搜档网
当前位置:搜档网 › 2-平均故障间隔时间(MTBF)和故障率的关系推导

2-平均故障间隔时间(MTBF)和故障率的关系推导

2-平均故障间隔时间(MTBF)和故障率的关系推导
2-平均故障间隔时间(MTBF)和故障率的关系推导

故障树分析法的内容及其分析学习资料

故障树分析法的内容及其分析 故障树分析法(Fault Tree Analysis)是1961~1962年间,由美国贝尔电话实验室的沃森(H.A.Watson)在研究民兵火箭的控制系统中提出来的。首篇论文在1965年由华盛顿大学与波音公司发起的讨论会上发表。1970年波音公司的哈斯尔(Hassl)、舒洛特(Schroder)与杰克逊(Jackson)等人研制出故障树分析法的计算机程序,使飞机设计有了重要改进。1974年美国原子能委员会发表了麻省理工学院(MIT)的拉斯穆森(Rasmusson)为首的安全小组所写的“商用轻水核电站事故危险性评价”报告,使故障树分析法从宇航、核能逐步推广到电子、化工和机械等部门。 故障树分析法实际上是研究系统的故障与组成该系统的零件(子系统)故障之间的逻辑关系,根据零件(子系统)故障发生的概率去估计系统故障发生概率的一种方法。对可能造成系统失效的硬件、软件、环境、人为等因素进行分析,画出故障树,确定系统失效的各种可能组合方式及其发生的概率,从而计算出系统的失效概率,以便采取相的补救措施以提高系统的可靠性。 故障树分析一般有以下一些作用: (1)指导人们去查找系统的故障。 (2)能够指出系统中一些关键零件的失效对于系统的重要性。 (3)在系统的管理中,提供了一种看得见的图解,以便帮助人们对系统进行故障分析,并且对系统的设计有一定的指导作用。 (4)节省了大量的分析系统故障的时间,简化了故障分析过程。 (5)为系统的可靠度的定性与定量分析奠定的基础。 故障树分析一般按以下顺序进行: (1)定义系统,确定分析目的和内容,明确对系统所作的基本假设,对系统有一个详细的、透彻的认识。 (2)选定系统的顶事件。 (3)根据故障之间的逻辑关系,建造故障树。 (4)故障树的定性分析。分析各故障事件结构的重要度,应用布尔代数对其进行简化,找出故障树的最小割集。 (5)收集并确定故障树中每个基本事件的发生概率或基本事件分布规律及其特性参数。 (6)根据故障树建立系统不可靠度(可靠度)的统计模型,确定对系统作定量分析的方法,然后对该系统进行定量分析,并对分析结果进行验证。 (7)根据分析提出改进意见,提高系统的可靠性。

设备完好率设备利用率设备故障率设备开动率OEEMTTRMTTFMTBF

1、设备完好率 定义:设备完好率,指的是完好的生产设备在全部生产设备中的比重,它是反映企业设备技术状况和评价设备管理工作水平的一个重要指标。 计算公式:设备完好率=完好设备总台数/生产设备总台数× 100% 标准:所谓完好设备一般标准是: ①设备性能良好,如机械加工设备的精度达到工艺要求; ②设备运转正常,如零部件磨损、腐蚀程度不超过技术规定标准,润滑系统正常、 设备运转无超温、超压现象; ③原料、燃料、油料等消耗正常,没有油、水、汽、电的泄漏现象。对于各种不同类 型的设备,还要规定具体标准。例如传动系统的变速要齐全、滑动部分要灵敏、油路系统要畅通等。 公式中的设备总台数包括在用、停用、封存的设备。在计算设备完好率时,除按全部设备计算外,还应分别计算各类设备的完好率。 2、设备利用率 定义:设备利用率是指每年度设备实际使用时间占计划用时的百分比。是指设备的使用效率。是反映设备工作状态及生产效率的技术经济指标。 在一般的企业当中,设备投资常常在总投资中占较大的比例。因此,设备能否充分利用,直接关系到投资效益,提高设备的利用率,等于相对降低了产品成本。所以,作为企业的管理者,在进行生产决策的时候,一定要充分认识到这一点。 一般包括:设备数量利用指标―实有设备安装率,已安装设备利用率;设备时间利用指标―设备制度台时利用率,设备计划台时利用率;设备能力利用指标―设备负荷率; 设备综合利用指标―设备综合利用率。过去,设备利用率一般仅指设备制度台时利用率。 计算公式: 公式一: 设备利用率=每小时实际产量/ 每小时理论产量×100% 公式二: 设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三: 设备利用率=某抽样时刻的开机台数/ 设备总台数×100% 3、设备故障率

设备故障分析方法—故障树分析法

设备故障分析方法—故障树分析法 1.故障树分析法的产生与特点 从系统的角度来说,故障既有因设备中具体部件(硬件)的缺陷和性能恶化所引起的,也有因软件,如自控装置中的程序错误等引起的。此外,还有因为操作人员操作不当或不经心而引起的损坏故障。 20世纪60年代初,随着载人宇航飞行,洲际导弹的发射,以及原子能、核电站的应用等尖端和军事科学技术的发展,都需要对一些极为复杂的系统,做出有效的可靠性与安全性评价;故障树分析法就是在这种情况下产生的。 故障树分析法简称FTA (Failute Tree Analysis),是1961年为可靠性及安全情况,由美国贝尔电话研究室的华特先生首先提出的。其后,在航空和航天的设计、维修,原子反应堆、大型设备以及大型电子计算机系统中得到了广泛的应用。目前,故障树分析法虽还处在不断完善的发展阶段,但其应用范围正在不断扩大,是一种很有前途的故障分析法。 总的说来,故障树分析法具有以下一些特点。 它是一种从系统到部件,再到零件,按“下降形”分析的方法。它从系统开始,通过由逻辑符号绘制出的一个逐渐展开成树状的分枝图,来分析故障事件(又称顶端事件)发生的概率。同时也可以用来分析零件、部件或子系统故障对系统故障的影响,其中包括人为因素和环境条件等在内。 它对系统故障不但可以做定性的而且还可以做定量的分析;不仅可以分析由单一构件所引起的系统故障,而且也可以分析多个构件不同模式故障而产生的系统故障情况。因为故障树分析法使用的是一个逻辑图,因此,不论是设计人员或是使用和维修人员都容易掌握和运用,并且由它可派生出其他专门用途的“树”。例如,可以绘制出专用于研究维修问题的维修树,用于研究经济效益及方案比较的决策树等。 由于故障树是一种逻辑门所构成的逻辑图,因此适合于用电子计算机来计算;而且对于复杂系统的故障树的构成和分析,也只有在应用计算机的条件下才能实现。 显然,故障树分析法也存在一些缺点。其中主要是构造故障树的多余量相当繁重,难度也较大,对分析人员的要求也较高,因而限制了它的推广和普及。在构造故障树时要运用逻辑运算,在其未被一般分析人员充分掌握的情况下,很容易发生错误和失察。例如,很有可能把重大影响系统故障的事件漏掉;同时,由于每个分析人员所取的研究范围各有不同,其所得结论的可信性也就有所不同。 2.故障树的构成和顶端事件的选取 一个给定的系统,可以有各种不同的故障状态(情况)。所以在应用故障树分析法时,首先应根据任务要求选定一个特定的故障状态作为故障树的顶端事件,它是所要进行分析的对象和目的。因此,它的发生与否必须有明确定义;它应当可以用概率来度量;而且从它起可向下继续分解,最后能找出造成这种故障状态的可能原因。 构造故障树是故障树分析中最为关键的一步。通常要由设计人员、可靠性工作人员和使用维修人员共同合作,通过细致的综合与分析,找出系统故障和导致系统该故障的诸因素的逻辑关系,并将这种关系用特定的图形符号,即事件符号与逻辑符号表示出来,成为以顶端事件为“根”向下倒长的一棵树—故障树。它的基本结构及组成部分如图1-1所示。

平均无故障时间MTBF测试及计算过程

一、寿命估算模型 常温下的故障及寿命的统计耗时耗力。为方便估算产品寿命,通常会进行批次性产品抽样,作加速寿命实验。 不同种类的产品,MTBF的计算方式也不尽相同,常用的加速模式有以下几种: 阿氏模型(Arrhenius Model):如果温度是产品唯一的加速因素,则可采用阿氏模型, 一般情況下,电子零件完全适用阿氏模型,而电子和通讯类成品也可适用阿氏模型,原因是成品类的失效模式是由大部分电子零件所构成.因此,阿氏模型,广泛用于电子与通讯行业。 爱玲模型(Eyring Model):如果引进温度以外的应力,如湿度,电压,机械应力等,则为爱玲模型。产品包括电灯,液晶显示元件,电容器等应用此模式。 反乘幂法则(Inverse Power Law):适用于金属和非金属材料,轴承和电子装备等。 复合模式(Combination Model):适用于同时考虑温度与电压作为环境应力的电子材料如电容。 二、常温下MTBF的估算方式 MTBF(Mean Time Between Failure),即平均失效间隔,指系统两次故障发生时间之间的时间段的平均值。 MTBF= 例子:从一批产品中抽取5PCS产品,在某一温度下,其实际工作时间、失效数如下图所示,求MTBF值。

解:带入公式计算 MTBF== ==131.8 二、MTBF阿氏模型 只有一项加速因子,如温度,且服从指数分布的加速寿命实验,可采用MTBF 阿氏模型计算公式进行估算。阿氏模型起源于瑞典物理化学家Svandte Arrhenius 1887年提出的阿氏反应方程式. R:反应速度speed of reaction A:溫度常数 a unknown non-thermal constant EA:活化能activation energy (eV) K:Boltzmann常数,等地8.623*10-5 eV/0K. T:为绝对溫度(Kelvin) Ea=(ln L2-ln L1)*k/(1/T2-1/T1) MTBF=L1*K Ea为活化能(eV); T1、T2为加速寿命测试的实验温度(需换算为绝对温度参与计算); T3为常温温度25℃,换算为绝对温度为298K; L1、L2分别为加速寿命测试温度T1、T2下测得的寿命; 寿命L= K为Boltzmann常数,值为8.62X (eV/K); 以同类型产品做参照,其计算过程如下:

平均维修时间(MTBR)

平均维修间隔时间(MTBR) 目录 一、MTBR的定义 二、指标计算 一、MTBR的定义 MTBR的英文原文是Mean Time Between Repairs。中文翻译也没有统一,网上有很多不同的翻译方法,比如说平均修复时间,平均无故障 率,平均维修间隔时间,平均故障维修时间,平均修理间隔等等。个人 认为叫平均维修间隔时间,最能体现它的含义。这个我们先说概念吧, 有不同意见欢迎拍砖。 这个KPI指标应该是比较小众的,我翻看了常用的维修KPI的一些国际标准,包括EN15341, EN13306,IEC71703, Norsok Z-016和SMRP 的标准以及维基百科,里面都没有谈到这个指标。但是我们上两期说的 MTTR,MTBF,MTTF在以上这些标准里是都有的,而且维基百科也都收录 了。最后在两个标准里找到了MTBR的一些介绍,当然网上也有几篇文章 涉及到了MTBR,但是和这两个标准却有很多不同。我们还是先说说标准 里是怎么界定的吧。谈到这个KPI的一个标准是ISO14224(这个是那位兄 弟提醒我的),一个是PIP REEE002。 和MTBR最相似的KPI其实是MTBF(平均故障间隔时间),那个KPI关注的是设备故障,而MTBR有点不一样。设备有故障了,我们肯定 要进行维修。但不是所有的维修都由设备故障来引起的,比如我们定期 维修,大修,以及其他各种预防性维护等。在这里需要强调一点,在这 两个标准里的Repair 不仅仅指的是修理,而是含了各种维护和修理,中 文翻译成维修更适合。 所以这个指标考量的是你所有维修活动,这个间隔的时间越长,证明你设备的可靠性越高。而且这个指标也容易考量和操作,因为有的 维修与可靠性KPI系列 1

故障树分析法--最新,最全

故障树分析法(Fault Tree Analysis简称FTA) 概念 什么是故障树分析法 故障树分析(FTA)技术是美国贝尔电报公司的电话实验室于1962年开发的,它采用逻辑的方法,形象地进行危险的分析工作,特点是直观、明了,思路清晰,逻辑性强,可以做定性分析,也可以做定量分析。体现了以系统工程方法研究安全问题的系统性、准确性和预测性,它是安全系统工程的主要分析方法之一。一般来讲,安全系统工程的发展也是以故障树分析为主要标志的。 1974年美国原子能委员会发表了关于核电站危险性评价报告,即“拉姆森报告”,大量、有效地应用了FTA,从而迅速推动了它的发展。目前,故障树分析法虽还处在不断完善的发展阶段,但其应用范围正在不断扩大,是一种很有前途的故障分析法。 故障树分析(Fault Tree Analysis)是以故障树作为模型对系统进行可靠性分析的一种方法,是系统安全分析方法中应用最广泛的一种自上而下逐层展开的图形演绎的分析方法。在系统设计过程中通过对可能造成系统失效的各种因素(包括硬件、软件、环境、人为因素)进行分析,画出逻辑框图(失效树),从而确定系统失效原因的各种可能组合方式或其发生概率,以计算的系统失效概率,采取相应的纠正措施,以提高系统可靠性的一种设计分析方法。 故障树分析方法在系统可靠性分析、安全性分析和风险评价中具有重要作用和地位。是系统可靠性研究中常用的一种重要方法。它是在弄清基本失效模式的基础上,通过建立故障树的方法,找出故障原因,分析系统薄弱环节,以改进原有设备,指导运行和维修,防止事故的产生。故障树分析法是对复杂动态系统失效形式进行可靠性分析的有效工具。近年来,随着计算机辅助故障树分析的出现,故障树分析法在航天、核能、电力、电子、化工等领域得到了广泛的应用。既可用于定性分析又可定量分析。 故障树分析(Fault Tree Analysis)是一种适用于复杂系统可靠性和安全性分析的有效工具,是一种在提高系统可靠性的同时又最有效的提高系统安全性的方法。当前,超大型工程的建设,对可靠性,安全性提出了更高的要求,因此,故障树分析法已经广泛的应用到宇航,核能,化工,电子,机械和采矿等各个领域。 故障树分析法(Fault Tree Analysis) 简称故障树法,记作FTA [21],[21] R G B . On the Analysis of Fault Trees ,[J] . IEEE Trans .1975 : 175 一185是一种采用逻辑推理,将系统故障形成原因由总体至部分按树枝状逐级细化,并绘出逻辑结构图(即故障树)的分析方法。其目的在于判明基本故障,确定故障的原因、影响和发生的概率。这种方法形象直观,并且能为使用单位提供明确的改进信息,所以为广大的工程技术人员所欢迎。 故障树分析法(Fault Tree Analysis,简称FTA)是在一定条件下用逻辑推理的方法,通过对可能造成系统故障的各种因素(包括硬件、软件、环境、人为因素等)进行分析,画出逻辑框图(即故障树),从而确定系统故障原因的各种可能组合方式及其发生概率,计算系统故障概率,以采取相应的纠正措施,是提高系统可靠性的一种设计分析方法。同时,故障树分析法是可靠性工程的重要分支,是目前国内外公认的对复杂系统安全性、可靠性分析的一种实用方法。该方法可以让分析者对系统有更深入的认识,对有关系统结构、功能故障及维护保障知识更加系统化,从而使在设计、制造、使用和维护过程中的可靠性的改

故障的统计分析与典型的故障率分布曲线

题目:故障的统计分析与典型的故障率分布曲线 学号:5 姓名:王逢雨 [摘要] 机械故障诊断是一门起源于 20 世纪 60 年代的新兴学科,其突出特点是理论研究与工程实际应用紧密结合。该学科经过半个世纪的发展逐渐成熟,在信号获取与传感技术、故障机理与征兆联系、信号处理与诊断方法、智能决策与诊断系统等方面形成较完善的理论体系,涌现了如全息谱诊断、小波有限元裂纹动态定量诊断等原创性理论成果,在机械、冶金、石化、能源和航空等行业取得了大量卓有成效的工程应用。统计分析工作是机械故障诊断中的核心环节,统计分析工作的质量和水平将会对机械设备的检修工作产生重要影响,关系到机械设备的安全与可靠运行。本文在对机械故障的特性等问题进行阐述的基础上,重点就机械故障统计分析工作中数据的收集和统计分析的方法进行重点探讨,希望对提高机械故障的管理水平能够有所帮助。 [关键词] 机械故障;统计分析;数据收集;方法 一、统计分析工作中机械故障的特性 二、机械设备在使用过程中,由于会受荷载应力等环境因素的影响,随着机械设备部件之间磨损的不断增加,结构参数与随之变化,进而会对机械功能的输出参数产生影响,甚至使其偏离正常值,直至产生机械故障。概括说来,主要有以下几方面的特性。 (一)耗损性 (二)在机械设备运行过程中,不断发生着质量与能量的变化,导致设备的磨损、疲劳、腐蚀与老化等,这是不可避免的,随着机械设备使用时间延长,故障发生的概率也在不断增加,即使可以采取一定的维修措施,但是由于机械故障的耗损性,不可能恢复到原先的状态,在经过统计分析工作后,必要时需要对设备进行报废。 (三)(二)渐损性 (四)机械故障的发生大多是长期运行的老化或疲劳引起的,所以具有渐损性,而且与设备的运行时间有一定的关系,所以做好机械设备的统计分析工作是很有必要的,当掌握了设备故障的渐损规律后,可以通过事前监控或测试等手段,有效预防机械故障的发生。 (五)(三)随机性 (六)虽然有的机械故障具有一定的规律性,但这并不是绝对的,因为机械故障的发生还会受到使用环境、制造技术、设备材料、操作方式等多种因素的影响,因此故障的发生会具有一定的分散性和随机性,这在一定程度上增肌了机械设备预防维修与统计分析工作的难度。 (七)(四)多样性 (八)随着科学技术的发展与应用,机械设备的工作原理日趋复杂,零部件的数量在不多增多,这就使得机械故障机理发生的形式日趋多样化。机械故障的发生不仅存在多种形式,而且分布模型及在各级的影响程度也不同,在统计分析工作中需要引起足够的重视。 (九)二、机械故障管理中统计数据的收集 (十)在对机械故障的统计分析工作中,数据的收集是最基础的环节,因此必须保障数据收集的及时性、准确性和规范性,这样才能为接下来的数据分析工作奠定良好的基础。

平均无故障时间的概述与应用

可靠性基本概念 平均无故障时间 何谓“平均无故障时间(MTBF)” ? “平均无故障时间(MTBF)”有什么用? “平均无故障时间(MTBF)” 和“平均故障前时间(MTTF)” “平均无故障时间(MTBF)”解读 平均无故障时间(MTBF)的应用 如何开始 如何计算 如何使用 基本流程、角色及职责 可靠性基本概念 可靠性Reliability ? 是指产品使用之后发生的故障,可靠性故障率是与时间相关的函数。 ? 可靠性表达方式有许多,主要有: ? 一段时间后的累积故障率(Cumulative fail %)。 ? 每10亿小时故障率“菲特” -FIT (Failures in Time) ? 平均无故障时间-MTBF (Mean Time between Failures) ? 可靠性是后质量部分的浴盆曲线即我们所认为的可靠性故障。 ? 可靠性的目标根据不同的因素而变化,如产品类型,产品寿命,使用的条件等。 平均无故障时间(MTBF)-何谓“平均无故障时间” What is MTBF MTBF (Mean Time Between Failure): 平均无故障时间,是衡量一个产品(尤其是电子产品)的可靠性指标. 单位为“小时”。 它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力. 具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。 它仅适用于可维修产品,同时也规定产品在总的使用阶段累计工作时间和故障次数的比值为MTBF。 备注: 这个数据的取得通常必须要产品被使用过一定的数量以及一定的时间后,才能较为正确地被「统计」出来,所以一个新产品上市后的MTBF值也只能当 「参考数值」,跟产品的实际「寿命数值」不一定能相符。 不过目前有许多厂商用模拟的方式,来评估一个产品的平均故障时间。他们利用更恶劣的环境来测试产品,增加产品的老化速度,以計算出产品的平均故障时间。 平均无故障时间有什么用? 最流行的可靠性指标 最小化投入的可靠性初步分析 了解设计的薄弱环节 (KAIZEN)设计 质保能力分析(Warranty Analysis)

MTBF,即平均故障间隔时间

mtbf MTBF,即平均故障间隔时间,英文全称是"Mean Time Between Failure"。是衡量一个产品(尤其是电器产品)的可靠性指标。单位为"小时"。它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力。具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。概括地说,产品故障少的就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate)。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。磁盘阵列产品一般MTBF不能低于50000小时。 计算方法 失效时间是指上一次设备恢复正常状态(图中的up time)起,到设备此次失效那一刻(图中的down time)之间间隔的时间。 MTBF值是产品设计时要考虑的重要参数,可靠度工程师或设计师经常使用各种不同的方法与标准来估计产品的MTBF值。相关标准包括MIL-HDBK-217F、Telcordia SR332、Siemens Norm、Fides或UTE C 80-810(RDF2000)等。不过这些方法估计到的值和实际的平均故障间隔仍有相当的差距。计算平均故障间隔的目的是为了找出设计中的薄弱环节。 MTBF的数学式表达 另外,在工程学上,常用希腊字母θ来表示MTBF,既有: 在概率论中,可用?(t)形式的概率密度方程表示MTBF,既有: 此处?指的是直到下次失效经过时长的概率密度方程--满足标准概率密度方程--

故障时间 随着服务器的广泛应用,对服务器的可靠性提出了更高的要求。所谓"可靠性",就是产品在规定条件下和规定时间内完成规定功能的能力;反之,产品或其一部分不能或将不能完成规定的功能是出故障。概括地说,产品故障少的就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate),常用λ表示。例如正在运行中的100只硬盘,一年之内出了2次故障,则每个硬盘的故障率为0.02次/年。当产品的寿命服从指数分布时,其故障率的倒数就叫做平均故障间隔时间(Mean Time Between Failures),简称MTBF。即: MTBF=1/λ 笔者看到一款可用于服务器的WD Caviar RE2 7200 RPM 硬盘,MTBF 高达120万小时,保修5年。120万小时约为137年,并不是说该种硬盘每只均能工作137年不出故障。由MTBF=1/λ可知λ=1/MTBF=1/137年,即该硬盘的平均年故障率约为0.7%,一年内,平均1000只硬盘有7只会出故障。 下图所示为著名的浴盆曲线,左边斜线部分为早期故障率,其故障率一般较高且随着时间推移很快下降。曲线中部为使用寿命期,其故障率一般很低且基本固定。最右部为耗损期,失效率急速升高。电子产品制造商一般通过测试、老炼、筛选等手段将早期故障尽量剔除,然后提供给客户使用。当使用寿命期将尽,产品也即将进入故障高发期,需要报废或更新换代了。 由来 右图为浴盆曲线,那么浴盆曲线与产品寿命有什么关系呢? 电子产品的寿命一般都符合浴盆曲线,可分为三个阶段:

GB7829—87故障树分析程序

GB7829—87故障树分析程序中华人民共和国国家标准 UDC519.28 :007.3 故障树分析程序 GB7829-87 Procedure for fault tree analysis 1 总则 1.1 目的 故障树分析是系统可靠性和安全性分析的工具之一。故障树分析包括定性分析和定量分析。定性分析的主要目的是:寻找导致与系统有关的不希望事件发生的原因和原因的组合,即寻找导致顶事件发生的所有故障模式。定量分析的主要目的是:当给定所有底事件发生的概率时,求出顶事件发生的概率及其他定量指标。在系统设计阶段,故障树分析可帮助判明潜在的故障,以便改进设计(包括维修性设计);在系统使用维修阶段,可帮助故障诊断、改进使用维修方案。 1.2 范围 本标准规定了系统可靠性和安全性的故障树分析的一般程序,主要适用于底事件和顶事件均为两状态的正规故障树。 2 引证标准 GB3187-82 《可靠性基本名词术语及定义》。 GB4888-85 《故障树的名词术语和符号》。 3 术语

本标准采用GB3187-82和GB4888-85中规定的术语定义。并补充以下术语: 3.1 模块 对于已经规范化和简化(见5.3和5.4.1)的正规故障树,模块是至少有两个底事件,但不是所有底事件的集合,这些底事件向上可到达同一个逻辑门,并且必须通过此门才能到达顶事件,故障树的所有其他底事件向上均不能到达该逻辑门。 3.2 最大模块 经规范化和简化的正规故障树的最大模块是该故障树的一个模块,且没有其他模块包含它。 3.3 割集 割集是导致正规故障树顶事件发生的若干底事件的集合。 3.4 最小割集 最小割集是导致正规故障树顶事件发生的数目不可再少的底事件的集合。它表示引起故障树顶事件发生的一种故障模式。 3.5 结构函数故障树的结构函数定义为: 其中,为故障树底事件的数目,,,,,…,,为描述底事件状态的布尔变量, 即 ,,, 3.6 底事件结构重要度 第,个底事件的结构重要度为: i=1,2,…,n

基于故障树的故障诊断.

基于故障树的智能故障诊断方法 一.故障树理论基础 故障树分析法(fault tree analysis,FTA)是分析系统可靠性和安全性的一种重要方法,现己广泛应用于故障诊断。基于故障的层次特性,其故障成因和后果的关系往往具有很多层次并形成一连串的因果链,加之一因多果或一果多因的情况就构成故障树。故障树(FT)模型是一个基于被诊断对象结构、功能特征的行为模型,是一种定性的因果模型,以系统最不希望事件为顶事件,以可能导致顶事件发生的其他事件为中间事件和底事件,并用逻辑门表示事件之间联系的一种倒树状结构。它反映了特征向量与故障向量(故障原因)之间的全部逻辑关系。 故障树法对故障源的搜寻直观简单,它是建立在正确故障树结构的基础上的。因此建造正确合理的故障树是诊断的核心与关键。但在实际诊断中这一条件并非都能得到满足,一旦故障树建立不全面或不正确,则此诊断方法将失去作用。二.基于故障树的故障诊断方法 故障树分析法(Fault Tree Analysis,FTA)又叫因果树分析法.它是目前国际上公认的一种简单、有效的可靠性分析和故障诊断方法,是指导系统最优化设计、薄弱环节分析和运行维修的有力工具。 故障树分析法首先要在一定环境与工作条件下,找到一个系统最不希望发生的事件,通常以人们所关心的影响人员、装备使用安全和任务完成的系统故障为分析目标,再按照系统的组成、结构及功能关系,由上而下,逐层分析导致该系统故障发生的所有直接原因,并用一个逻辑门的形式将这些故障和相应的原因事件连接起来,建立分析系统的故障树模型,从而,形象地表达出系统各功能单元故障和系统故障之间的内在逻辑因果关系。这种方法既能分析硬件本身的故障影响,又能分析人为因素、环境以及软件的影响.不仅能对故障产生的原因进行定性分析,找出导致系统故障的原因和原因组合,确定最小割集和最小路集,识别出系统的薄弱环节及所有可能失效模式,还能进行相关评价指标的定量计算。根据各已知单元的故障分布及发生概率,求得单元概率重要度,结构重要度、关键重要度和系统失效概率等定量指标。 将FTA用于系统的故障诊断中,把系统故障作为故障树分析的顶事件,既能通过演绎分析,直接探索出系统的故障所在,指出故障原因和原因组合,帮助

数控机床的平均无故障时间

MTBF即平均无故障时间,英文是“Mean Time Between Failure”,具体是指产品从一次故障到下一次故障的平均时间,是衡量一个产品的可靠性指标(仅用于发生故障经修理或更换零件能继续工作的设备或系统),单位为“小时”。数控机床常用它作为可靠性的定量指标。 MTBF的数值是怎样算出来的呢,假设一台电脑的MTBF为3万小时,是不是把这台电脑连续运行3万小时检测出来的呢?当然不是,否则有那么多产品要用几十年都检测不完。MTBF值的计算方法,目前最通用的权威性标准是MIL-HDBK-217(美国国防部可靠性分析中心及Rome实验室提出并成为行业标准,专门用于军工产品)、GJB/Z299B(中国军用标准)和Bellcore(AT&T Bell 实验室提出并成为民用产品MTBF的行业标准)。 MTBF计算中主要考虑的是产品中每个元器件的失效率。但由于器件在不同的环境、不同的使用条件下其失效率会有很大的区别,所以在计算可靠性指标时,必须考虑这些因素。而这些因素几乎无法通过人工进行计算,但借助于软件如MTBFcal和其庞大的参数库,就能够轻松地得出MTBF值。 每天工作三班的工厂如果要求24小时连续运转、无故障率P(t)=99%以上,则机床的MTBF 必须大于4500小时。MTBF5000小时对由不同数量的数控机床构成的生产线要求就更高、更复杂了,我们这里只讨论单台机床: 如果主机与数控系统的失效率之比为10:1(数控系统的可靠性要比主机高一个数量级),数控系统的MTBF就要大于5万小时,而其中的数控装置、主轴及驱动部分等主要部分的MTBF就必须大于10万小时。 其实,我们不必关注MTBF值如何计算,只要知道选择MTBF值高的产品,将给我们带来更高的竞争力。 当然了,也不是MTBF值越高越好,可靠性越高机床成本也越高,根据实际需要选择适度可靠就行了

故障率及计算方法

故障率的计算方法 系统发生故障的频率和时间的关系可以用浴盆曲线来表达,如图1-1所示。。 1浴盆曲线原理 图 1-1浴盆曲线 从该曲线可以看出,系统故障率在系统早期投用和晚期老化后的故障率较高,而在使用中间段时随机故障率相对恒定。 2故障率计算公式 C=在考虑的时间范围Δt 内,发生故障的部件数 N=整个使用的部件数 Δt=考虑的时间范围 3平均无故障时间MTBF MTBF=1/λ 4可靠性计算公式 A S =MTBF/(MTBF+MDT) MDT=平均故障时间(或 MTTR=平均修复时间) 举例: ● MTBF=100h ,MDT=0.5h-A=99.5%! ● MTBF=1year ,MDT=24h-A=99.7% λ ≈ c N . ? t 早期故障 磨损故障 随机故障 λ 常数 t 故障频率 λ

因此,考虑系统的可靠性需同时考虑MTBF和MDT。

5如何增加系统的可靠性 从可靠性公式中可以看出,增加系统的可靠性可以从提高MTBF和MDT降低两个方面进行。 5.1增加系统的稳定性 增加稳定性,可从如下环节考虑: ●设备生产商 ●使用高质量部件 ●使用具有更高标准的部件 ●预烧 ●抗过载保护 ●质量控制 ●冗余 ●工厂设计人员 ●网络结构 ●冗余安装 ●符合安装条件需要 ●在合适的环境条件下使用 ●工厂操作人员 ●维护 ●快速故障诊断 ●自动故障诊断和定位(自测试) ●具有诊断功能 ●诊断工具的稳定性 ●训练有素的维护人员 ●快速修复 ●系统不停机情况下修复(在线修复) ●修复工程容易 ●快速备件发送 ●训练有素的专业人员 5.2整个系统的MTBF 对于串行系统而言,系统故障发生率是各部件故障发生率之和,如图1-2所示。举例: MTBF1 MTBF2 MTBF3

平均无故障时间(MTBF)

MTBF,即平均无故障时间,英文全称是“Mean Time Between Failure”。是衡量一个产品(尤其是电器产品)的可靠性指标。单位为“小时”。它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力。具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。磁带机产品的MTBF值不应低于200000小时。 通常,我们在产品的手册或包装上能够看到这个MTBF值,如8000小时,2万小时,那么,MTBF的数值是怎样算出来的呢,假设一台电脑的MTBF为3万小时,是不是把这台电脑连续运行3万小时检测出来的呢?答案是否定的,如果是那样的话,我们有那么多产品要用几十年都检测不完的。其实,关于MTBF值的计算方法,目前最通用的权威性标准是MIL-HDBK-217、GJB/Z299B和Bellcore,分别用于军工产品和民用产品。其中,MIL-HDBK-217是由美国国防部可靠性分析中心及Rome实验室提出并成为行业标准,专门用于军工产品MTBF值计算,GJB/Z 299B是我国军用标准;而Bellcore是由AT&T Bell 实验室提出并成为商用电子产品MTBF值计算的行业标准。 MTBF计算中主要考虑的是产品中每个器件的失效率。但由于器件在不同的环境、不同的使用条件下其失效率会有很大的区别,例如,同一产品在不同的环境下,如在实验室和海洋平台上,其可靠性值肯定是不同的;又如一个额定电压为16V的电容在实际电压为25V 和5V下的失效率肯定是不同的。所以,在计算可靠性指标时,必须考虑上述多种因素。所有上述这些因素,几乎无法通过人工进行计算,但借助于软件如MTBFcal软件和其庞大的参数库,我们就能够轻松的得出MTBF值。 其实,MTBF值如何算出并不是我们所关心的问题,我们应该把重点放在一个产品的MTBF 的值到底有多少上,对于用户来讲,应该选用MTBF值高的产品。

设备完好率、设备利用率、设备故障率、设备开动率、OEE、MTTR,MTTF,MTBF

定义:设备完好率,指的是完好的生产设备在全部生产设备中的比重,它是反映企业设备技术状况和评价设备管理工作水平的一个重要指标。 计算公式:设备完好率=完好设备总台数/生产设备总台数× 100% 标准:所谓完好设备一般标准是: ①设备性能良好,如机械加工设备的精度达到工艺要求; ②设备运转正常,如零部件磨损、腐蚀程度不超过技术规定标准,润滑 系统正常、设备运转无超温、超压现象; ③原料、燃料、油料等消耗正常,没有油、水、汽、电的泄漏现象。对于各 种不同类型的设备,还要规定具体标准。例如传动系统的变速要齐全、滑动部分要灵敏、油路系统要畅通等。 公式中的设备总台数包括在用、停用、封存的设备。在计算设备完好率时,除按全部设备计算外,还应分别计算各类设备的完好率。 2、设备利用率 定义:设备利用率是指每年度设备实际使用时间占计划用时的百分比。是指设备的使用效率。是反映设备工作状态及生产效率的技术经济指标。 在一般的企业当中,设备投资常常在总投资中占较大的比例。因此,设备能否充分利用,直接关系到投资效益,提高设备的利用率,等于相对降低了产品成本。所以,作为企业的管理者,在进行生产决策的时候,一定要充分认识到这一点。 一般包括:设备数量利用指标―实有设备安装率,已安装设备利用率;设备时间利用指标―设备制度台时利用率,设备计划台时利用率;设备能力利用指标―设备负荷率;设备综合利用指标―设备综合利用率。过去,设备利用率一般仅指设备制度台时利用率。 计算公式: 公式一: 设备利用率=每小时实际产量/ 每小时理论产量×100% 公式二: 设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三: 设备利用率=某抽样时刻的开机台数/ 设备总台数×100%

MTBF,即平均故障间隔时间

mtbf MTBF,即平均故障间隔时间,英文全称就是"Mean Time Between Failure"。就是衡量一个产品(尤其就是电器产品)的可靠性指标。单位为"小时"。它反映了产品的时间质量,就是体现产品在规定时间内保持功能的一种能力。具体来说,就是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。概括地说,产品故障少的就就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate)。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。磁盘阵列产品一般MTBF不能低于50000小时。 计算方法 失效时间就是指上一次设备恢复正常状态(图中的up time)起,到设备此次失效那一刻(图中的down time)之间间隔的时间。 MTBF值就是产品设计时要考虑的重要参数,可靠度工程师或设计师经常使用各种不同的方法与标准来估计产品的MTBF值。相关标准包括MIL-HDBK-217F、Telcordia SR332、Siemens Norm、Fides或UTE C 80-810(RDF2000)等。不过这些方法估计到的值与实际的平均故障间隔仍有相当的差距。计算平均故障间隔的目的就是为了找出设计中的薄弱环节。 MTBF的数学式表达 另外,在工程学上,常用希腊字母θ来表示MTBF,既有: 在概率论中,可用?(t)形式的概率密度方程表示MTBF,既有: 此处?指的就是直到下次失效经过时长的概率密度方程--满足标准概率密度方程--

故障时间 随着服务器的广泛应用,对服务器的可靠性提出了更高的要求。所谓"可靠性",就就是产品在规定条件下与规定时间内完成规定功能的能力;反之,产品或其一部分不能或将不能完 成规定的功能就是出故障。概括地说,产品故障少的就就是可靠性高,产品的故障总数与寿命单位总数之比叫"故障率"(Failure rate),常用λ表示。例如正在运行中的100只硬盘,一年之内出了2次故障,则每个硬盘的故障率为0、02次/年。当产品的寿命服从指数分布时,其故障率的倒数就叫做平均故障间隔时间(Mean Time Between Failures),简称MTBF。即: MTBF=1/λ 笔者瞧到一款可用于服务器的WD Caviar RE2 7200 RPM 硬盘,MTBF 高达120万小时,保修5年。120万小时约为137年,并不就是说该种硬盘每只均能工作137年不出故障。由MTBF=1/λ可知λ=1/MTBF=1/137年,即该硬盘的平均年故障率约为0、7%,一年内,平均1000只硬盘有7只会出故障。 下图所示为著名的浴盆曲线,左边斜线部分为早期故障率,其故障率一般较高且随着时 间推移很快下降。曲线中部为使用寿命期,其故障率一般很低且基本固定。最右部为耗损期,失效率急速升高。电子产品制造商一般通过测试、老炼、筛选等手段将早期故障尽量剔除,然后提供给客户使用。当使用寿命期将尽,产品也即将进入故障高发期,需要报废或更新换代了。 由来 右图为浴盆曲线,那么浴盆曲线与产品寿命有什么关系呢? 电子产品的寿命一般都符合浴盆曲线,可分为三个阶段:

设备管理中的11个关键指标

设备管理中的11个关键指标 2019年10月3日 设备管理要进步,其水平也需要度量。在企业里,用于度量设备管理好坏的指标很多。例如设备的完好率,设备的可用率,设备综合效率,设备完全有效生产率,设备故障率,平均故障间隔期,平均修理时间,设备备件库存周转率,备件资金率,维修费用率,检修质量一次合格率,返修率等等。不同的指标用于度量不同的管理方向。 在这些指标里,设备的完好率用得最多,但其对管理的促进作用有限。所谓的完好率,是在检查期间,完好设备与设备总台数的比例。 设备完好率=完好设备数/设备总数 很多工厂的指标可以达到95%以上。理由很简单,在检查的那一刻,如果设备是运转的,没出故障,就算是完好的,于是这个指标就很好看。很好看,很高,就意味着没有多少可提升的空间了,就意味着没有什么可改善的了,也就意味着很难进步了。完好率这一指标是否有效反映设备管理状况,这要看如何应用,仁者见仁,智者见智。 另外一个指标是故障率,这个指标容易混淆,如果是故障频率则是故障次数与设备实际开动台时的比值,即: 故障频率=故障停机次数/设备实际开动台时

如果是故障停机率,则是故障停机台时与设备实际开动台时加上故障停机台时的比值,即: 故障停机率=故障停机台时/(设备实际开动台时+故障停机台时) 显然,故障停机率比较能够真实的反映设备状态。 设备的可用率在西方国家采用较多,而在我国有计划时间利用率和日历时间利用率两个不同提法。按照定义,西方定义的可用率实际上是日历时间利用率。 日历时间利用率=实际工作时间/日历时间 计划时间利用率=实际工作时间/计划工作时间 前者反映了设备的完全利用状况,也就是说即使是单班运行的设备,我们也按照24小时计算日历时间。因为无论工厂是否使用这台设备,都以折旧形式消耗着企业的资产。后者反映了设备的计划利用状况,如果是单班运行,其计划时间就是8小时。 设备的平均故障间隔期MTBF的另外一个提法叫做平均无故障工作时间。它与故障停机率互补的反映了故障频次,也就是设备的健康状况。两个指标取一个就可以了,不必利用相关指标度量一个内容。 设备平均故障间隔期=统计基期无故障运行总时间/故障次数 另外一个反映维修效率的指标是平均修理时间MTTR,它度量的是维修工作效率的改善状况。 平均修理时间=统计基期维修消耗的总时间/维修次数

设备完好率设备利用率设备故障率设备开动率OEEMTTR,MTTF,MTBF

设备完好率设备利用率设备故障率设备开动率 O E E M T T R,M T T F,M T B F Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

1、设备完好率 定义:设备完好率,指的是完好的生产设备在全部生产设备中的比重,它是反映企业设备技术状况和评价设备管理工作水平的一个重要指标。 计算公式:设备完好率=完好设备总台数/生产设备总台数× 100% 标准:所谓完好设备一般标准是: ①设备性能良好,如的精度达到工艺要求; ②设备运转正常,如零部件磨损、腐蚀程度不超过技术规定标准,润滑系 统正常、设备运转无超温、超压现象; ③、、油料等消耗正常,没有、、、的泄漏现象。对于各种不同类型的设 备,还要规定具体标准。例如的变速要齐全、滑动部分要灵敏、油路系统要等。 中的设备总台数包括在用、停用、封存的设备。在计算设备完好率时,除按全部设备计算外,还应分别计算各类设备的完好率。 2、设备利用率 定义:设备利用率是指每年度设备实际使用时间占计划用时的百分比。是指设备的使用效率。是反映设备工作状态及的技术经济。 在一般的企业当中,设备投资常常在总投资中占较大的比例。因此,设备能否充分利用,直接关系到投资效益,提高设备的利用率,等于相对降低了产品成本。所以,作为企业的管理者,在进行的时候,一定要充分认识到这一点。 一般包括:设备数量利用指标―实有设备安装率,已安装设备利用率;设备时间利用指标―设备制度台时利用率,设备计划台时利用率;设备能力利用

指标―设备负荷率;设备综合利用指标―设备综合利用率。过去,设备利用率一般仅指设备制度台时利用率。 计算公式: 公式一: 设备利用率=每小时实际/ 每小时×100% 公式二: 设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三: 设备利用率=某抽样时刻的开机台数/ 设备总台数×100% 3、设备故障率 定义:设备故障率是指事故(故障)停机时间与设备应开动时间的百分比,是考核设备技术状态、故障强度、维修质量和效率一个指标。 计算公式:故障造成的停机时间/设备工作运行时间×100% 4、设备开动率 定义:设备开动率是指在某一时间段内(如一班、一天等)开动机器生产所占的时间比率。 计算公式:设备实际开动时间/设备正常工作时间×100% 5、OEE 定义:设备综合效率是Overall Equipment Effectiveness,简称OEE。一般,每一个生产设备都有自己的最大理论产能,要实现这一产能必须保证没有任何干扰和质量损耗。当然,实际生产中是不可能达到这一要求,由于许

相关主题