搜档网
当前位置:搜档网 › 基于MATLAB的电力系统短路故障分析与仿真

基于MATLAB的电力系统短路故障分析与仿真

基于MATLAB的电力系统短路故障分析与仿真
基于MATLAB的电力系统短路故障分析与仿真

· ……………………. ………………. …………………

毕 业 论 文 基于MATLAB 的电力系统短路故障分析与仿真 院 部 机械与电子工程学院 专业班级 电气工程及其自动化 届 次 2015届 学生姓名 学 号 指导教师

线

……………….……. …………. …………. ………

摘要.................................................................................................................................................. I Abstract .......................................................................................................................................... II 1 引言 (1)

1.1 课题研究的背景 (1)

1.2 课题研究的国内外现状 (1)

2 短路故障分析 (1)

2.1 近年来短路故障 (1)

2.2 短路的定义及其分类 (2)

2.3 短路故障产生的原因及危害 (4)

2.4 预防措施 (4)

2.5 短路故障的分析诊断方法 (5)

3 仿真与建模 (6)

3.1 仿真工具简介 (6)

3.1.1 MATLAB的特点 (6)

3.1.2 Simulink简介 (7)

3.1.3 SPS(SimPowerSystems) (8)

3.1.4 GUI(图形用户界面) (8)

3.2 模型的建立 (8)

3.2.1 无限大电源系统短路故障仿真模型 (8)

3.2.2 仿真参数的设置 (9)

4 仿真结果分析 (16)

4.1 三相短路分析 (16)

4.2 单相短路分析(以A相短路为例) (18)

4.3 两相短路(以A、B相短路为例) (22)

4.4 两相接地短路(以A、B相短路为例) (25)

5 结论 (28)

6 前景与展望 (28)

参考文献 (29)

致谢 (30)

Abstract ................................................................................................................................................................ II 1 Introduction.. (1)

1.1 Project background to the study (1)

1.2 The research situation at home and abroad (1)

2 Analysis of short-circuit fault (1)

2.1 Short-circuit fault in recent years (1)

2.2 Definition and classification of short-circuit fault (2)

2.3 Causes and damage of short-circuit fault (4)

2.4 Precautionary measures (4)

2.5 Method to analysis and diagnosis of short-circuit fault (5)

3 Simulation and modeling (6)

3.1 Introduction to simulation tools (6)

3.1.1 Features of MATLAB (6)

3.1.2 Introduction to simulink (7)

3.1.3 SPS(SimPowerSystems) (8)

3.1.4 GUI(Graphical User Interfaces) (8)

3.2 Establishment of the model (8)

3.2.1 Infinite power system short-circuit fault simulation model (8)

3.2.2 Simulation parameter settings (9)

4 Simulation analysis (16)

4.1 Analysis of three-phase short-circuit (16)

4.2 Analysis of single-phase short circuit (18)

4.3 Analysis of two-phase short circuit (22)

4.4 Analysis of two-phase short circuit to ground (25)

5 Conclusions (28)

6 Outlook and prospect (28)

References (29)

Acknowledgement (30)

基于MATLAB的电力系统短路故障分析与仿真

刘继文

(山东农业大学机械与电子工程学院泰安271018)

摘要:短路是电力系统中最容易发生的故障,每年因短路而引发的电气事故不计其数。本文详细介绍了短路故障产生的原因以及危害等,并重点介绍了Simulink仿真工具在电力系统中的应用。利用电力系统工具箱SPS和Simulink模块可以对电力系统故障进行仿真。在仿真平台上,以无限大电源系统为建模对象,经过模块选择,连线,参数设置等步骤,对电力系统可能出现的三相短路、单相短路、两相短路以及两相接地短路几种故障进行仿真。仿真结果表明,波形与理论分析基本一致,由此说明MATLAB在电力系统仿真研究中具有重要的实用价值[1]。

关键词:短路电力系统MATLAB 故障仿真

Analysis and Simulation of Short Circuit Fault in Power System

Based on MATLAB

Jiwen Liu

(college of mechanical and electronic engineering , Shandong Agricultural University, Tai’an, 271018)

Abstract:Short circuit is most likely to occur in power system fault, there are countless electrical accidents each year due to short circuits . This paper expounds the causes of faults and hazards, and focuses on the application of Simulink simulation tools in power system. PSB and Simulink Toolbox modules can use electric power system simulation for power system failures. On the simulation platform, with infinite power source system for modeling objects through module selection, connection, steps such as parameter settings, on possible three-phase short circuit, single-phase power system short circuit, two-phase short circuit fault simulation of two-phase short circuit to ground. Simulation results show that the waveform analysis are consistent with the theory that illustrate the MATLAB in simulation of power system is of significant practical value.

Keywords:short circuit; power system; MATLAB; fault; simulation

1 引言

1.1 课题研究的背景

随着电力工业的迅猛发展,电力系统的规模越来越大,如今已成为世界上覆盖面最广、结构最复杂的人造系统之一。众所周知,电能的生产、输送、分配和使用四个环节是同时进行的,即电能不能够被储存。因此,如何生产安全、优质、经济的电能以保证电力系统的安全可靠运行成了当今值得关注的课题。正是由于电力系统的特殊复杂性,许多电力系统故障也随之发生,其中以短路故障最为严重。最近几年,国内外发生了多次重大停电事故,由此造成了巨大的经济损失,同时也严重影响了人民的正常生产、生活秩序[2]。因此,研究电力系统中的短路故障问题,尤其是短路电流问题一直受到电力科技工作者的高度重视[3]。

1.2 课题研究的国内外现状

基于电力系统的复杂程度以及从安全性角度考虑,许多电力系统试验已无法在实验室中模拟进行。因此,国内外从上世纪80年代开始对电力系统故障分析做了大量的研究工作,并提出了许多故障诊断方法,但是实际上并没有得到有效的解决。考虑到电力系统的实际运行情况,从技术和安全角度来讲,已经无法进行科学的实验。所以,开展电力系统故障仿真就显得颇具现实意义和实用价值。借助于计算机,一系列的仿真软件开始诞生。当前,我们应用的电力系统仿真软件主要有:

(1)PSCAD/EMTDC程序:其功能是研究当电力系统遭受扰动或者参数发生变化时,观察参数随时间的变化规律[4]。

(2)EMTP程序:其功能是进行电力系统电磁暂态计算,电力系统暂态保护装置的综合选择以及电力系统暂态过电压分析等[5]。

(3)PSASP程序:其功能是进行电力系统暂态分析、稳态分析以及故障分析等。

当然,除此之外还有MathWorks公司开发的MATLAB应用软件。由于MATLAB具有强大的计算功能、良好的动态仿真环境以及丰富的内置工具箱,因此逐渐成为电路、电力电子以及电力系统等模块的重要仿真工具。

2 短路故障分析

2.1 近年来短路故障

我们先来看几组数据:

2000年12月25日21时35分,河南省洛阳市老城区的东都商厦发生特大火灾,正在二、三楼施工的部分民工以及四楼歌舞厅内的200多人被大火围困。经有关部门确认,火灾已造成309人死亡,此次火灾是由于线路老化而造成短路引起的灾难[6]。

2005年11月27日21时22分,黑龙江省龙煤矿业公司七台河分公司东风煤矿发生特大事故,造成171人死亡,48人受伤,直接经济损失达4292.1万元。事故原因是采掘机电机短路引起火花,从而引发瓦斯爆炸。

2008年9月20日22时49分,深圳龙岗区舞王俱乐部发生火灾,导致44人死亡,64人受伤,直接经济损失达七千万。事故的直接原因是舞台照明线路和施放焰火同时起火引发的。

2015年5月25日19时55分,河南平顶山市鲁山县城西琴台办事处三里河村一老年康复中心发生火灾,经过抢险人员全力抢救,共救出44人,其中:38人死亡、4人轻伤、2人重伤,事故原因为线路老化。

以上报道,不是危言耸听,都是发生的真实案例。据统计,2012年全国电气火灾数量占总火灾比重为29.9%,但人员伤亡比重为32.5%,经济损失比重为41.4%。由此可见,电气火灾事故往往会造成更高的人员伤亡和更大的经济损失。

2.2 短路的定义及其分类

短路是指不同电位的导电部分包括导电部分对地之间的低阻性短接。

根据短路发生的部位不同,短路故障可以分为4种类型:三相短路(K (3))、单相接地短路(K (1))、两相短路(K (2))和两相接地短路(K (1,1))。三相短路属于对称性短路,而其他形式为不对称短路。在电力系统中,发生单相短路的概率最大,大约能占到故障发生总数的65%;而发生三相短路的概率最小,但是一般情况下,特别是远离电源(发电机)的工厂供电系统中,三相短路的短路电流最大,因此它造成的危害也最严重。 三相短路是指三相供配电系统三相导体间的短路,如图2-1所示。

两相短路是指三相供配电系统中任意两相导体间的短路,如图2-2所示。

A

B C 电源

O 负荷

I k (3) K (3) 图2-1 三相短路 A

B C 电源 O 负荷 I k (2) K (2) 图2-2 两相短路

单相短路是指供配电系统中任一相经大地与中性点或与中线发生的短路,如图2-3所示。

两相接地短路是指中性点不接地系统中任意两相发生单相接地而产生的短路,如图

2-4所示。

O A B C 电源

负荷 I k (1) K (1) 图2-3(a ) 单相短路 A B

C

电源 O

负荷

N I k (1) K (1) 图2-3(b ) 含中性线的单相短路 A

B C

电源

O 负荷

K (1,1)

I k (1,1)

2.3 短路故障产生的原因及危害

工厂供电系统要不间断地、正常地对用电负荷供电,从而保证工厂生产和生活的正常进行。但是,由于种种原因,也会难免出现故障,进而使得电力系统的稳定性运行遭到破坏。在实际生活中,造成短路故障的原因有很多,其中最主要的原因是电气设备载流部分的相间绝缘或者相地绝缘遭到破坏,例如:

(1)设备被过电压(包括雷电过电压)击穿[7];

(2)设备长期连续运行、绝缘自然老化;

(3)设备质量低劣、绝缘强度不够;

(4)设备发生闪络,被正常电压击穿;

(5)设备受到外力的作用使绝缘受损而击穿;

(6)老鼠等咬坏线路,或者跨越在线路之间;

(7)工作人员误操作。

总之,短路故障产生的原因既有客观因素,也有主观因素,只要监管人员有较强的责任心,严格执行各种规章制度,以身作则,就可以把短路故障控制在一个最小的范围之内,从而得到最大效益。

短路发生后,系统中出现的短路电流要比正常负荷电流大得多。在大电力系统中,短路电流可以达到几万甚至几十万安培。短路电流如此之大,所产生的危害也是巨大的:(1)短路电流通过导体时,产生的热效应会引起导体或其绝缘受损;

(2)导体由于受到电动力的冲击而变形,甚至损坏;

(3)短路会引起电网中电压降低,并且越靠近短路点,电压下降越多,结果可能是使部分用户的供电受到破坏。

(4)不对称接地短路所引起的不平衡电流所产生的不平衡磁通,会在邻近的平行通信线路内感应出相当大的电动势,造成对通信系统的干扰,甚至危及设备和人身的安全[8]。

(5)短路会破坏发电机的同步性,从而造成系统瓦解,严重时会引发大片地区停电。

2.4 预防措施

预防短路故障的主要措施是限制短路电流、缩短短路电流的持续时间、减少发生短路的机会。具体讲就是:

(1)为了保证电气设备的额定电压与线路的额定电压相符,必须进行短路电流的计算,正确选择及校验电气设备。

(2)为了确保发生短路时迅速将故障切除,减少短路所造成的危害,我们应该采用电流速断保护装置,并且要正确选择熔体的额定电流和继电保护的整定值。

(3)为了减少雷击损害,必须在变压器附近安装避雷器,在线路和变电站上安装避雷针。

(4)为了限制短路电流,可以采用电抗器增加系统阻抗。

(5)为了使非故障部分能继续运行,需要把故障线路或设备从电力系统中迅速除掉。

(6)要经常对线路、设备进行巡视检查,及时发现缺陷,并迅速进行检修。线路施工完毕后应立即拆除接地线。保证架空线路施工质量,加强线路维护,始终保持线路弧垂一致并符合规定[9]。

(7)严格执行电力系统五防措施,即防止务分、务合断路器;防止带负荷分合隔离开关;防止带电挂接地线;防止带接地线合隔离开关;防止误入带电间隔。

(8)为了防止粉尘进入电气设备,要及时清理;为了防止小动物进入变电站,要加强管理,严格把关。

2.5 短路故障的分析诊断方法

电力系统短路故障随时都有可能发生,因此我们要对设备进行实时监测,一旦发生故障,要迅速作出诊断,确定发生故障的类型并及时排除。当然,分析短路故障问题,还有助于我们进行电气设备的选择及校验。目前,我们分析短路故障主要有以下几种方法。

(1)基于专家系统的诊断方法

专家系统(expert-system)是根据专家推理的方法,利用计算机模型来解决问题的一种故障诊断方法。按照所用推理策略和故障诊断知识的不同,专家系统可以分为两类。第一类是基于启发式规则推理的系统,即把继电保护、断路器的动作逻辑以及运行人员的诊断经验用一定的规则表示出来,以此来形成一个比较系统的专家知识库。当发生故障时,能够立即将故障与知识库中的类型进行匹配,这样就可以迅速判断故障并及时排除。这是目前最有效的一种诊断方法,因此它的应用范围比较广泛。第二类是结合正、反推理的系统,即把正向推理与反向推理两种方法混合起来,首先根据正向推理建立一定的规则,然后通过反向推理进行验证,这样就可以大大减小故障发生的范围,从而可以根据实际值与理论值的对比来计算可信度[10]。采用混合推理方法能够同时提高该系统的自学习能力与适应性。

(2)基于人工神经网络的诊断方法

基于人工神经网络(ANN-artificial-neural-network)的诊断方法是由美国Pitts等人率先提出的,它的发展经历了三个阶段,目前应用于电力系统故障诊断的ANN有:基于BP(ackpropagation)算法的前向神经网络和基于径向基函数的神经网络等。该故障诊断的过程为:首先根据当前网络的内部表达,对输入样本进行前向计算;然后比较网络的输出与期望输出之间的误差,若误差满足条件,则训练结束;否则,将误差信号按原有的通路反向传播,逐层调整权值和阀值,如此反复,直至满足误差精度的要求。

(3)基于优化技术的诊断方法

基于优化技术(optimization-methods)的诊断方法是一种基于数学模型的诊断方法,它的基本思路是将把电力系统的故障诊断问题描述成为“0-1”整数规划的问题,并构造了一种数学解析模型,应用优化技术来寻找问题的最优解。

(4)基于Petri网络的诊断方法

在离散事件系统建模中,Petri网络是一种理想的工具,通过构造有向图组合模型,形成了以矩形运算来描述的严格的数学对象。在电力系统发生故障时,可以把其看做是一

个动态的系统,并且故障的发生属于一个离散的过程,通过各类保护的动作和各级电压的变化来反映故障,将故障切除的过程看做是一系列活动事件的组成,与对应的实体相联系。动态事件主要包括实体活动(例如断路器、继电保护装置等)和信息流活动(例如信号传递、控制指令发送、各检测信号流等)[11]。

(5)基于粗糙集理论的诊断方法

粗糙集理论(rough-set-theory)是波兰专家Z.Pawlak在1982年提出的一种新型数学工具,对于处理不确定性和不完整性的问题具有重要的实用价值[12]。它能够有效地分析和处理不一致、不精确、不完整等一系列的不完备数据,不需要像其他方法一样依赖处理问题所需的数据之外的先验信息,而且它能够挖掘隐含的知识,发现潜在的规律。鉴于其优越性,现在已经渐渐称为发展的新趋向,而且不少相关的研究人员已经在尝试把其引人到故障诊断系统中。

(6)基于模糊集理论的诊断方法

模糊集理论(fuzzy-set-theory)在电力系统故障诊断中分为两种情况:一种认为诊断所依据的信息正确,但故障与对应的动作保护装置和断路器状态之间存在不确定的关联关系,以及用模糊隶属度对这种可能性进行描述的度量;另一种则认为诊断所依据的报警信息错误,而根据系统网络拓扑与故障所发生的动作保护、断路器状态赋予报警信息的可信度,再由专家系统或ANN给出故障诊断结果的模糊输出[13]。

(7)基于多代理系统的诊断方法

多代理系统(multi-agent system,以下简称MAS)被看做是一种分布式的、智能化的、基于人工的试验平台[14],当某些复杂的问题无论是在逻辑上或者物理上可以进行分解时,每个问题即子问题就会拥有属于自己的信息,所以,只有各个子问题相互融合才能求解最终的问题。MAS研究的重点在于如何协调在逻辑上或物理上分离的、具有不同目标的多个Agent的行为,使其联合采取行动或求解问题,协调各自的知识、希望、意图、规划、行动,以对其信息、资源进行合理安排,最大限度地实现各自的目标和总体目标,以对更复杂、更大规模的问题的解决起到重要作用。MAS是解决大规模电力系统故障诊断问题很有前途的发展方向。但MAS中各Agent的知识和行为、协调与协作是有待深入解决的核心问题[15]。

3 仿真与建模

3.1 仿真工具简介

我们在引言中已经了解到,当前国内外应用的仿真软件主要有PSCAD、EMTP以及MATLAB等,由于本文的研究重点是建立在MATLAB的基础上进行电力系统短路故障的仿真,所以以下仅介绍MATLAB仿真工具。

3.1.1 MATLAB的特点

MATLAB是matrix和laboratory两个单词的组合,各取前三个字母组成一个词,意为矩阵工厂(矩阵实验室)。它是由美国MathWorks公司开发的高级数学应用软件,主

要用于算法开发、数据可视化、数据分析以及数值计算,是一种高级技术计算语言,并且适用于交互式环境,是当今国际科学计算软件的代表。MATLAB的功能之所以强大,是因为它具备以下特点:

(1)语言简洁,使用灵活,库函数丰富。MATLAB的程序书写形式自由,由于程序自带函数库,所以用户可以根据自己的要求直接调用库函数,这样就不用再书写复杂的子程序了,从而可以省略一些不必要的编程任务。需要指出的是,库函数中的程序都是由该领域的专家编写的,所以,其可靠性是不容置疑的。

(2)运算符丰富。我们都知道,C语言的运算符是非常丰富的,而MATLAB是用C 语言编写的,所以,MATLAB的运算符也是十分庞大的。灵活运用运算符将使编程容易很多。

(3)高效性。MATLAB具有结构化的控制语句,比如for循环、while循环以及if、else语句等,因此,其语句功能十分强大。

(4)简单易学,适于应用。MATLAB不需要用户具有高深的数学功底,也不需要强大的程序设计能力,更不需要用户深刻的了解算法以及编程技巧,初学者只要肯钻研,轻松掌握并不是夸夸其谈。同时,MATLAB的程序设计并不严格,自由度较大。

(5)可移植性好。编写好的程序可以进行直接拷贝,在不同的计算机和操作系统中可以顺利执行。

(6)图形功能强大。在MATLAB里,数据的可视化非常简单,具有较强的图形编辑能力。

(7)可扩展性。MATLAB包含功能强大的工具箱,可以分为功能性工具箱和科学性工具箱两类。功能性工具箱主要用来扩充其符号计算功能、文字处理功能、图示建模仿真功能以及与硬件实时交互功能[15]。学科性工具箱是专业性比较强的,如control toolbox, signal processing toolbox, communication toolbox 等。这些工具箱都是专业人士编写好的,用户可以直接使用,无需自己再去编写。

(8)开放的源程序。除了自带的函数外,所有MATLAB的核心文件和工具箱文件都可以进行读写操作,用户可根据源文件进行修改,这样可以成为自己的工具箱。

3.1.2 Simulink简介

Simulink是MATLAB软件中的一种可视化仿真工具,是一种基于MATALB的框图设计环境,同时是一个实现动态系统建模、仿真和分析的软件包,凭借其强大的功能被广泛应用于线性系统、非线性系统、数字控制以及数字信号处理的建模和仿真中。Simulink 可以对各种动态系统的交互环境进行建模、分析和仿真,其中包括连续系统、离散系统和混合系统,也可以用连续采样时间、离散采样时间或者两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率的系统。Simulink提供了一种通过鼠标拖拽来建立系统框图模型的图形交互平台。Simulink库里有丰富的各种功能模块,用户可以根据自己的需要迅速地创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI),这个创建过程只需单击和拖动鼠标就能够完成,它提

供了一种更快捷、更直接的方式,而且用户可以立即看到系统的仿真结果。同时Simulink 还集成了Stateflow,用来建模和仿真复杂事件驱动系统的逻辑行为。

Simulink由模块库、模型构造及分析指令、演示程序三部分构成。在Simulink环境中,对于由微分方程或者查分方程描写的动态系统,用户无需编写文本形式的程序,而只要通过一些简单的鼠标操作就可以形象地建立所期望的数学模型,并进行仿真和分析研究。运行Simulink有三种方式:

(1)在MATLAB的命令窗口键入simulink指令,敲击回车即可;

(2)点击MATLAB工具条上的simulink快捷键图标;

(3)在MATLAB菜单中,执行File→New→Model操作,会弹出新建立的模型窗口,名为untitled。

3.1.3 SPS(SimPowerSystems)

在Simulink窗口中,我们可以很清楚的看到,有一个专门为电气仿真所建立的窗口,即SimPowerSystems。用户可以应用SPS模块方便地进行电力系统分析、仿真、数值处理和设计,根据自己所建立的数学模型和具体的模拟要求,从模块库中选择合适的模块并组合在一起,直接对系统进行仿真分析和计算[16]。SPS涵盖了电路、电力电子、电力系统和电气传动等电气学科中常用的基本元件和系统的仿真模型,为电力研究者带来了很大的便利。它由以下8个子模块库组成:电源元件库(Electrical Sources);基本线路元件库(Elements);附加元件库(Extra Library);电机元件库(Machines);测量元件库(Measurements);相位元件库(Phasor Elements);电力电子元件库(Power Electronics);电力系统分析元件模型(Powergui)。

3.1.4 GUI(图形用户界面)

GUI是Graphical User Interfaces的简称,通常是一种包含多种图形对象的界面,典型的图形界面包括图形显示、功能按钮控件以及用户自定义的功能菜单等。为了让界面实现各种功能,用户需要对各个图形对象进行布局和事件编程。这样,当用户激活对应的GUI 对象时,就能执行相应的事件行为。最后,必须保存和发布自己创建的GUI,使得用户可以应用GUI对象。GUI中最重要的三种方法是:使用M文件创建GUI对象,使用GUIDE 创建GUI对象和标准菜单的定制。

3.2 模型的建立

3.2.1 无限大电源系统短路故障仿真模型

电力系统是由发电机、变压器、电力线路和电力用户等组成的整体,是集生产、输送、分配和消费电能的统一系统。除此之外,电力系统还包括由继电保护装置、电力通信装置、安全自动装置、调度自动化装置以及通过机械或电的方式联入电力系统中的设备(如发电机的励磁调节器、调速器等)等构成的辅助系统,通常我们称之为二次系统,以保证电力系统的安全与可靠运行。电力网络是电力系统中输送、变换和分配电能的一部分,输电网

S T 络一般是电力系统中最高电压等级的电网,是电力系统的主要网络[17]。同时,输电线路还有联络相邻电力系统和联系相邻枢纽变电所的作用。而配电网是将电能从枢纽变电所分配到配电变电所后,再向用户供电的电力网络。

因此,基于上述理论,本文以单机无穷大电源系统作为仿真模型,如图3-1所示。电源容量设为5000MV A ,发电机端电压为500KV ;线路L 的长度为200km,;变压器采用双绕组变压器,接法为Y/Yg ,变比为500/121,容量设为100MV A ,短路损耗100KW ,空载损耗25KW ,空载电流I 0%=0.8,短路电压百分数为10.5%,在0.04s 时刻变压器低压母线发生短路故障,0.08s 时刻故障切除。

图3-1 系统简化图

依据系统简化图,我们可以在MATLAB 中执行simulink 命令,新建一个名为“fangzhen”的文件,进而在simulink 库中找到我们所需要的元件,通过鼠标拖拽的方式建立如图3-2所示的仿真模型。当然,在图3-2中,还加了一些测量显示元件,如万用表“Multimeter”“Scope”等。

图3-2 单机无限大电源系统短路故障仿真模型图

3.2.2 仿真参数的设置

(1)电源

K L G1 ~

电源采用“Three-phase Source”,峰值振幅(Peak Amplitude)设为500KV;初始相位(Phase)设为0;频率(Frequency)设为50Hz;内部连接方式(internal connection)选择Y 接;其他参数不变,如图4-3所示。

图3-3 电源模块参数设置

(2)线路

线路采用“Distributed Parameters Line”分布参数输电线路,频率(Frequency)设为50Hz,长度(Line length)设为200(km),其他参数不变,如图3-4所示。

图3-4 线路模块参数设置

(3)变压器

变压器采用“Threee -phase Transformer (Two Windings)”,容量和频率(Nominal power and frequency )分别设为100MV A 和50Hz ,内部连接方式设为Y/Yg ,其他各参量可通过相关公式求出。将各个参量折算到500KV 侧求解如下:

变压器的电阻为

Ω=Ω??=??=5.2101000005001001032

2322N N k T S U P R 变压器的电抗为

Ω=Ω???=?=5.26210100000

1005005.10101003232N N S T S U %U X 变压器的漏感为

H H f X L T T 84.05014.325.2622=??==

π 变压器的励磁电阻为

Ω=Ω???=Ω?=31250010100000

8.050010010%10032302N N m S I U X 变压器的励磁电抗为

H H f X L m m 22.99550

14.323125002=??==π

由此变压器的参数设置如图3-5。

图3-5 变压器参数设置

(4)故障模块

选用三相短路故障模块“Three -phase Fault”,“Phase A Fault”“Phase B Fault”“Phase C Fault”选项可以设置故障类型,“Ground Fault”选项可以设置故障是否接地;“Transition status”选项可以设置故障状态,“1”为故障发生,“0”为故障排除(或者说无故障);通过“Transization times”可以设置故障的起始时间;其他参数不变,如图3-6所示。

图3-6 故障模块参数设置

(5)电压电流测量模块

选用“Three-Phase V-I Measurement”作为电压电流测量模块,可以对测量选项进行定义,这时就要勾选“Use a label”选项,本文定义了四个变量“Vabc”“Iabc”“Vabc1”“Iabc1”,其他参数不做修改,如图3-7所示。

图3-7 电压电流测量模块参数设置

(6)相序分析仪

相序分析仪“Discrete 3-phase Sequence Analyzer”是专门分析三序分量的仪器,频率设为25(Hz),通过“Sequence”选项可以选择正序、负序、零序,从而分析各自的特点,其他参数保持不变,如图3-8所示。

图3-8 相序分析仪参数设置

(7)其他参数设置

打开仿真参数对话框(Simulink→Configuration Parameters),“Start time”设为0,“Stop time”设为0.2;求解程序类型选项选择“ode23tb(Bogacki-Shampine)”,其他参数不变,如图3-9所示。

基于MATLAB的电力系统短路故障分析与仿真

· ……………………. ………………. ………………… 毕 业 论 文 基于MATLAB 的电力系统短路故障分析与仿真 院 部 机械与电子工程学院 专业班级 电气工程及其自动化 届 次 2015届 学生姓名 学 号 指导教师 装 订 线 ……………….……. …………. …………. ………

摘要.................................................................................................................................................. I Abstract .......................................................................................................................................... II 1 引言 (1) 1.1 课题研究的背景 (1) 1.2 课题研究的国内外现状 (1) 2 短路故障分析 (1) 2.1 近年来短路故障 (1) 2.2 短路的定义及其分类 (2) 2.3 短路故障产生的原因及危害 (4) 2.4 预防措施 (4) 2.5 短路故障的分析诊断方法 (5) 3 仿真与建模 (6) 3.1 仿真工具简介 (6) 3.1.1 MATLAB的特点 (6) 3.1.2 Simulink简介 (7) 3.1.3 SPS(SimPowerSystems) (8) 3.1.4 GUI(图形用户界面) (8) 3.2 模型的建立 (8) 3.2.1 无限大电源系统短路故障仿真模型 (8) 3.2.2 仿真参数的设置 (9) 4 仿真结果分析 (16) 4.1 三相短路分析 (16) 4.2 单相短路分析(以A相短路为例) (18) 4.3 两相短路(以A、B相短路为例) (22) 4.4 两相接地短路(以A、B相短路为例) (25) 5 结论 (28) 6 前景与展望 (28) 参考文献 (29) 致谢 (30)

用matlab实现寻找最短路

用matlab寻找赋权图中的最短路中的应用 1引言 图论是应用数学的一个分支,它的概念和结果来源都非常广泛,最早起源于一些数学游戏的难题研究,如欧拉所解决的格尼斯堡七桥问题,以及在民间广泛流传的一些游戏的难题,如迷宫问题,博弈问题等。这些古老的难题,吸引了很多学者的注意。 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域的问题时,发挥出很大的作用。在实践中,图论已成为解决自然科学,工程技术,社会科学,军事等领域中许多问题的有力工具之一。 最短路问题是图论理论中的经典问题,寻找最短路径就是在指定网络中两节点间找一条距离最小的路。 2 最短路 2.1 最短路的定义(short-path problem) 对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0 w≥的有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出的,该算法ij 能够解决两指定点间的最短路,也可以求解图G中一特定点到其它各顶点的最短路。后来海斯在Dijkstra算法的基础之上提出了海斯算法。但这两种算法都不能解决含有负权的图的最短路问题。因此由Ford提出了Ford算法,它能有效地解决含有负权的最短路问题。但在

现实生活中,我们所遇到的问题大都不含负权,所以我们在()0ij w≥的情况下选择Dijkstra算法。 若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源 节点和阱节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决 的典型问题之一,它不仅可以直接应用于解决生产实际的许多问题,如管路铺设、线 路安装、厂区布局和设备更新等,而且经常被作为一个基本的工具,用于解决其他的 做优化问题。 定义1:若图G=G(V,E)中个边[v i ,v j]都赋有一个实数w ij ,则称这样的图G 为赋权图,w ij 称为边[v i ,v j]上的权。 定义2:给定一个赋权有向图,即给一个有向图D=(V,A),对每一个弧a=(v i ,v j),相应地有权w(a)=w ij,又给定D中的两个顶点v s ,v t 。设P是D中从v s 到v t 的一条路,定义路P的权是P中所有弧的权之和,记为w(P)。最短路问题就是要在所有从v s到v t 的路中,求一条权最小的路,即求一条从v s到v t 的路P0 ,使w(P0)= min w(P) P 式中对D中所有从v s到v t 的路P最小,称P0 是从v s到v t 的最短路。 2.2 最短路问题算法的基本思想及其基本步骤 在求解网络图上节点间最短路径的方法中,目前国内外一致公认的比较好的算法有Dijkstra和Floyd算法。这两种算法,网络被抽象为一个图论中定义的有向图或无向图,并利用图的节点邻接矩阵记录点的关联信息。在进行图的遍历搜索最短路径时,以该矩阵为基础不断进行目标值的最小性判别,知道获得最后的优化路径。鉴于课本使用Dijkstra算法,下面用Floyd算法进行计算: 设A=(a)n*n 为赋权图G=(V,E,F)的矩阵,当V i V j ∈E时,a ij =F(v i,v j),否则,取a ij =0,a ij =+∞(i≠j),d ij 表示从v i到v j 的点的距离,r ij 表示从v i到v j 的点的最短路中的一个点的编号。 ①赋初值。对所有i,j,d ij = a ij ,r ij =j,k=1,转向②; ②更新d ij ,r ij ,对所有i,j,若d ik + d kj < d ij ,则令d ij = d ik + d kj ,r ij =k,转向; ③终止判断。若d ij <0,则存在一条含有顶点v i的负回路,终止;或者k=n,终止;否则, 另k=k+1,转向②。 最短路线可由r ij得到。

电力系统matlab仿真

1.目前常用的电力系统仿真软件有:BPA 程序和EMTP(程序;PSCAD /EMTDC; NETOMAC; PSASP;MATLAB 2.SimPowerSystems库产品 SimPowerSystems 4.0中含有130 多个模块,分布在7个可用子库中。这7个子库分别为“应用子库(Application Libraries)”、“电源子库(Electrical Sources)”、“元件子库(Elements)”、“附加子库(Extra Library)”、“电机子库(Machines)”、“测量子库(Measure-ments)”和“电力电子子库(Power Electronics)”。此外,SimPowerSystems 4.0中还含有一个功能强大的图形用户分析工具Powergui和一个废弃的“相量子库”(Phasor Elements) 3.MATLAB的特点:(1) 提供了便利的开发环境。(2) 提供了强大的数学应用功能。(3) 编 程语言简易高效。(4) 图形功能强大(5) 提供了功能强大的工具箱。(6) 应用程序接口功能强大。(7) MATLAB的缺点。和其它高级程序相比,MATLAB程序的执行速度较慢。 4.SIMULINK的特点:(1) 建立动态系统的模型并进行仿真。(2) 以直观的方式建模。(3) 增 添定制模块元件和用户代码。(4) 快速、准确地进行设计模拟。(5) 分层次地表达复杂系统。(6) 交互式的仿真分析。 5.SimPowerSystems库的特点:(1) 使用标准电气符号进行电力系统的拓扑图形建模和仿 真。(2) 标准的AC和DC电机模型模块、变压器、输电线路、信号和脉冲发生器、HVDC 控制、IGBT 模块和大量设备模型。(3) 使用SIMULINK强有力的变步长积分器和零点穿越检测功能,给出高度精确的电力系统仿真计算结果。(4) 利用定步长梯形积分算法进行离散仿真计算,为快速仿真和实时仿真提供模型离散化方法(5) 利用Powergui交互式工具模块可以修改模型的初始状态,从任何起始条件开始进行仿真分析(6) 提供了扩展的电力系统设备模块,如电力机械、功率电子元件、控制测量模块和三相元器件。 (7) 提供大量功能演示模型,可直接运行仿真或进行案例学习。 6.默认的程序主界面主要包括下列区域:①菜单;②工具栏;③命令窗口;④当前 路径浏览器;⑤工作空间浏览器;⑥命令历史浏览器。 7.菜单功能:(1) [File>New>M-File]:进入文本编辑窗界面,建立一个文本文件,实现 MATLAB命令文件的输入、编辑、调试、保存等处理功能,保存时文件后缀名为.m。(2) [File>New>Figure]:进入图形窗界面,建立一个图形文件,实现MATLAB图形文件的显示、编辑、保存等处理功能,保存时文件名后缀为.fig.(3) [File>New>Model]:建立一个SIMULINK模型文件,实现SIMULINK仿真模型的建模、仿真、调试、保存等处理功能,保存时文件名后缀为.mdl。 8.:进入SIMULINK仿真环境界面,作用相当于在MATLAB的命令窗口中输入 simulink命令并按回车键。 9.Matlab默认工作路径:安装路径\Matlab\work .修改路径(1)利用图标 (2)利用菜单项[File>Set Path>Add Folder]将用户拟采用的 目录添加到Matlab 搜索路径中。 10.MATLAB编程有两种工作方式:一种称为行命令方式,就是在工作窗口中一行一行地输 入程序,计算机每次对一行命令做出反应,因此也称为交互式的指令行操作方式;另一种工作方式为M文件编程工作方式。 11.变量是保存数据信息的一种最基本的数据类型。变量的命名应遵循如下规则:(1) 变量 名必须以字母开头;(2) 变量名可以由字母、数字和下划线混合组成;(3) 变量名区分字母大小写;(4) MATLAB保留了一些具有特定意义的默认变量(见表2-3),用户编程时可以直接使用,并尽量避免另外自定义例如,Long和My_long1均是有效的变量名,Long

matlab仿真电力系统短路故障分析

本科生毕业设计(论文) 题目:运用Matlab仿真分析短路故障 学生姓名: 系别:机电系 专业年级:电气工程及其自动化专业 指导教师: 2013年 6 月 20 日

摘要 本文先对电力系统的短路故障做了简要介绍,分析了线路运行的基本原理及其运行特点,并对短路故障的过程进行了理论分析。在深入分析三相短路故障的稳态和暂态电气量的基础上,总结论述了当今三相短路的的各种流行方案,分别阐述了其基本原理和存在的局限性。并运用派克变换及d.q.o坐标系统的发电机基本方程和拉氏运算等对其中的三相短路故障电流等做了详细的论述。并且利用Matlab中的simulink仿真软件包,建立了短路系统的统一模型,通过设置统一的线路参数、仿真参数。给出了仿真结果及线路各主要参数的波形图。最后根据仿真结果,分析目前自动选线法存在的主要问题及以后的发展方向。 关键词:短路故障;派克变换;拉氏运算;Matlab

ABSTRACT This paper first on the three-phase short circuit of electric power system is briefly introduced, analyzed the basic principle of operation of three-phase circuit and its operation characteristic, and the three-phase short circuit fault process undertook theoretical analysis. In depth analysis of three-phase short circuit fault of steady state and transient electrical quantities based on the summary, the three-phase short circuit of various popular programs, respectively, expounds its basic principles and limitations. And the use of Peck transform and d.q.o coordinate system of the generator basic equation and Laplace operator on the three-phase short-circuit current in detail. And the use of Matlab in the Simulink simulation software package, to establish a unified model of three-phase short-circuit system, by setting the unified circuit parameters, the simulation parameters. The simulation results are presented and the main parameters of the waveform of line. Finally, according to the simulation results, analysis of the current automatic line selection method the main existing problems and the future direction of development. Keywords:Short-circuit failure ;Peck transform;The Laplace operator;M atlab

最短路径法射线追踪的MATLAB实现

最短路径法射线追踪的MATLAB 实现 李志辉 刘争平 (西南交通大学土木工程学院 成都 610031) 摘 要:本文探讨了在MA TLAB 环境中实现最短路径射线追踪的方法和步骤,并通过数值模拟演示了所编程序在射线追踪正演计算中的应用。 关键词:最短路径法 射线追踪 MATLAB 数值模拟 利用地震初至波确定近地表介质结构,在矿产资源的勘探开发及工程建设中有重要作用。地震射线追踪方法是研究地震波传播的有效工具,目前常用的方法主要有有限差分解程函方程法和最小路径法。最短路径方法起源于网络理论,首次由Nakanishi 和Yamaguchi 应用域地震射线追踪中。Moser 以及Klimes 和Kvasnicha 对最短路径方法进行了详细研究。通过科技人员的不断研究,最短路径方法目前已发展较为成熟,其基本算法的计算程序也较为固定。 被称作是第四代计算机语言的MA TLAB 语言,利用其丰富的函数资源把编程人员从繁琐的程序代码中解放出来。MA TLAB 用更直观的、符合人们思维习惯的代码,为用户提供了直观、简洁的程序开发环境。本文介绍运用Matlab 实现最短路径法的方法和步骤,便于科研院校教学中讲授、演示和理解最短路径方法及其应用。 1 最短路径法射线追踪方法原理 最短路径法的基础是Fermat 原理及图论中的最短路径理论。其基本思路是,对实际介质进行离散化,将这个介质剖分成一系列小单元,在单元边界上设置若干节点,并将彼此向量的节点相连构成一个网络。网络中,速度场分布在离散的节点上。相邻节点之间的旅行时为他们之间欧氏距离与其平均慢度之积。将波阵面看成式由有限个离散点次级源组成,对于某个次级源(即某个网格节点),选取与其所有相邻的点(邻域点)组成计算网格点;由一个源点出发,计算出从源点到计算网格点的透射走时、射线路径、和射线长度;然后把除震源之外的所有网格点相继当作次级源,选取该节点相应的计算网格点,计算出从次级源点到计算网格点的透射走时、射线路径、和射线长度;将每次计算出来的走时加上从震源到次级源的走时,作为震源点到该网格节点的走时,记录下相应的射线路径位置及射线长度。 图1 离散化模型(星点表示震源或次级震源,空心点为对应计算网格点) 根据Fermat 原理逐步计算最小走时及射线方向。设Ω为已知走时点q 的集合,p 为与其相邻的未知走时点,tq 分别和p 点的最小走时,tqp 为q 至p 最小走时。r 为p 的次级源位置,则 )}(min :{qp q P t t t q r q +==Ω ∈ 根据Huygens 原理,q 只需遍历Q 的边界(即波前点),当所有波前邻点的最小走时都求出时,这些点又成为新的波前点。应用网络理论中的最短路径算法,可以同时求出从震源点传至所有节点之间的连线近似地震射线路径。 2 最短路径法射线追踪基本算法步骤 把网格上的所有节点分成集合p 和q ,p 为已知最小旅行时的结点总数集合,q 为未知最小旅行时的节点的集合。若节点总数为n ,经过n 次迭代后可为求出所有节点的最小旅行时。过程如下: 1) 初始时 q 集合包含所有节点,除震源s 的旅行时已知为ts =0外,其余所有节点的旅行时均为ti =(i 属于Q 但不 等于s )。P 集合为空集。 2) 在Q 中找一个旅行时最小的节点i ,它的旅行时为ti ; 3) 确定与节点i 相连的所有节点的集合V ; 4) 求节点j (j 属于V 且j 不属于P )与节点i 连线的旅行时dtij ; 5) 求节点j ()的新旅行时tj (取原有旅行时tj 与tj +dtij 的最小值); 6) 将i 点从Q 集合转到P 集合; 7) 若P 集合中的节点个数小于总节点数N ,转2,否则结束旅行时追踪; 8) 从接收点开始倒推出各道从源点道接收点的射线路径,只要每个节点记下使它形成最小旅行时的前一个节点号,

电力系统的MATLABSIMULINK仿真与应用汇总

1 八、Simulink 仿真环境 Simulink使用入门 模型的创建 连续系统的建模与仿真 子系统的创建与封装及条件执行子系统 用MATLAB命令创建和运行Simulink模型

2 8.1 Simulink 使用入门 Simulink是面向框图的仿真软件,具有以 下特点: ●用绘制方框图代替编写程序,结构和流程 清晰; ●智能化地建立和运行仿真,仿真精细、贴 近实际,自动建立各环节的方程,自动地在 给定精度要求下以最快速度进行系统仿真; ●适应面广,包括线性、非线性系统,连续、 离散及混合系统,单任务、多任务离散事件 系统。 【例8-1】创建一个正弦信号的仿真模型。 (1) 在MATLAB的命令窗口运行simulink命令, 或单击工具栏中的图标,就可以打开Simulink 模块库浏览器(Simulink Library Browser) 窗口。模块库列表 模块列表当前模块的文字说明 关键字搜索 菜单 工具条 (2) 单击工具栏上的图标或选择菜 单“File”——“New”——“Model”,新建一个 名为“untitled”的空白模型窗口。 8.1.1 Simulink入门

3 (4) 用鼠标单击所需要的输入信号源模 块“Sine Wave”(正弦信号),将其拖放到空 白的模型窗口“untitled”,则“Sine Wave” 模块就被添加到untitled窗口;也可以用鼠 标选中“Sine Wave”模块,单击鼠标右键, 在快捷菜单中选择“add to ‘untitled’”命令, 就可以将“Sine Wave”模块添加到untitled窗 口。 (5) 用同样的方法打开接收模块库 “Sinks”,选择其中的“Scope”模块(示波 器)拖放到“untitled”窗口中。 (6) 在“untitled”窗口中,用鼠标指向 “Sine Wave”右侧的输出端,当光标变为十 字符时,按住鼠标拖向“Scope”模块的输入 端,松开鼠标按键,就完成了两个模块间的 信号线连接,一个简单模型已经建成。 (7) 开始仿真,单击“untitled”模 型窗口中“开始仿真”图标,或者 选择菜单“Simulink”——“Start”,则 仿真开始。双击“Scope”模块出现示 波器显示屏,可以看到黄色的正弦 波形。 (8) 保存模型,单击工具栏的图 标,将该模型保存为“exm08_01.mdl”文

基于MATLABSimulink电力系统短路故障分析与仿真

基于MATLAB/Simulink电力系统短路故障分析与仿真 摘要: MATLAB有强大的运算绘图能力,给用户提供了各种领域的工具箱,而且编程语法简单易学。论文对电力系统的短路故障做了简要介绍并对短路故障的过程进行了理论分析和MATLAB软件在电力系统中的应用,介绍了Matlab/Simulink的基本特点及利用MATLAB进行电力系统仿真分析的基本方法和步骤。在仿真平台上,以单机—无穷大系统为建模对象,通过选择模块,参数设置,以及连线,对电力系统的多种故障进行仿真分析。 关键词:MATLAB、短路故障、仿真、电力系统 Abstract: MATLAB has powerful operation ability to draw, toolkit provides users with a variety of fields, and easy to learn programming grammar. Paper to give a brief introduction of fault of the power system and the process of fault are analyzed in theory and the application of MATLAB software in power system, this paper introduces the basic characteristics of MATLAB/Simulink and MATLAB power system simulation analysis of the basic methods and steps. On the simulation platform, with single - infinity system for modeling object, by selecting module, parameter Settings, as well as the attachment, a variety of fault simulation analysis of power system. Keyword:MATLAB;Fault analysis;Simulation;Power System;

基于MATLAB的单机无穷大系统短路故障分析

基于MATLAB的单机无穷大系统短路故障分析 【摘要】本文以MATLAB7.0软件为平台构建了一个单机无穷大系统的仿真模型,并以电力系统中最常见的单相短路故障为例,分析了短路中的电压电流波形,对研究电力系统的暂态过程打下基础。 【关键词】单机无穷大系统; MATLAB;暂态稳定 随着电系统规模逐渐扩大,对电力系统的稳定性要求越来越高,然而电力系统运行中的各种短路故障、负荷的突变现象时候发生,这些扰动会对电力系统的稳定造成很大的影响。 我国电力工业参数高、容量大,为了排除一些因素的干扰,尽可能的使仿真模型贴近实际,在对电力系统稳态分析中常采用单机对无穷大系统(SIMB),单机—无穷大系统认为电源的电压幅值和频率在系统发生故障时仍能保持恒定,通过这样近似处理得到的仿真结果更贴近生产实际。 1.单机大无穷系统的原理分析 图1是某单机无穷大系统的电路简化模型,左侧是模拟的无限个并联运行的发电机组经过变压器和双回路输电线路向无穷大母线VS供电。根据图1基础接下来用Simulink搭建上述电路模型并进行故障分析。 图1 单机一无穷大系统电路简化模型 2.单机无穷大系统的simulink建模 打开Simulink的扩展工具箱中电力系统模块(SimPowerSystems),选择合适的模块建模[1]。使用同步发电机(Synchronous Machine pu Standard),励磁系统(Excitation System)和水轮机调速器(Hydraulic Turbine and Governor)来组成发电机组,其中额定电压Vt=13.8KV,额定频率fn=50Hz,额定容量Pn=300E6V A,无穷大电源电压VS=220KV,转子类型(Rotor type):凸极(Salient—Pole)。三相变压器联结组为Yd11型,采输电线路采用分布参数模型(Distributed Parameter Line)模拟220(KM)的高压线。 图2 单机一大无穷系统simulink仿真图 图3 单机大无穷系统A相短路时A、B、C三相电压波形 具体Simulink仿真如图2所示,在三相短路故障模块选择A项和接地故障(Ground Fault),故障电阻和接地电阻都采用默认的0.001,在Transition times 栏设置故障开始和结束时间段为[0.15 0.26]。另外由于此系统是带发电机的非线性系统[2],所以算法可以采ode23tb,仿真总时间设为0.5秒。

用matlab寻找赋权图中的最短路

用matlab寻找赋权图中的最短路 专业: 小组:第22小组 小组成员: 课题:用matlab寻找赋权图中的最短路 采用形式:集体讨论,并到图书馆搜集相关资料,进行编程,运行。最后以论文的形式表现出来。 1引言 图论是应用数学的一个分支,它的概念和结果来源都非常广泛,最早起源于一些数学游戏的难题研究,如欧拉所解决的格尼斯堡七桥问题,以及在民间广泛流传的一些游戏的难题,如迷宫问题,博弈问题等。这些古老的难题,吸引了很多学者的注意。 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域的问题时,发挥出很大的作用。在实践中,图论已成为解决自然科学,工程技术,社会科学,军事等领域中许多问题的有力工具之一。 最短路问题是图论理论中的经典问题,寻找最短路径就是在指定网络中两节点间找一条距离最小的路。 2 最短路 2.1 最短路的定义(short-path problem) 对最短路问题的研究早在上个世纪60年代以前就卓有成效了, 若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,它不仅可以直接应用于解决生产实际的许多问题,如管路铺设、线路安装、厂区布局和设备更新等,而且经常被作为一个基本的工具,用于解决其他的做优化问题。 定义1:若图G=G(V,E)中个边[v i,v j]都赋有一个实数w ij ,则称这样的图G为赋权图,w ij 称为边[v i,v j]上的权。 定义2:给定一个赋权有向图,即给一个有向图D=(V,A),对每一个弧a=(v i,v j),相应地有权w(a)=w ij,又给定D中的两个顶点v s ,v t 。设P是D中从v s 到v t 的一条路,定义路P的权是P中所有弧的权之和,记为w(P)。最短路问题就是要在所有从v s到v t 的路中,求一条权最小的路,即求一条从v s min w(P)式中对D中所有从v s到v t 的路P最小,到v t 的路P0 ,使w(P0)= P 称P0 是从v s到v t 的最短路。 2.2最短路问题算法的基本思想及其基本步骤 在求解网络图上节点间最短路径的方法中,目前国内外一致公认的比较好的算法有Dijkstra和Floyd算法。这两种算法,网络被抽象为一个图论中定义的有向图或无向图,并利用图的节点邻接矩阵记录点的关联信息。在进行图的遍历搜

基于Matlab的电力系统故障研究仿真

基于Matlab的电力系统故障分析与仿真 摘要:本文介绍了MATLAB软件在电力系统中的应用,以及利用动态仿真工具Simulink和电力系统工具箱PSD进行仿真的基本方法。在仿真平台上,以单机—无穷大系统为建模对象,通过选择模块,参数设置,以及连线,对电力系统的多种故障进行仿真分析。同时,设计一个GUI图形界面,将仿真波形清晰地显示在界面上以便比较和分析。结果表明,仿真波形基本符合理论分析,说明了MATLAB是电力系统仿真研究的有力工具。 关键词:电力系统;仿真;故障;MATLAB;GUI Abstract:This paper introduces the applications of MATLAB in power system analysis, and the basic simulation method of taking use of Simulink and PSD. On MATLAB simulation platform, take a single machine-infinite-bus system as modeling objects, by selecting the module, parameter settings, and connectingmodules to simulate and analysevariousfault of power system. At the same time, in order to facilitate comparison and analysis simulation waveform, design a GUI for showing waveform clearly.The results show that the simulation waveform in line with theoretical analysis, indicates that MATLAB is a powerful tool for researching simulation of power system. Keywords:PowerSystem。 Simulation。 Fault。 Matlab。 GUI 0 前言[1,2] 随着电力工业的发展,电力系统规划、运行和控制的复杂性亦日益增加,电力系统的生产和研究中仿真软件的应用也越来越广泛。现在,我们主要使用的电力系统仿真软件有:EMTP程序,用于电力系统电磁暂态计算,电力系统暂态过电压分析,暂态保护装置的综合选择等。PSCAD/EMTDC程序,典型应用是计算电力系统遭受扰动或参数变化时,参数随时间变化的规律。PSASP,其功能主要有稳态分析、故障分析和机电暂态分析。还有MathWorks公司开发的MATLAB软件。在MATLAB中,电力系统模型可以在Simulink环境下直接搭建,也可以进行封装和自定义模块库,充分显现了其仿真平台的优越性。更重要的是,MATLAB提供了丰富的工具箱资源,以及大量的实用模块,使我们可以更加深入地研究电力系统的行为特性。本篇论文将在熟练掌握MATLAB软件的基础上,对电力系统的故障进行建模、仿真、分析,并且设计一个GUI图形用户界面来反映故障波形。

matlab短路故障分析277664

(此文档为word 格式,下载后您可任意编辑修改!) 南昌大学科学技术学院 课程设计报告 题目电力系统短路故障分析学生姓名杨建伟学科部信息学科部专业班级电气122 课程设计地点电机301 指导教师吴敏黄灿英

目录 课程设计(论文)任务书 一、课题设计(论文)题目: 基于MATLAB勺电力系统单相短路故障分析与仿真 二、课程设计(论文)使用的原始资料(数据)及设计技术要求: 本文介绍了 MATLAB软件在电力系统中的应用,以及利用动态仿真工具Simulink。MATLAB Simulink 的仿真环境中,利用 Simpowersystems 中电气元件对电力系统发生单相短路时电路情况进行仿真与分析,着重分析了中性点 不接地时电压电流的变化情况。结果表明,仿真波形基本符合理论分析,说明了MATLAB!电力系统仿真研究的有力工具。 、课程设计(论文)工作内容及完成时间:

引言 随着电力工业的发展,电力系统的规模越来越大,在这种情况下,许多大型的电力科研实验很难进行,尤其是电力系统中对设备和人员等危害最大的事故 故障,尤其是短路故障,而在分析解决事故故障时要不断的实验,在现实设备中很难实现,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。考虑这两种情况,寻求一种最接近于电力系统实际运行状况的数字仿真工具十分重要,而MATLAB^件中的SIMULINK是用来对动态系统进行建模、仿真和分析的集成开发环境,是结合了框图界面和交互仿真能力的非线性动态系统仿真工具,为解决具体的工程问题提供了更为快速、准确和简洁的途径。电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路,动力系统、电力系统和电力网简单示意如图1-1 o

MATLAB解决最短路径问题代码

默认是Dijkstra 算法 是有权的, 我想如果把权都赋1的话, 就相当于没权的了 参数是带权的稀疏矩阵及结点 看看这两个例子(一个有向一个无向), 或许你能找到你想知道的 % Create a directed graph with 6 nodes and 11 edges W = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21]; %这是权 DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W) %有权的有向图 h = view(biograph(DG,[],'ShowWeights','on')) %画图, 这个好玩 % Find shortest path from 1 to 6 [dist,path,pred] = graphshortestpath(DG,1,6) %找顶点1到6的最短路径 % Mark the nodes and edges of the shortest path set(h.Nodes(path),'Color',[1 0.4 0.4]) %上色 edges = getedgesbynodeid(h,get(h.Nodes(path),'ID')); set(edges,'LineColor',[1 0 0]) %上色 set(edges,'LineWidth',1.5) %上色 下面是无向图的例子 % % Solving the previous problem for an undirected graph % UG = tril(DG + DG') % h = view(biograph(UG,[],'ShowArrows','off','ShowWeights','on')) % % Find the shortest path between node 1 and 6 % [dist,path,pred] = graphshortestpath(UG,1,6,'directed',false) % % Mark the nodes and edges of the shortest path % set(h.Nodes(path),'Color',[1 0.4 0.4]) % fowEdges = getedgesbynodeid(h,get(h.Nodes(path),'ID')); % revEdges = getedgesbynodeid(h,get(h.Nodes(fliplr(path)),'ID')); % edges = [fowEdges;revEdges]; % set(edges,'LineColor',[1 0 0]) % set(edges,'LineWidth',1.5) clc;close all; clear; load data; % global quyu; quyu = [2,3];%一片区域 z_jl = lxjl(jdxx,lxxh);%计算路线的距离 z = qyxz(jdxx,quyu,z_jl); % 根据节点信息,从z中将y区域的节点和路线选出所有点的信息 hzlx(z); %绘制Z的图像

基于MATLAB的电力系统仿真

《电力系统设计》报告 题目: 基于MATLAB的电力系统仿学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 20131090124 日期:2015年12月6日

基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真

目录 一.前言 (4) 二.无穷大功率电源供电系统仿真模型构建 (5) 1.总电路图的设计 (5) 2.各个元件的参数设定 (6) 2.1供电模块的参数设定 (6) 2.2变压器模块的参数设置 (6) 2.3输电线路模块的参数设置 (7) 2.4三相电压电流测量模块 (8) 2.5三相线路故障模块参数设置 (8) 2.6三相并联RLC负荷模块参数设置 (9) 3.仿真结果 (9)

基于MATLAB的电力系统短路故障的仿真报告

《电力系统建模及仿真课程设计》 总结报告 课题名称基于MATLAB的电力系统短路故障的仿 真与分析 姓名 学号 院系 班级 指导教师

摘要 基于Matlab最重要的组件之一Simulink中的电力元件库 (SimPowerSystems)构建电力系统仿真模型,在Matlab的平台下仿真电力系统 为工程设计和维修提供依据重要的依据,同时也为电力研究带来大大的便利,利 用Simulink中的画图工具搭建电力系统模型也是进行电力系统故障分析的 常用方法,它让电力研究者从大量繁琐的理论分析及复杂的矩阵计算中解 脱出来,让庞大的电力系统很直观的呈现在研究者的面前,从而将庞大的 电力网搬进了办公室,为研究带来了巨大的便利。 简要介绍了电力系统模型和MATLAB/ SIMULINK中SimPowerSystems (电力系统元件库) 的主 要功能. SimPowerSystems 是专门为电力系统设计的仿真分析软件,在对其基本元件进行介绍后,在仿真平 台上,通过对一个简单的电力系统输电线路的短路故障进行设计、仿真、分 析,得到了理想的仿真效果. 关键词: Matlab SimPowerSystems 短路电流计算仿真 Simulation and Analysis of Power System Short Circuit Fault Based on Matlab Zhang Jun-yue College of Physics and Electronic Information Electrical Engineering and Automation No: 070544037 Tutor: Wu Yan Abstract: The article describes the basic characteristics of Matlab /Simulink and the basic method and process of applying Matlab in the simulation of power system. Matlab SimPowerSystems Block set is used to build a model of single-machine infinity-bus system and simulate various fault of power system. The results show that the simulation waveform is in line with theoretical analysis and Matlab is a valid tool for the simulation of power system fault. By the contrast and analysis of different short circuit faults, we can obtain a result that the three-phase short circuit fault is the worst situation in the faults of power system. So this situation should be avoided as far as possible in manufacture. Also, by the contrast and analysis of the fault resolution time, we know that clearing the short circuit fault on a minimal time is one way to guarantee the power system running regularly and reduce the loss.

基于Matlab的电力系统短路故障分析与仿真

西南科技大学 电气工程及其自动化专业 方向设计报告 设计名称:基于Matlab的电力系统短路故障分析与仿真 姓名: *** 学号: *** 班级:*** 指导教师:*** 起止日期:2014.11.5-2014.12.6 ****大学****学院制

方向设计任务书 学生班级:**** 学生姓名:*** 学号:******** 设计名称:基于Matlab的电力系统短路故障分析与仿真 起止日期:2014.11.5-2014.12.6 指导教师:***

方向设计学生日志

基于Matlab的电力系统短路故障分析与仿真 摘要 本次设计介绍了电力系统短路故障分析方法及Matlab/Simulink的基本特点。通过三相短路的情况对电力系统故障进行分析计算。然后对该种情况,运用Matlab/Simulink进行电力系统三相短路故障仿真,得出仿真结果。并对Matlab/Simulink搭建的三相短路电路图所得仿真的结果进行分析,从而得出结论。结果表明运用Matlab对电力系统故障进行分析与仿真,能够准确直观地考察电力系统故障的动态特性,验证了Matlab在电力系统仿真中的强大功能。 关键词:电力系统;短路故障分析;Matlab;仿真

Power system fault analysis and simulation based on Matlab Abstract This design introduces the basic features of the power system short-circuit fault analysis method and Matlab / Simulink for. By three-phase short circuit fault on the power system analysis and calculation. Then this case, the use of Matlab / Simulink for system power three phase short circuit fault simulation, the simulation results obtained. And to analyze the resulting three-phase short circuit diagram Matlab / Simulink to build simulation results, leading to the conclusion. The results showed that the use of Matlab for power system fault analysis and simulation can accurately visually inspect the dynamic characteristics of the power system failure, verify the Matlab powerful in the power system simulation. Keywords: electric system; Fault; Matlab; Simulation

相关主题