搜档网
当前位置:搜档网 › 电缆半导体层和铜屏蔽的作用

电缆半导体层和铜屏蔽的作用

电缆半导体层和铜屏蔽的作用
电缆半导体层和铜屏蔽的作用

电缆半导体层和铜屏蔽的作用

(总2页)

-CAL-FENGHAI.-(YICAI)-Company One1

-CAL-本页仅作为文档封面,使用请直接删除

电缆半导体层和铜屏蔽的作用在电缆结构上的所谓“屏蔽”,实质上是一种改善电场分布的措施。电缆导体由多根导线绞合而成,它与绝缘层之间易形成气隙,导体表面不光滑,会造成电场集中。在导体表面加一层半导电材料的屏蔽层,它与被屏蔽的导体等电位并与绝缘层良好接触,从而避免在导体与绝缘层之间发生局部放电,这一层屏蔽为内屏蔽层;同样在绝缘表面和护套接触处也可能存在间隙,是引起局部放电的因素,故在绝缘层表面加一层半导电材料的屏蔽层,它与被屏蔽的绝缘层有良好接触,与金属护套等电位,从而避免在绝缘层与护套之间发生局部放电,这一层屏蔽为外屏蔽层;没有金属护套的挤包绝缘电缆,除半导电屏蔽层外,还要增加用铜带或铜丝绕包的金属屏蔽层,这个金属屏蔽层的作用,在正常运行时通过电容电流;当系统发生短路时,作为短路电流的通道,同时也起到屏蔽电场的作用。

可见,如果电缆中这层外半导体层和铜屏蔽不存在,三芯电缆中芯与芯之间发生绝缘击穿的可能性非常大。制作电缆终端或接头时剥除一小段屏蔽层主要目的是用来保证高压对地的爬电距离的,这个屏蔽断口处应力十分集中,是薄弱环节!必须采取适当的措施进行应力处理。(用应力锥或应力管等)剥除屏蔽层的长度以保证爬电距

离;增强绝缘表面抗爬电能力为依据。屏蔽层剥切过长将增加施工的难度,增加电缆附件的成本完全没有必要。

屏蔽电缆的屏蔽层怎么使用

屏蔽电缆的屏蔽层怎么使用 屏蔽电缆带有金属屏蔽层来防止电气线路上的电磁噪声干扰,保护自身的信号不受干扰,一般用于干扰较强场合。 屏蔽电缆的屏蔽层怎么使用: 屏蔽电缆确保电缆的底线芯可以良好的接地,把干扰电流有效地导入大地,将电磁场噪声源与敏感设备隔离,切断噪声源的传播路径。 屏蔽分为主动屏蔽和被动屏蔽,主动屏蔽目的是为了防止噪声源向外辐射,是对噪声源的屏蔽;被动屏蔽目的是为了防止敏感设备遭到噪声源的干扰,是对敏感设备的屏蔽。 屏蔽电缆的应用领域: 适用于拖链系统、电机控制、智能自动化系统、防盗报警系统、通信、音频、广播、音响系统、自动抄表系统、消防系统等需防干扰线路连接、高效的传输数据电缆,用于那些对传输的信号要求很高的场合。 屏蔽电缆特点: 01.可以分开单对使用,也能多对同时使用,传输多路信号、抗干扰性能优异 02.具有对噪声免疫、宽广的共模范围、数据传输速率适当以及多点传输能力等优点 03.抵御外来电磁干扰的能力以及系统本身向外辐射电磁干扰的能力,有效地滤除不必要的电磁波 04.防止电缆芯线发生破损电流泄露出来,加了屏蔽层的电缆可以让泄露的电流流入接地网,把干扰电流有效地导入大地,起到接地保护的作用 05.电力电缆通过的电流比较大,电流周围会产生磁场,为了不影响别的元件正常工作,屏蔽层可以防止电磁噪声干扰 屏蔽电缆的使用注意事项: 1、选择合适的屏蔽层类型来满足应用需求 金属箔和编织网是屏蔽电缆屏蔽层的两种类型。金属箔:普通的电磁干扰环境中,单独使用金属箔应该就能够提供足够的噪声保护;编织网:在比较恶劣的噪声环境中,就必须使用组合了编织网和金属箔的屏蔽电缆。 2、根据工况选择屏蔽电缆 在频繁往返弯曲的使用环境中,选择使用螺旋缠绕的屏蔽层;柔性电缆尽量避免仅使用金属箔屏蔽,因为电缆的连续弯曲有可能会撕裂箔层。 3、确保电缆的底线芯可以良好的接地,把干扰电流有效地导入大地。 尽可能使用大地,并检查接地点与设备之间的连接。 4、设备和连接器可以360°全方位的屏蔽连接,必须确认电缆屏蔽层之间可以结合。 5、屏蔽电缆的最小弯曲半径为电缆直径6倍,电缆不得在日光下长期暴露。

电缆的内屏蔽和外屏蔽的作用

电缆的内屏蔽和外屏蔽的作用 屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。 (1)当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。 (3)在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。 许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。在这种概念指导下结果是失败。因为,电磁屏蔽与屏蔽体接地与否并没有关系。真正影响屏蔽体屏蔽效能的只有两个因素:一个是整个屏蔽体表面必须是导电连续

的,另一个是不能有直接穿透屏蔽体的导体。屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。这些不导电的缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。解决这种泄漏的一个方法是在缝隙处填充导电弹性材料,消除不导电点。这就像在流体容器的缝隙处填充橡胶的道理一样。这种弹性导电填充材料就是电磁密封衬垫。 在许多文献中将电磁屏蔽体比喻成液体密封容器,似乎只有当用导电弹性材料将缝隙密封到滴水不漏的程度才能够防止电磁波泄漏。实际上这是不确切的。因为缝隙或孔洞是否会泄漏电磁波,取决于缝隙或孔洞相对于电磁波波长的尺寸。当波长远大于开口尺寸时,并不会产生明显的泄漏。因此,当干扰的频率较高时,这时波长较短,就需要使用电磁密封衬垫。具体说,当干扰的频率超过10MHz时,就要考虑使用电磁密封衬垫。 凡是有弹性且导电良好的材料都可以用做电磁密封衬垫。按照这个原理制造的电磁密封衬垫有: 导电橡胶:在硅橡胶内填充占总重量70~ 80%比例的金属颗粒,如银粉、铜粉、铝粉、镀银铜粉、镀银铝粉、镀银玻璃球等。这种材料保留一部分硅橡胶良好弹性的特性,同时具有较好的导电性。 金属编织网:用铍铜丝、蒙乃尔丝或不锈钢丝编织成管状长条,外形很像屏蔽电缆的屏蔽层。但它的编织方法与电缆屏蔽层不同,电缆屏

电力电缆金属护套或屏蔽的接地作用

电力电缆金属护套或屏蔽的接地作用 1.概述 接地用以:防止人身受到电击,确保电力系统正常运行,保护线路和设备免遭损坏,还可防止电气火灾,防止雷击和静电危害等。 电缆金属护套或屏蔽的接地的作用有: (1)电缆线芯双屏蔽和金属护套的电容电流有一回路流入大地; (2)当电缆对金属护套或屏蔽发生短路时,短路电流可流入地下; (3)电缆线芯绝缘损伤后发生相间短路发展至接地故障时,故障电流通过接地线流入地中; (4)电缆中的不平衡电流引起的感应电压、通过地线与大地形成短路,防止电缆对接地支架存在电位差而放电闪络。 现在大量使用的交联电缆,分相屏蔽,屏蔽层分金属(铜带)层和半导电层。半导电层中含有胶质碳,可起到均匀电场的作用;同时碳能吸收电缆本体细小间隙中因空气电离产生的败坏物,均匀电场,以保护电缆绝缘。 金属屏蔽层的作用: 第一:保持零电位,使缆芯之间没有电位差; 第二:在短路时承载短路电流,以免因短路引起电缆温升过高而损坏绝缘层,同时屏蔽层也可以防止周围外界强电场对电缆内传输电流的干扰; 第三:屏蔽层可以有效地将电缆产生的强电场限制在屏蔽层内,由于屏蔽层接地,外部便不存在电缆产生的强电场,不会对周围的弱电线路及仪表,产生强电干扰 或危及人身安全。 在配电系统中:电源电缆的起始端与发电厂的接地网接通,末端与变电所接地网连通;变电所馈出电缆接地与各用户连通;低压电缆的PEN线与电缆铠甲接地后可与高压电缆接地等电位;重要用户的电源电缆又来自独立的电源。这样,高低压电缆接地线的互相联结,又与接地网连在一起。因此,电缆接地成了接地系统总体的重要组成部分,对电网安全运行有重要作用。 3.2保证接地线截面和质量 交联电缆接头制作中,铜屏蔽层、铠甲层应分别连接不得中断,两者还应加以绝缘分隔,恢复铜屏蔽应采用软质铜编织线连接;确保与各相绝缘外屏蔽接触良好。两端与铜屏蔽层焊接,铠甲用镀锡地线恢复跨接,分别焊在两边的铠甲上。 电缆接地线的规格,严格要求应按电缆线路的接地电流大小而定。但在实际施工中,往往缺乏这方面的资料, 一般120㎜2以下电缆选用16 m㎡铜线; 150㎜2~240㎜2电缆选用25 m㎡铜线; 300 ㎜2以上电缆接地线不应小于35㎜2; 橡塑电缆的接地线必须采用镀锡软铜编织线。接地线与铜屏蔽层和金属护套焊接工艺、焊接面积均应符合要求。电缆接地线应直接接于接地网,不得串接,接地线必须压接的接线端子,以保证连接可靠及检测拆卸方便。 美国3M公司的游丝卡紧法和法国梅兰日兰公司的卡扣捆扎法,不仅能方便可靠地进行接地连接,而且还能避免烙铁灼伤电缆绝缘的危险,值得借鉴。

屏蔽电缆的屏蔽层为什么不能重复接地

屏蔽电缆的屏蔽层为什么不能重复接地 一屏蔽层接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ① 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 ② 双端接地是将屏蔽电缆的金属屏蔽层的两端均连接接地。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。 二屏蔽电缆的屏蔽层为什么不能重复接地? 系统接地有浮地、直接接地和电容接地三种方式。 对PLC控制系统而言,它属高速低电平控制装置,应采用直接接地方式。由于信号电缆分布电容和输入装置滤波等的影响,装置之间的信号交换频率一般都低于1MHz,所以PLC控制系统接地线采用一点接地和串联一点接地方式。集中布置的PLC系统适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地极。如果装置间距较大,应采用串联一点接地方式,用一根大截面铜母线(或绝缘电缆)连接各装置的柜体中心接地点,然后将接地母线直接连接接地极。接地线采用截面大于25mm2的铜导线,总母线使用截面大于60mm2的铜排。接地极的接地电阻小于2Ω,接地极最好埋在距建筑物10~15m远处,而且PLC系统接地点必须与强电设备接地点相距10m以上。 信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地。多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接地。

控制电缆屏蔽层和铠装接地施工措施

为了保证方山220KV串补变电站工程的控制电缆屏蔽层和铠装接地的施工质量,促进工程施工技术水平的提高,确保电缆接地安全,特制定此措施。 1.适用范围 本作业措施适用于方山220千伏串补变电站工程,主控楼配电间内、220kV配电区、110kV配电区、主变区端子箱、35kV高压开关室、串补区等所有控制电缆的屏蔽层和铠装接地施工。 2.编制依据: 1)《电气装置安装工程电缆线路施工及验收规范》GB50168-2009 2)《电气装置安装工程电气设备交接试验标准》GB50150-2006 3)关于印发《国家电网公司电网工程施工安全风险识别、评估及控制办法(试行)》的通知(国家电网基建[2011]1758号) 4)关于应用《国家电网公司输变电工程工艺标准库》的通知基建质量〔2010〕100 号5)关于印发《国家电网公司电力建设安全工作规程(变电站部分)》标准的通知(国家电网科[2011]1738号) 6)工程设计施工图纸及相关规程规范。 3. 3.1电缆接地技术负责人: 3.1.1负责电缆接地的技术工作,解决工作中出现的技术问题及技术指导。监督施工中的工艺水平达标。 3.2电缆接地安全负责人: 3.2.1负责电缆接地工作的安全措施落实,指导施工中的安全措施工作,做好电缆接地的安全监督监护。 3.3专业接线人员: 3.3.1负责电缆接地施工工作,做好电缆控制电缆的屏蔽层和铠装的接地工作,保证按规范及设计图顺利进行,严把施工质量关。 3.4非专业施工人员: 3.4.1听从工作负责人的工作安排,负责热缩完的套管切割工作,保证切割时不划伤电缆。 4.施工准备

工器具及材料配备(见下表) 5.工期计划及施工方案 5.1 计划开始施工日期 计划3月31日开始施工,1人技术总负责,3人切割电缆热缩管,5人进行屏蔽层和铠装接地施工 5.2 计划竣工日期 接地工程计划于4月7日完成。 5.3 施工方案 5.3.1 主控室内的控制电缆热缩管割开后进行铠装接地,用接地软导线引出,并接与盘柜的接地排上。 5.3.2 全部室外的控制电缆热缩管割开后进行屏蔽层与铠装分部接地,用不同颜色的软导线引出,屏蔽层接地接于盘柜的等电位铜排上,铠装接地接于盘柜的接地排上。 5.2.3 全部厂家的接线也进行一次检查,发现接地不对的,及时进行整改并做好记录。 5.3电缆头整理: (1)电缆整理应排列整齐、层次分明、曲率一致、松紧适度,严禁扭曲、交叉或杂乱无章; (2)电缆接地做好后进行整理,排列整齐一致,弯好弯度,全部用绑线固定绑扎好。(3)根据二次工艺策划的要求及端子排图,将电缆分层、逐根穿入二次设备。接线位置较低的电缆排在屏内侧,接线位置较高的电缆排在屏外侧; 5.4 电缆接地总体要求: (1)按图纸说明及规范整改,接线正确;

电缆屏蔽层接地

电缆屏蔽层接地 屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。 ①单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。 在屏蔽层单端接地情况下,非接地端的金属屏蔽层对地之间有感应电压存在,感应电压与电缆的长度成正比,但屏蔽层无电势环流通过。单端接地就是利用抑制电势电位差达到消除电磁干扰的目的。 这种接地方式适合长度较短的线路,电缆长度所对应的感应电压不能超过安全电压。静电感应电压的存在将影响电路信号的稳定,有时可能会形成天线效应。 在屏蔽层双端接地情况下,金属屏蔽层不会产生感应电压,但金属屏蔽层受干扰磁通影响将产生屏蔽环流通过,如果地点A和地点B的电势不相等,将形成很大的电势环流,环流会对信号产生抵消衰减效果。 动力电缆线两边接地,电机端的PE必然要接在驱动端的PE上,并最终接入机箱内的大地汇流排。 信号线则需要区别情况对待,一般而言模拟信号主张单端接地,以避免双端接地时,地电势不同引发的地电流影响信号; 数字信号或差分信号主张双端接地,只是过大的地电流也同样可能影响信号。 所以无论是单端还是双端,原则是死的,实效才是目的,需以能解决现场问题和设备的稳定可靠运行为重,因此往往只能灵活处置。

两端接地,由于两个接地端可能存在电位差,反而会产生干扰。 一般要求是两端接地,然而两端接地要看现场条件,如果现场条件恶劣,会在两端形成感应电压,从而有了感应电流,容易干扰,当然,对模拟量干扰严重,故此时即要单端接地。 高频双端接地如编码器,开关量等,低频单端接地如模拟量等。 单端接地不存在接地电位差的问题,可减少接地干扰。 屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。 (1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施 (对于单端接地,是变送器端接地)。 (2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。 (3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力??。

电缆屏蔽层

电力电缆:在电力系统的主干线路中用于传输和分配大功率电能的电缆产品,如交联聚乙烯绝缘电力电缆等。产品主要用在发、配、输、变、供电线路中的强电电能传输,通过的电流大(几十安至几千安)、电压高(220V至500KV及以上)。 电线电缆的基本结构: 导体:传导电流的物体,电线电缆的规格都以导体的截面表示。 绝缘:将绝缘材料按其耐受电压程度的要求,以不同的厚度包覆在导体外面而成。 保护层:保护电缆的部分,常用材料为TPE。 常用的铠装材料有钢带、钢丝、铝带、铝管等,其中钢带、钢丝铠装层具有高导磁率,有很好的屏蔽效果,可以用于抗低频干扰,并可使铠装电缆直埋敷设而免于穿管且价廉物美在实际运用较多。 不同规格不同根数的铜线按一定的排列顺序和绞距绞合在一起,就变成了直径较大的导体,这种绞合的大直径绞合后导体要比相同直径大小的单支铜线更加柔软,做出的电线弯曲性能好,摇摆测试时不容易断,针对一些对柔软有要求的线材(比方说医疗级线材)更加容易达到要求。 电缆屏蔽层: 在电缆结构上的所谓“屏蔽”,实质上是一种改善电场分布的措施。电缆导体由多股导线绞合而成,它与绝缘层之间易形成气隙,导体表面不光滑,会造成电场集中。 在导体表面加一层半导电材料的屏蔽层,它与被屏蔽的导体等电位,并与绝缘层良好接触,从而避免在导体与绝缘层之间发生局部放电。这一层屏蔽,又称为内层屏蔽。在绝缘表面和护套接触处,也可能存在间隙,电缆弯曲时,油纸电缆绝缘表面易造成裂纹,这些都是引起局部放电的因素。在绝缘层表面加一层半导电材料的屏蔽层,它与被屏蔽的绝缘层有良好接触,与金属护套等电位,从而避免在绝缘层与护套之间发生局部放电。 电力电缆的屏蔽层的作用 1、因为电力电缆通过的电流比较大,电流周围会产生磁场,为了不影响别的元件, 所以加屏蔽层可以把这种电磁场屏蔽在电缆内。 2、是可以起到一定的接地保护作用,如果电缆芯线内发生破损,泄露出来的电流 可以顺屏蔽层流入接地网,起到安全保护的作用。

高压电缆屏蔽线

高压电缆里的屏蔽起什么作用 在电缆结构上的所谓“屏蔽”,实质上是一种改善电场分布的措施。电缆导体由多根导线绞合而成,它与绝缘层之间易形成气隙,导体表面不光滑,会造成电场集中。在导体表面加一层半导电材料的屏蔽层,它与被屏蔽的导体等电位并与绝缘层良好接触,从而避免在导体与绝缘层之间发生局部放电,这一层屏蔽为内屏蔽层;同样在绝缘表面和护套接触处也可能存在间隙,是引起局部放电的因素,故在绝缘层表面加一层半导电材料的屏蔽层,它与被屏蔽的绝缘层有良好接触,与金属护套等电位,从而避免在绝缘层与护套之间发生局部放电,这一层屏蔽为外屏蔽层;没有金属护套的挤包绝缘电缆,除半导电屏蔽层外,还要增加用铜带或铜丝绕包的金属屏蔽层,这个金属屏蔽层的作用,在正常运行时通过电容电流;当系统发生短路时,作为短路电流的通道,同时也起到屏蔽电场的作用。可见,如果电缆中这层外半导体层和铜屏蔽不存在,三芯电缆中芯与芯之间发生绝缘击穿的可能性非常大。 电线电缆要求屏蔽层的作用 电线电缆最外层一般为橡胶或橡胶合成套,这一层的作用一是绝缘,同时也起保护电缆不受 伤害的作用。 电缆分高压还是低压电缆,如果是高压的,里面还会有一层类似树脂的填充物,这是起绝缘作用的,在高压电缆中,这层是绝缘的最重要部分。低压的没有这层东西.然后里面还会缠一些类似丝带一样的东西,这是为了固定住电缆每一芯,把中间的空隙填满。至于屏蔽层, 分两种情况,电力电缆的屏蔽层的作用有: 1、是因为电力电缆通过的电流比较大,电流周围会产生磁场,为了不影响别的元件,所 以加屏蔽层可以把这种电磁场屏蔽在电缆内。 2、是可以起到一定的接地保护作用,如果电缆芯线内发生破损,泄露出来的电流可以 顺屏蔽层流如接地网,起到安全保护的作用。 如果是控制电缆,别的没什么区别,只是在很多地方,特别是计算机系统的控制电缆,这里的屏蔽层是用来屏蔽外来影响的,因为其本身电流很弱,非常怕外界的电磁场影响。 电缆屏蔽层起什么作用 在电缆结构上的所谓“屏蔽”,实质上是一种改善电场分布的措施。电缆导体由多股导线绞合而成,它与绝缘层之间易形成气隙,导体表面不光滑,会造成电场集中。 在导体表面加一层半导电材料的屏蔽层,它与被屏蔽的导体等电位,并与绝缘层良好接触,从而避免在导体与绝缘层之间发生局部放电。这一层屏蔽,又称为内屏蔽层。在绝缘表面和护套接触处,也可能存在间隙,电缆弯曲时,油纸电缆绝缘表面易造成裂纹,这些都是引起局部放电的因素。在绝缘层表面加一层半导电材料的屏蔽层,它与被屏蔽的绝缘层有良好接

探讨中压电缆的金属屏蔽层

探讨中压电缆的金属屏蔽层 【摘要】本文主要描述了中压电缆为什么要采用金属屏蔽结构以及金属屏蔽的工艺及短路电流的计算方法。 【关键词】金属屏蔽;截面积;屏蔽工艺;短路电流; 0 引言 金属屏蔽层是中压(3.6/6kV∽26/35kV))交联聚乙烯绝缘电力电缆中不可缺少的结构,GB/T12706.2—2008和GB/T12706.3—2008第7部分规定所有电缆的绝缘线芯上应有金属屏蔽,可以在单根绝缘线芯上也可以在几根绝缘线芯上包覆金属屏蔽。科学设计金属屏蔽的结构、准确计算屏蔽层所承受的短路电流并合理制定屏蔽层加工工艺,对确保交联电缆的质量乃至整个运行系统的安全具有至关重要的作用。 1 金属屏蔽的方式和作用 中压交联聚乙烯绝缘电力电缆金属屏蔽的方式主要由铜带搭盖绕包屏蔽和疏绕铜丝屏蔽两种方式。 根据GB/T12706-2008 额定电压6kV到35kV电缆的标准规定,铜带屏蔽方式中的铜带平均搭盖率不小于铜带宽度的15%(标称值),最小值不小于5%。单芯电缆的铜带厚度≥0.12mm,多芯电缆的平均厚度≥0.10mm,铜带最小厚度不小于标称值的90%。铜丝屏蔽由疏绕的软铜线组成,其表面应由反向绕包的铜丝或铜带扎紧,相邻铜丝的平均间隙应不大于4mm。 电缆结构上的屏蔽是一种改善电场分布的措施,金属屏蔽的作用主要有以下几个方面: 1、电缆正常通电时金属屏蔽层通过电容电流,短路故障时通过短路电流。 2、将电缆通电时引起的电磁场屏蔽在绝缘线芯内,以减少对外界产生的电磁干 扰,金属屏蔽层也起到限制外界电磁场对内部产生的影响。 3、电站保护系统要求外金属屏蔽具有较好的防雷特性。 4、均化电场,防止轴向放电。由于半导电层具有一定的电阻,当金属屏蔽层接 地不良时,在电缆轴向由于电位分布不均匀而造成电缆沿面放电。 2 金属屏蔽截面积的计算

屏蔽层接地专业解析

1 控制电缆屏蔽层接地方式的探讨 各电建公司的电气专业一直为屏蔽电缆的屏蔽层是在一端一点接地,还是在两端两点接地的问题争论不休,而争论的结果是有的电建公司采用一点接地方式,而有的电建公司采用两点接地的方式进行施工。其实根据《电力装置的继电保护和自动装置设计规范》、《国网公司十八条反措继电保护实施细则》以及《华北电网继电保护基建工程验收规范》要求,电气控制电缆屏蔽线必须两端接地。 上述国家规程、规范及反措要求电气控制电缆屏蔽线必须两端接地。但是所有电气控制电缆的屏蔽层不分场合的全部两端接地,这样的要求是否正确,是值得做进一步商榷和探讨的,经过多台机组的安装实践可以确定:从主控或网控到升压站的控制电缆的屏蔽层必须两端接地;但在主厂房内敷设的控制电缆屏蔽层最好是单端接地。其理由如下:从防止暂态过电压看,屏蔽层采用两点接地为好,两点接地使电磁感应在屏蔽层上产生一个感应纵向电流,该电流产生一个与主干扰相反的二次场,抵消主干扰场的作用,使干扰电压降低。从主控到升压站的控制电缆,由于其输入和输出均有一端在开关场的高压或超高压环境中,电磁感应干扰是主要矛盾,且电缆芯所在回路为强电回路因而屏蔽层电流产生的干扰信号影响较小,所以必须采用两点接地的方式。但是,两点接地存在两个问题:其一,当接地网上出现短路电流或雷击电流时,由于电缆屏蔽层两点的电位不同,使屏蔽层内流过电流,可能烧毁屏蔽层.其二,当屏蔽层内流过电流时,对每个芯线将产生干扰信号.所以对敷设在主厂房内的电气电缆, 电磁感应干扰比较而言

矛盾不突出,而两点接地产生的屏蔽层电流对芯线产生干扰有可能使装置误动,故宜采用一点接地。而热工自动化专业规定,热工控制电缆的屏蔽层要求一点接地,其道理也如同上所述。 另外,电气专业要求控制电缆屏蔽层两端接地,而热工自动化专业规定屏蔽层一点接地,当电气量进入DCS时,两种规定发生冲突,目前国家规程和规范没有明确要求这种情况下是采用单端接地还是两端接地,根据电缆接线的工程实践,最好是采用单端接地,接地点的选择按取用原则来处理。 2 工程实践中的控制电缆屏蔽层接地 在对电气控制电缆屏蔽层接地进行探讨分析之后,不难看出目前国家规程、规范及反措对控制电缆屏蔽层接地方式还需要进一步修订和完善。但是在现阶段,控制电缆屏蔽层接地方式在工程实践中仍要按照国家规程、规范及反措要求执行。 控制电缆屏蔽接地原则:屏蔽电缆的屏蔽层用接地线焊接引出即可,接到专用接地铜排上。接地线选用≥1.5mm的黄绿软铜线。接到接地铜排一端的地线须挂锡或压线鼻子,必须保证每一根接地线与铜排可靠连接。严禁使用电缆内的空线替代屏蔽层接地。 2.1 电气设备之间的电缆屏蔽接地 主控或网控室至高压开关场的继电保护电缆,其屏蔽层应在开关场和控制室内两端接地。在控制室内,屏蔽层宜接于保护屏内的接地铜排上;在开关场,屏蔽层应在与高压设备有一定距离的端子箱内接地。互感器每相二次回路经两芯屏蔽电缆从高压箱体引至端子箱,该电缆

电缆各层的作用

1.高压电缆的半导体层是起什么作用的? 在电缆结构上的所谓“屏蔽”,实质上是一种改善电场分布的措施。电缆导体由多根导线绞合而成,它与绝缘层之间易形成气隙,导体表面不光滑,会造成电场集中。在导体表面加一层半导电材料的屏蔽层,它与被屏蔽的导体等电位并与绝缘层良好接触,从而避免在导体与绝缘层之间发生局部放电,这一层屏蔽为内屏蔽层;同样在绝缘表面和护套接触处也可能存在间隙,是引起局部放电的因素,故在绝缘层表面加一层半导电材料的屏蔽层,它与被屏蔽的绝缘层有良好接触,与金属护套等电位,从而避免在绝缘层与护套之间发生局部放电,这一层屏蔽为外屏蔽层;没有金属护套的挤包绝缘电缆,除半导电屏蔽层外,还要增加用铜带或铜丝绕包的金属屏蔽层,这个金属屏蔽层的作用,在正常运行时通过电容电流;当系统发生短路时,作为短路电流的通道,同时也起到屏蔽电场的作用。可见,如果电缆中这层外半导体层和铜屏蔽不存在,三芯电缆中芯与芯之间发生绝缘击穿的可能性非常大 2.电力电缆的金属护套与金属屏蔽是同一个东西吗?如不是,它们又如何接地? 不是,金属屏蔽是在半导体的外面是铜皮材料,保护套是在电缆外是铁制材料。 导体、主绝缘、半导体层、屏蔽层、绝缘填充物、铠甲护套、外层塑料保护层。 接地时铜屏蔽层和铠甲同时引出接地线可靠接地 3.高压电缆的半导体用途 高压电缆的结构相对普通布电线要复杂,质量要求很严格,价格要昂贵。 一般的电力电缆结构有导体芯线、绝缘层、金属屏蔽层、外护层等基本结构。高压电缆的结构在金属屏蔽层内外还要增加内半导电层和外半导电层,护套层也由金属护套、绝缘护套、石墨层组成。 电力电缆设计是不承受外力力,要求有托架、支架、管道等支承电缆。

屏蔽电缆接地

屏蔽控制电缆的接地 shiguang_98 发表于: 2008-4-26 21:13 来源: 热电联盟博 客 屏蔽电缆的平衡特性较差,因此良好的屏蔽完整性和良好的接地对屏蔽电缆来说是非常重要的。屏蔽接地是为防止电气设备因受电磁干扰,而影响其工作或对其它设备造成电磁干扰的屏蔽设备的接地。, 采用带屏蔽层的控制电缆,且屏蔽层在开关场和控制室两端同时接地,是通用的一种有效的二次回路抗电磁干扰措施。由IEEE变电所专委会工作组与继电器环境分专委会工作组提出的“变电所中控制与低压电缆系统的选择和安装”文件中,专门有一节“控制电缆的金属屏蔽能降低感应暂态电压”谈到相关问题:“推荐带屏蔽的控制电缆将屏蔽层在两端接地。必须特别保持屏蔽的完整性,拆断或分开屏蔽将极大地降低屏蔽效率;如果屏蔽只在一端接地,在非接地端的包皮对地将可能出现很高的暂态电压。”控制电缆屏蔽层两端接地的的优点是:①当控制电缆为母线暂态电流产生的磁通所包围时,在电缆的屏蔽层中将感应出屏蔽电流,由屏蔽电流产生的磁通,将抵销母线暂态电流产生的磁通对电缆芯线的影响。假定屏蔽作用理想,两者共同作用的结果,将使被屏蔽层完全包围的电缆芯线中的磁通为零,屏蔽层形成了一个理想的法拉第笼。这也和带有二次

短路线圈的理想变压器一样,铁芯中的磁通将为零。当然,屏蔽层的屏蔽作用,由于各种原因,不可能完全理想,因此,被屏蔽的芯线在母线暂态电流的作用下,仍然会感应出一定的电压。②屏蔽层两端接地,可以降低由于地电位升产生的暂态感应电压。当雷电经避雷器注入地网,使变电所发电厂地网中的冲击电流增大时,将产生暂态的电位波动,同时地网的视在接地电阻也将暂时升高。对变电所地电位升的测定结果说明,与正常交流电阻相比,地电阻常常增大10倍以上。当低压控制电缆在上述地电位升的附近敷设时,电缆电位的波动而受干扰。因此,接地浪涌电流引入的地电位升将可能对低压控制回路的绝缘配合带来严重影响。为了定量地估计当雷电注入变电所地网时在控制电缆缆芯中引起的暂态感应的数量,在30个变电所中进行人工注入地网较小冲击电流(100~4000A)时测定的电压情况。测定了两种电缆屏蔽情况下的暂态电压,一是无金属屏蔽的电缆,二是有金属屏蔽且两端接地的电缆。试验证明采用两端接地的屏蔽电缆,可以将暂态感应电压抑制为原值的10%以下,是降低干扰电压的一种有效措施。因此:屏蔽电缆的屏蔽层有两种接地方式,即两端接地和一端接地。一端接地时,屏蔽层电压为零,可显著减少静电感应电压;两端接地使电磁感应在屏蔽层上产生一个感应纵向电流,该电流产生一个与主干扰相反的二次场,抵消主干绕场的作用,显著降低磁场耦合感应

相关主题