搜档网
当前位置:搜档网 › 数值分析实验报告-插值、三次样条Word版

数值分析实验报告-插值、三次样条Word版

数值分析实验报告-插值、三次样条Word版
数值分析实验报告-插值、三次样条Word版

实验报告:牛顿差值多项式&三次样条

问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数21()25f x x

作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。

实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。

实验要求:

1. 认真分析问题,深刻理解相关理论知识并能熟练应用;

2. 编写相关程序并进行实验;

3. 调试程序,得到最终结果;

4. 分析解释实验结果;

5. 按照要求完成实验报告。

实验原理:

详见《数值分析 第5版》第二章相关内容。

实验内容:

(1)牛顿插值多项式

1.1 当n=10时:

在Matlab 下编写代码完成计算和画图。结果如下:

代码:

clear all

clc

x1=-1:0.2:1;

y1=1./(1+25.*x1.^2);

n=length(x1);

f=y1(:);

for j=2:n

for i=n:-1:j

f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1));

end

end

syms F x p ;

F(1)=1;p(1)=y1(1);

for i=2:n

F(i)=F(i-1)*(x-x1(i-1));

p(i)=f(i)*F(i);

end

syms P

P=sum(p);

P10=vpa(expand(P),5);

x0=-1:0.001:1;

y0=subs(P,x,x0);

y2=subs(1/(1+25*x^2),x,x0);

plot(x0,y0,x0,y2)

grid on

xlabel('x')

ylabel('y')

P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0 202e-14*x^3-16.855*x^2-6.6594e-16*x+1.0

并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。

Fig.1 牛顿插值多项式(n=10)函数和原函数图形

从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。

1.2 当n=20时:

对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0

同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

Fig.2牛顿插值多项式(n=20)函数和原函数图形

当n=20时,端点处发生了更加剧烈的震荡。表明随着分段不断增加,牛顿插值多项式与原函数的误差不但没有减少,反而变得更大了。

(2)三次样条

2.1 当n=10时:

在Matlab下编写代码完成计算和画图。结果如下:

代码:

clear all

clc

x1=-1:0.2:1;

y1=1./(1+25.*x1.^2);

syms x

m1=subs(diff(1/(1+25*x^2)),-1);

m2=subs(diff(1/(1+25*x^2)),1);

n=length(x1);

syms a b h f d

for i=1:n-1

h(i)=x1(i+1)-x1(i);

f(i)=(y1(i+1)-y1(i))/(x1(i+1)-x1(i));

end

a(n)=1;

b(1)=1;

for i=2:n-1

a(i)=h(i-1)/(h(i-1)+h(i));

b(i)=h(i)/(h(i-1)+h(i));

end

d(1)=6/h(1)*(f(1)-m1);

d(n)=6/h(n-1)*(m2-f(n-1));

for i=2:n-1

d(i)=6*(f(i)-f(i-1))/(h(i-1)+h(i));

end

D=d';

A=2.*eye(n);

for i=1:n-1

A(i,i+1)=b(i);

A(i+1,i)=a(i+1);

end

M=A^-1*D;

for i=1:n-1

s(i)=M(i)*(x1(i+1)-x)^3/h(i)/6+M(i+1)*(x-x1(i))^3/h(i)/6+(y1(i)-M(i)*h(i)^2/6)*(x1( i+1)-x)/h(i)+(y1(i+1)-M(i+1)*h(i)^2/6)*(x-x1(i))/h(i);

end

S=vpa(expand(s.'),5);

for i=1:n-1

x0=-1-(2/(n-1))+(2/(n-1))*i:0.001:-1+(2/(n-1))*i;

y0=subs(s(i),x,x0);

plot(x0,y0)

hold on

end

y2=subs(1/(1+25*x^2),x,-1:0.001:1);

plot(-1:0.001:1,y2,'r')

grid on

xlabel('x')

ylabel('y')

S即为我们所求的三次样条,其结果为:

S10(x) =

0.08225*x^3+0.36953*x^2+0.56627*x+0.31745[-1,-0.8]

0.96279*x^3+2.4828*x^2+2.2569*x+0.76829[-0.8,-0.6]

0.81773*x^3+2.2217*x^2+2.1002*x+0.73696[-0.6,-0.4]

13.413*x^3+17.336*x^2+8.1461*x+1.5431[-0.4,-0.2]

-54.471*x^3-23.394*x^2-1.8741e-17*x+1.0[-0.2,0]

54.471*x^3-23.394*x^2+1.9683e-17*x+1.0[0,0.2]

-13.413*x^3+17.336*x^2-8.1461*x+1.5431[0.2,0.4]

-0.81773*x^3+2.2217*x^2-2.1002*x+0.73696[0.4,0.6]

-0.96279*x^3+2.4828*x^2-2.2569*x+0.76829[0.6,0.8]

-0.08225*x^3+0.36953*x^2-0.56627*x+0.31745[0.8,1]并且这里可以得到该三次样条的在[-1,1]上的图形,并和原函数进行对比(见Fig.3)。

Fig.3 三次样条(n=10)函数和原函数图形

从图形我们可以看出,三次样条图形和原函数图形非常接近,误差相对较小。

2.2 当n=20时:

同样的,将上面代码中的“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们可以得到n=20时的三次样条,其结果为

S20(x) =

0.16461*x^3+0.59746*x^2+0.77505*x+0.38066[-1,-0.9]

0.27191*x^3+0.88717*x^2+1.0358*x+0.45888[-0.9,-0.8]

0.46379*x^3+1.3477*x^2+1.4042*x+0.55712[-0.8,-0.7]

0.86962*x^3+2.1999*x^2+2.0008*x+0.69632[-0.7,-0.6]

1.5804*x^3+3.4792*x^2+

2.7683*x+0.84984[-0.6,-0.5]

3.5442*x^3+6.425*x^2+

4.2412*x+1.0953[-0.5,-0.4]

5.7284*x^3+9.046*x^2+5.2896*x+1.2351[-0.4,-0.3]

12.534*x^3+15.171*x^2+7.1273*x+1.4189[-0.3,-0.2]

-32.789*x^3-12.023*x^2+1.6884*x+1.0563[-0.2,-0.1]

-89.07*x^3-28.907*x^2+5.1067e-17*x+1.0[-0.1,0]

89.07*x^3-28.907*x^2-3.9148e-17*x+1.0[0,0.1]

32.789*x^3-12.023*x^2-1.6884*x+1.0563[0.1,0.2]

-12.534*x^3+15.171*x^2-7.1273*x+1.4189[0.2,0.3]

-5.7284*x^3+9.046*x^2-5.2896*x+1.2351[0.3,0.4]

-3.5442*x^3+6.425*x^2-4.2412*x+1.0953[0.4,0.5]

-1.5804*x^3+3.4792*x^2-2.7683*x+0.84984[0.5,0.6]

-0.86962*x^3+2.1999*x^2-2.0008*x+0.69632[0.6,0.7]

-0.46379*x^3+1.3477*x^2-1.4042*x+0.55712[0.7,0.8]

-0.27191*x^3+0.88717*x^2-1.0358*x+0.45888[0.8,0.9]

-0.16461*x^3+0.59746*x^2-0.77505*x+0.38066[0.9,1.0]

并且这里也能得到该三次样条的在[-1,1]上的图形,并和原函数进行对比(见Fig.4)。

Fig.4 三次样条(n=20)函数和原函数图形

当分段数达到20时,三次样条的图像与原函数基本重合,表明随着分段数的增加,三次样条的误差也不断减少。

友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值分析参考答案(第二章)doc资料

数值分析参考答案(第 二章)

第二章 插值法 1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 2.给出()ln f x x =的数值表 用线性插值及二次插值计算ln0.54的近似值。 解:由表格知, 01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144 x x x x x f x f x f x f x f x ======-=-=-=-=- 若采用线性插值法计算ln0.54即(0.54)f , 则0.50.540.6<<

2 112 1 221 11122()10(0.6)()10(0.5)()()()()() x x l x x x x x x l x x x x L x f x l x f x l x -==----= =---=+ 6.93147(0.6) 5.10826(0.5)x x =--- 1(0.54)0.62021860.620219L ∴=-≈- 若采用二次插值法计算ln0.54时, 1200102021101201220212001122()() ()50(0.5)(0.6) ()() ()() ()100(0.4)(0.6) ()()()() ()50(0.4)(0.5) ()() ()()()()()()() x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------= =----=++ 500.916291(0.5)(0.6)69.3147(0.4)(0.6)0.51082650(0.4)(0.5) x x x x x x =-?--+---?--2(0.54)0.615319840.615320L ∴=-≈- 3.给全cos ,090x x ≤≤的函数表,步长1(1/60),h '==若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。 解:求解cos x 近似值时,误差可以分为两个部分,一方面,x 是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cos x 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。 当090x ≤≤时, 令()cos f x x = 取0110,( )606018010800 x h ππ ===?=

三次样条插值、拉格朗日插值、herminte插值

三次样条插值: function s=spline(x0,y0,y2l,y2n,x) n=length(x0); km=length(x); a(1)=-0.5; b(1)=3*(y0(2)-y0(1))/(2*(x0(2)-x0(1))); for j=1:n-1 h(j)=x0(j+1)-x0(j); end for j=2:n-1 alpha(j)=h(j-1)/(h(j-1)+h(j)); beta(j)=3*((1-alpha(j))*y0(j)-y(j-1)/h(j-1)+alpha(j)*(y0(j+1)-y0(j))/h(j)); a(j)=-alpha(j)/(2+(1-alpha(j))*a(j-1)); b(j)=(beta(j)-(1-alpha(j))*b(j-1))/(2+(1-alpha(j))*a(j-1)); end m(n)=(3*(y0(n)-y0(n-1))/h(n-1)+y2n*h(n-1)/2-b(n-1))/(2+a(n-1)); for j=(n-1):-1:1 m(j)=a(j)*m(j+1)+b(j); end for k=1:km for j=1:(n-1) if ((x(k)>x0(j))&(x(k)

(精品)数值分析课程设计-三次样条插值

《数值分析课程设计-三次样条插值》 报告

掌握三次样条插值函数的构造方法,体会三次样条插值函数对被逼近函数的近似。 三次样条插值函数边界条件由实际问题对三次样条插值在端点的状态要求给出。 以第1 边界条件为例,用节点处二阶导数表示三次样条插值函数,用追赶法求解相关方程组。通过Matlab 编制三次样条函数的通用程序,可直接显示各区间段三次样条函数体表达式,计算出已给点插值并显示各区间分段曲线图。 引言 分段低次样条插值虽然计算简单、稳定性好、收敛性有保证且易在电子计算机上实现,但只能保证各小段曲线在连接处的连续性,不能保证整件曲线的光滑性。利用样条插值,既可保持分段低次插值多项式,又可提高插值函数光滑性。故给出分段三次样条插值的构造过程算法步骤,利用Matlab软件编写三次样条插值函数通用程序,并通过数值算例证明程序的正确性。 三次样条函数的定义及特征 定义:设[a,b] 上有插值节点,a=x1<x2<…xn=b,对应函数值为y1,y2,?yn。若函数S(x) 满 足S(xj) = yj ( j = 1,2, ?,n ), S(x) 在[xj,xj+1] ( j =1,2,?,n-1)上都是不高于三的多项式(为了与其对应j 从1 开始,在Matlab 中元素脚标从1 开始)。当S(x) 在 [a,b] 具有二阶连续导

数。则称S(x) 为三次样条插值函数。要求S(x) 只需在每个子区 间[xj,xj+1] 上确定 1 个三次多项式,设为: Sj(x)=ajx3+bjx2+cjx+dj, (j=1,2,?,n-1) (1) 其中aj,bj,cj,dj 待定,并要使它满足: S(xj)=yj, S(xj-0)=S(xj+0), (j=2,?,n-1) (2) S'(xj-0)=S'(xj+0), S"(xj-0)=S"(xj+0), (j=2,?,n-1) (3) 式(2)、(3)共给出n+3(n-2)=4n-6 个条件, 需要待定4(n-1) 个系数,因此要唯一确定三次插值函数,还要附加2 个边界条件。通常由实际问题对三次样条插值在端点的状态要求给 出。常用边界的条件有以下3 类。 第 1 类边界条件:给定端点处的一阶导数值,S'(x1)=y1',S'(xn) =yn'。 第 2 类边界条件:给定端点处的二阶导数值,S"(x1)=y1",S"(xn) =yn"。特殊情况y1"=yn"=0,称为自然边界条件。 第 3 类边界条件是周期性条件,如果y=f(x)是以b-a 为周期的函 数,于是S(x) 在端点处满足条件S'(x1+0)=S'(xn-0),S"(x+0) =S"(xn-0)。 下以第 1 边界条件为例,利用节点处二阶导数来表示三次样条插值

数值分析总结计划实验一拉格朗日插值算法报告总结计划.doc

拉格朗日插值算法的实现 实验报告 姓名:** 年级:**** 专业:计算机科学与技术科目:数值分析题目:拉格朗日插值算法的实现 实验时间 : 2014 年 5 月27 日实验成绩: 实验教师: 一、实验名称:拉格朗日插值算法的实现 二、实验目的: a.验证拉格朗日插值算法对于不同函数的插值 b. 验证随着插值结点的增多插值曲线的变化情况。 三、实验内容: 拉格朗日插值基函数的一般形式: 也即是: 所以可以得出拉格朗日插值公式的一般形式: 其中, n=1 时,称为线性插值,P1(x) = y 0*l 0(x) + y 1*l 1(x) n=2 时,称为二次插值或抛物插值,精度相对高些, P2(x)= y0 *l 0(x)+ y1*l 1(x)+ y2 *l 2(x) 四、程序关键语句描写 double Lagrange(int n,double X[],double Y[],double x) { double result=0; for (int i=0;i

result+=temp; }// 求出 Pn(x) return result; } 五、实验源代码: #include #include using namespace std; int main() { double Lagrange(int n,double X[],double Y[],double x); //插值函数double x;//要求插值的x的值 double result;//插值的结果 char a='n'; double X[20],Y[20]; do { cout<<" 请输入插值次数n 的值: "<>n; cout<<" 请输入插值点对应的值及函数值(xi,yi):"<>X[k]>>Y[k]; } cout<<" 请输入要求值 x 的值: "<>x; result=Lagrange(n,X,Y,x); cout<<" 由拉格朗日插值法得出结果: "<>a; }while(a=='yes'); return 0; } double Lagrange(int n,double X[],double Y[],double x) { double result=0; for (int i=0;i

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析实验报告-插值、三次样条Word版

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数21()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i); end

syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0 202e-14*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

数值分析实验(2)word版本

数值分析实验(2)

实验二 插值法 P50 专业班级:信计131班 姓名:段雨博 学号:2013014907 一、实验目的 1、熟悉MATLAB 编程; 2、学习插值方法及程序设计算法。 二、实验题目 1、已知函数在下列各点的值为 试用4次牛顿插值多项式()4P x 及三次样条函数()S x (自然边界条件)对数据进行插值用图给出(){},,0.20.08,0,1,11,10i i i x y x i i =+=,()4P x 及()S x 。 2、在区间[]1,1-上分别取10,20n =用两组等距节点对龙格函数()2 1125f x x = +作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 3、下列数据点的插值 可以得到平方根函数的近似,在区间[]0,64上作图 (1)用这9个点作8次多项式插值()8L x (2)用三次样条(第一边界条件)程序求()S x 从得到结果看在[]0,64上,哪个插值更精确;在区间[]0,1上,两种插值哪个更精确? 三、实验原理与理论基础

1、拉格朗日差值公式 )()(111k k k k k k x x x x y y y x L ---+ =++ 点斜式 k k k k k k k k x x x x y x x x x y x L --+--=++++11111)( 两点式 2、n 次插值基函数 ....,2,1,0,)()(0n j y x l y x L i j n k k k j n ===∑= n k x x x x x x x x x x x x x l n k n k k k k k ,...,1,0,) () (... ) () (... ) () ()(1100=------= -- 3、牛顿插值多项式 ...))(](,,[)](,[)()(102100100+--+++=x x x x x x x f x x x x f x f x P n ))...(](,...,[100---+n n x x x x x x f )(],...,,[)()()(10x x x x f x P x f x R n n n n +=-=ω 4、三次样条函数 若函数],,[)(2b a C x S ∈且在每个小区间],[1+j j x x 上是三次多项式,其中, b x x x a n =<<<=...10是给定节点,则称)(x S 是节点n x x x ,...,,10上的三次样条函数。若在节点j x 上给定函数值),,...,2,1,0)((n j x f y j i ==并成立,,...,2,1,0,)(n j y x S i j ==则称)(x S 为三次样条插值函数。 5、三次样条函数的边界条件 (1)0)()(''''''00''====n n f x S f x S (2)'''00')(,)(n n f x S f x S == 四、实验内容 1、M 文件: function [p]=Newton_Polyfit(X,Y) format long g r=size(X); n=r(2); M=ones(n,n); M(:,1)=Y'; for i=2:n

数值分析作业-三次样条插值

数值计算方法作业 实验4.3 三次样条差值函数 实验目的: 掌握三次样条插值函数的三弯矩方法。 实验函数: dt e x f x t ? ∞ -- = 2 221)(π x 0.0 0.1 0.2 0.3 0.4 F(x) 0.5000 0.5398 0.5793 0.6179 0.7554 求f(0.13)和f(0.36)的近似值 实验内容: (1) 编程实现求三次样条插值函数的算法,分别考虑不同的边界条件; (2) 计算各插值节点的弯矩值; (3) 在同一坐标系中绘制函数f(x),插值多项式,三次样条插值多项式的曲线 比较插值结果。 实验4.5 三次样条差值函数的收敛性 实验目的: 多项式插值不一定是收敛的,即插值的节点多,效果不一定好。对三次样条插值函数如何呢?理论上证明三次样条插值函数的收敛性是比较困难的,通过本实验可以证明这一理论结果。 实验内容: 按照一定的规则分别选择等距或非等距的插值节点,并不断增加插值节点的个数。 实验要求: (1) 随着节点个数的增加,比较被逼近函数和三样条插值函数的误差变化情 况,分析所得结果并与拉格朗日插值多项式比较; (2) 三次样条插值函数的思想最早产生于工业部门。作为工业应用的例子,考 实验名称 实验 4.3三次样条插值函数(P126) 4.5三次样条插值函数的收敛性(P127) 实验时间 姓名 班级 学号 成绩

虑如下例子:某汽车制造商根据三次样条插值函数设计车门曲线,其中一 段数据如下: k x 0 1 2 3 4 5 6 7 8 9 10 k y 0.0 0.79 1.53 2.19 2.71 3.03 3.27 2.89 3.06 3.19 3.29 k y ' 0.8 0.2 算法描述: 拉格朗日插值: 错误!未找到引用源。 其中错误!未找到引用源。是拉格朗日基函数,其表达式为:() ∏ ≠=--=n i j j j i j i x x x x x l 0) ()( 牛顿插值: ) )...()(](,...,,[....))(0](,,[)0](,[)()(1102101210100----++--+-+=n n n x x x x x x x x x x f x x x x x x x f x x x x f x f x N 其中????? ?? ?? ?????? --=--= --= -)/(]),...,[],...,[(]...,[..],[],[],,[)()(],[01102110x x x x x f x x x f x x x f x x x x f x x f x x x f x x x f x f x x f n n n n i k j i k j k j i j i j i j i 三样条插值: 所谓三次样条插值多项式Sn(x)是一种分段函数,它在节点Xi(a

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

(完整)数值分析知识点,推荐文档

第一章绪论(1-4) 一、误差来源及分类 二、误差的基本概念 1.绝对误差及绝对误差限 2.相对误差及相对误差限 3.有效数字 三、数值计算的误差估计 1.函数值的误差估计 2.四则运算的误差估计 四、数值计算的误差分析原则 第二章插值(1.2.4-8) 一、插值问题的提法(定义)、插值条件、插值多项式的存在唯一性 二、拉格朗日插值 1.拉格朗日插值基函数的定义、性质 2.用拉格朗日基函数求拉格朗日多项式 3.拉格朗日插值余项(误差估计) 三、牛顿插值 1.插商的定义、性质 2.插商表的计算 3.学会用插商求牛顿插值多项式 四、等距节点的牛顿插值 1.差分定义、性质及计算(向前、向后和中心) 2.学会用差分求等距节点下的牛顿插值公式 五、学会求低次的hermite插值多项式 六、分段插值 1.分段线性插值 2.分段三次hermite插值 3.样条插值 第三章函数逼近与计算(1-6) 一、函数逼近与计算的提法(定义)、常用两种度量标准(一范数、二范数\平方逼近) 二、基本概念 连续函数空间、最佳一次逼近、最佳平方逼近、内积、内积空间、偏差与最小偏差、偏差点、交错点值、平方误差 三、学会用chebyshev定理求一次最佳一致逼近多项式,并估计误差(最大偏差) 四、学会在给定子空间上通过解方程组求最佳平方逼近,并估计误差(平方误差) 五、正交多项式(两种)定义、性质,并学会用chebyshev多项式性质求特殊函数的(降阶)最佳一次逼近多项式 六、函数按正交多项式展开求最佳平方逼近多项式,并估计误差 七、一般最小二乘法(多项式拟合)求线性拟合问题 第四章数值分析(1-4) 一、数值求积的基本思想及其机械求积公式

数值分析报告上机实验报告(插值)

数值分析第一次上机练习实验报告 ——Lagrange 插值与三次样条插值 一、 问题的描述 设()2119f x x =+, []1,1x ∈-,取15 i i x =-+,0,1,2,...,10i =.试求出10次Lagrange 插值多项式()10L x 和三次样条插值函数()S x (采用自然边界条件),并用图画出()f x ,()10L x , ()S x . 二、 方法描述——Lagrange 插值与三次样条插值 我们取15i i x =-+ ,0,1,2,...,10i =,通过在i x 点的函数值()21 19i i f x x =+来对原函数进行插值,我们记插值函数为() g x ,要求它满足如下条件: ()()2 1 ,0,1,2,...,1019i i i g x f x i x == =+ (1) 我们在此处要分别通过Lagrange 插值(即多项式插值)与三次样条插值的方法对原函数 ()2 1 19f x x = +进行插值,看两种方法的插值结果,并进行结果的比较。 10次的Lagrange 插值多项式为: ()()10 100 i i i L x y l x ==∑ (2) 其中: ()2 1 ,0,1,2,...,1019i i i y f x i x == =+ 以及 ()()()()()()()()() 011011......,0,1,2,...,10......i i n i i i i i i i n x x x x x x x x l x i x x x x x x x x -+-+----= =---- 我们根据(2)进行程序的编写,我们可以通过几个循环很容易实现函数的Lagrange 插值。 理论上我们根据区间[]1,1-上给出的节点做出的插值多项式()n L x 近似于()f x ,而多 项式()n L x 的次数n 越高逼近()f x 的精度就越好。但实际上并非如此,而是对任意的插值节点,当n →+∞的时候()n L x 不一定收敛到()f x ;而是有时会在插值区间的两端点附近

数值分析实验报告-插值、三次样条(教育教学)

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数2 1()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i);

end syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

数值分析实验报告-插值,逼近

实验报告:函数逼近&插值多项式补充 问题1:对于给函数21()1+25f x x = ,取点21 cos 22 k k x n π+=+,k 取0,1,…,n 。n 取10或20。试画出拟合曲线并打印出方程,与第二章计算实习题2的结果进行比较。 问题2:对于给函数2 1 ()1+25f x x = 在区间[-1,1]上取x i =-1+0.2i (i=0,1,2,…,10),试求3次曲线拟合,试画出拟合曲线并打印出方程,与第二章计算实习题2的结果进行比较。 实验目的:通过编程实现牛顿插值方法和函数逼近,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章、第三章相关内容。 实验内容: (1)问题1:

这里我们可以沿用实验报告一的代码,对其进行少量修改即可。 当n=10时,代码为: clear all clc k=0:10; n=length(k); x1=cos((2*k+1)/2/n*pi); y1=1./(1+25.*x1.^2); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i); end syms P P=sum(p);

数值分析第二章复习与思考题

第二章复习与思考题 1.什么是拉格朗日插值基函数它们是如何构造的有何重要性质 答:若n 次多项式()),,1,0(n j x l j Λ=在1+n 个节点n x x x <<<Λ10上满足条件 (),,,1,0,, ,0, ,1n k j j k j k x l k j Λ=?? ?≠== 则称这1+n 个n 次多项式()()()x l x l x l n ,,,10Λ为节点n x x x ,,,10Λ上的n 次拉格朗日插值基函数. 以()x l k 为例,由()x l k 所满足的条件以及()x l k 为n 次多项式,可设 ()()()()()n k k k x x x x x x x x A x l ----=+-ΛΛ110, 其中A 为常数,利用()1=k k x l 得 ()()()()n k k k k k k x x x x x x x x A ----=+-ΛΛ1101, 故 ()()()() n k k k k k k x x x x x x x x A ----= +-ΛΛ1101 , 即 ()()()()()()()()∏ ≠=+-+---=--------=n k j j j k j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)(ΛΛΛΛ. 对于()),,1,0(n i x l i Λ=,有 ()n k x x l x n i k i k i ,,1,00 Λ==∑=,特别当0=k 时,有 ()∑==n i i x l 0 1. 2.什么是牛顿基函数它与单项式基{ }n x x ,,,1Λ有何不同 答:称()()()(){ }10100,,,,1------n x x x x x x x x x x ΛΛ为节点n x x x ,,,10Λ上的牛顿基函数,利用牛顿基函数,节点n x x x ,,,10Λ上的n 次牛顿插值多项式()x P n 可以表示为 ()()()()10010---++-+=n n n x x x x a x x a a x P ΛΛ 其中[]n k x x x f a k k ,,1,0,,,,10ΛΛ==.与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如 ()()()()k k k k x x x x a x P x P --+=++Λ011,

相关主题