的最主要的材料。微波器件的制作是使用GaAs,InP,GaAlAs等;红外器件则用GaAs,GaAlAs,CdTe,HgCdTe,PbSnTe等。太阳电池是使用CdS,CdTe,CulnSe2,GaAs,GaAlAs等。最早的实用“半导体”是「电晶体/ 二极体」。 一、在无线电收音机及电视机中,作为“讯号放大器用。 二、近来发展「太阳能」,也用在「光电池」中。 三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。 其中在半导体材料中硅材料应用最广,所以一般都用硅材料来集成电路,因为硅是元素半导体。电活性杂质磷和硼在合格半导体和多晶硅中应分别低于

常用的半导体材料有哪些

常用的半导体材料有哪些? 晶圆 初入半导体行业为了尽快入门,我们必须对这个行业的主要物料做一个详细的了解,因为制造业的结构框架是人机料法环测。物料是非常关键的一部分,特别是对于半导体这类被人家卡脖子的行业更要牢记于心,尽快摆脱西方的围堵,但是基础材料这块需要长时间的积累,短期我们很难扭转当下这种憋屈的局面。 在半导体产业中,材料和设备是基石,是推动集成电路技术创新的引擎。半导体材料在产业链中处于上游环节,和半导体设备一样,也是芯片制造的支撑性行业,所有的制造和封测工艺都会用到不同的半导体材料。 半导体材料一般均具有技术门槛高、客户认证周期长、供应链上下游联系紧密、行业集中度高、技术门槛高和产品更新换代快的特点,目前高端产品市场份额多为海外企业垄断,国产化率较低,寡头垄断格局一定程度制约

了国内企业快速发展。华为事件的发生发展告诉我们半导体材料国产替代已经非常紧迫了。 半导体材料细分行业多,芯片制造工序中各单项工艺均配套相应材料。按应用环节划分,半导体材料主要可分为制造材料和封装材料。在晶圆制造材料中,硅片及硅基材料占比最高,约占31%,其次依次为光掩模板14%,电子气体14%,光刻胶及其配套试剂12%,CMP抛光材料7%,靶材3%,以及其他材料占13%。 在半导体封装材料中,封装基板占比最高,占40%。其次依次为引线框架15%、键合丝15%、包封材料13%、陶瓷基板11%、芯片粘合材料4%、以及其他封装材料2%。封装材料中的基板的作用是保护芯片、物理支撑、连接芯片与电路板、散热。陶瓷封装体用于绝缘打包。包封树脂粘接封装载体、同时起到绝缘、保护作用。芯片粘贴材料用于粘结芯片与电路板。封装方面相对难度要低一点,所以我们国家的半导体企业主要集中在封测这一后工艺领域。 半导体材料中前端材料市场增速远高于后端材料,前端材料的增长归功于各种前端技术的积极使用,如极紫外(EUV)曝光,原子层沉积(ALD)和等离子体化学气相沉积(PECVD)等。

有机光电材料研究进展.

有机高分子光电材料 课程编号:5030145 任课教师:李立东 学生姓名:李昊 学生学号:s2******* 时间:2013年10月20日

有机光电材料研究进展 摘要:本文综述了有机光电材料的研究进展,及其在有机发光二极管、有机晶 体管、有机太阳能电池、有机传感器和有机存储器这些领域的应用,还对有机光电材料的未来发展进行了展望。 关键词:有机光电材料;有机发光二极管;有机晶体管;有机太阳能电池;有机传感器;有机存储器 Abstract:This paper reviewed the research progress in organic optoelectronic materials, and its application in fields of organic light emitting diodes(OLED), organic transistors, organic solar cells, organic sensors and organic memories , but also future development of organic photoelectric materials was introduced. Keywords:organic optoelectronic materials; organic light emitting diodes(OLED); organic transistors;organic solar cells; organic sensors; organic memories 0.前言 有机光电材料是一类具有光电活性的有机材料,广泛应用于有机发光二极管、有机晶体管、有机太阳能电池、有机存储器等领域。有机光电材料通常是富含碳原子、具有大π共轭体系的有机分子,分为小分子和聚合物两类。与无机材料相比,有机光电材料可以通过溶液法实现大面积制备和柔性器件制备。此外,有机材料具有多样化的结构组成和宽广的性能调节空间,可以进行分子设计来获得所需要的性能,能够进行自组装等自下而上的器件组装方式来制备纳米器件和分子器件。近几年来,基于有机高分子光电功能材料的研究一直受到科技界的高度关注,已经成为化学与材料学科研究的热点,该方面的研究已成为21世纪化学、材料领域重要研究方向之一,并且取得了一系列重大进展。 1.有机发光二极管 有机电致发光的研究工作始于20 纪60 年代[1],但直到1987 年柯达公司的邓青云等人采用多层膜结构,才首次得到了高量子效率、高发光效率、高亮度和低驱动电压的有机发光二极管(OLED)[2]。这一突破性进展使OLED 成为发光器件研究的热点。与传统的发光和显示技术相比较,OLED具有低成本、小体积、超轻、超薄、高分辨、高速率、全彩色、宽视角、主动发光、可弯曲、低功

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体材料的分类及应用

半导体材料的分类及应用

————————————————————————————————作者: ————————————————————————————————日期: ?

半导体材料的分类及应用 能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具,极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器,无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表,在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。 1 元素半导体 周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定,易发挥; 灰Sn在室温下转变为白Sn, 已金属;B、C的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。

纳米光电材料

纳米光电材料 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

纳米光电材料 1.定义:纳米材料是一种粒子尺寸在1到100nm的材料。纳米光电材料是指能够将光能转化为电能或化学能等其它能量的一种纳米材料。其中最重要的一点就是实现光电转化。 其原理如下: 光作用下的电化学过程即分子、离子及固体物质因吸收光使电子处于激发态而产生的电荷传递过程。当一束能量等于或大于半导体带隙(Eg)的光照射在半导体光电材料上时,电子(e-)受激发由价带跃迁到导带,并在价带上留下空穴(h+),电子与孔穴有效分离,便实现了光电转化[1]。 2.分类:纳米光电材料的分类 纳米光电材料按照不同的划分标准有不同的分类,目前主要有以下几种:1.按用途分类: 光电转换材料:根据光生伏特原理,将太阳能直接转换成电能的一种半导体光电材料。目前,小面积多结GaAs太阳能电池的效率超过40%[2]。 光电催化材料:在光催化下将吸收的光能直接转变为化学能的半导体光电材料,它使许多通常情况下难以实现或不可能实现的反应在比较温和的条件下能够顺利进行。例如,水的分解反应,该反应的ΔrGm﹥﹥0在光电材料催化下,反应可以在常温常压下进行[3] 2.按组成分类: 有机光电材料:由有机化合物构成的半导体光电材料。主要包括酞青及其衍生物、卟啉及其衍生物、聚苯胺、噬菌调理素等; 无机光电材料:由无机化合物构成的半导体光电材料。主要包括Si、TiO2、ZnS、LaFeO3、KCuPO4·6H2O、CuInSe2等; 有机与无机光电配合物:由中心金属离子和有机配体形成的光电功能配合物。主要有2,2-联吡啶合钌类配合物等[4]。 3.按形状分类 纳米材料大致可分为纳米粉末、一维纳米材料、纳米膜等。 纳米粉:又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中问物态的固体颗粒材料。 一维纳米材料:指直径为纳米尺度而长度较大的线状材料。分为纳米线和纳米管。 纳米膜:纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜[5]。 纳米光电材料具有纳米材料的四种特性(量子、.....) 3.纳米光电材料的制备方法 制备纳米材料的方法有很多,根据不同的纳米光电材料及其用途有不同的制备方法。 1.化学沉淀法: 通过在原料溶液中添加适当的沉淀剂,让原料溶液中的阳离子形成相应的沉淀物(沉淀颗粒的大小和形状由反应条件来控制),然后再经过滤、洗涤、干燥、

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述 电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即PLED。不过,通常人们将两者笼统的简称为有机电致发光材料OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作

工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。

半导体材料有哪些

半导体材料有哪些 半导体材料有哪些 半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物(硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。 延伸 半导体材料是什么? 半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿

半导体材料

半导体材料应用前景调研报告 1.前言 随着科技的进步,半导体材料的研究与发展越来越受到人们的重视与青睐,从小小的光伏电池与LED灯,到雷达与红外探测器,无论是我们日常的生活中,还是包含国际顶尖技术的设备中,都有着半导体材料的影子。在材料领域里,半导体材料作为科学家们重点研究的对象,在现代社会中不断散发着光和热,使这个世界变得更加美好。 2.半导体材料的应用 (1)半导体照明技术 发光二极管,是一种半导体固体发光器件,是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。半导体照明产品就是利用LED作为光源制造出来的照明器具。半导体照明具有高效、节能、环保、易维护等显著特点,是实现节能减排的有效途径,已逐渐成为照明史上继白炽灯、荧光灯之后的又一场照明光源的革命。目前LED已广泛用于大屏幕显示、交通信号灯、手机背光源等,开始应用于城市夜景美化亮化、景观灯、地灯、手电筒、指示牌等,随着单个LED亮度和发光效率的提高,即将进入普通室内照明、台灯、笔记本电脑背光源、LCD显示器背光源等,因而具有广阔的应用前景和巨大的商机。 (2)光伏电池 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应

工作的薄膜式太阳能电池为主流,而以光化学效应原理工作的太阳能电池则还处于萌芽阶段。太阳光照在半导体p-n结上,形成新的空穴--电子对。在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。无枯竭危险;绝对干净(无污染,除蓄电池外);不受资源分布地域的限制;可在用电处就近发电;能源质量高;使用者从感情上容易接受;获取能源花费的时间短;供电系统工作可靠等优点。但是太阳能电池成本还很高:比许多绿色/再生能源高很多,无法以合理成本提供大量需求。未来可以期待科学家及工程师们不断的研究,再加上半导体产业技术的进步,太阳能电池的效率也逐渐增加,而且发电系统的单位成本也正逐年下降。因此,随着太阳能电池效率的增加、成本的降低以及环保意识的高涨,太阳能电池的成本可望大幅降低。也可以利用便宜的镜子将阳光反射至昂贵的高效能太阳能电池(需注意散热),可以发电降低成本。 (3)集成电路 材料构成的PN结的单向导电性质,可以用其作出具有一定大小的逻辑电路。集成电路是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比和罗伯特·诺伊思。 有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。

相关主题