搜档网
当前位置:搜档网 › BLDC无位置传感器控制技术

BLDC无位置传感器控制技术

BLDC无位置传感器控制技术
BLDC无位置传感器控制技术

BLDC无位置传感器控制技术

2014.11.12

duguqiubai1234@https://www.sodocs.net/doc/0517009428.html,

BLDC电机是一种结合了直流电机和交流电机优点的改进型电机。其转子采用永磁材料励磁,体积小、重量轻、结构简单、维护方便。BLDC电机又具有控制简便、高效节能等一系列优点,已广泛应用于仪表和家用电器等领域。

本文主要讨论高压BLDC风机无位置传感器起动和运行技术。

一、无位置传感器技术简介

BLDC电机最简单的控制方法是安装三个位置传感器,使用六步换相法控制。但传感器器会增大电机的体积和成本,另外传感器的位置精度影响电机的运行;特别对于极对数较多的电机,传感器偏差少许机械角度也可能引起电角度偏差很多。在某些恶劣环境下,如高温、潮湿、腐蚀性气体等环境,传感器易损坏,因而无法使用。

使用无位置传感器方式则可以克服上述缺点。

无传感器BLDC在性能上也存在一些不足:

(1)难以实现重负载(例如额定转矩)起动。好在风机属于轻负载起动的情况。

(2)难以快速起动。例如很难实现1秒内从静止加速到全速。好在风机通常不要求很短时间内完成加速。

(3)无法实现全速范围内任意调速。有传感器BLDC能够实现0%~100%额定转速范围内的调速,而无传感器BLDC通常只能实现10%~100%额定转速范围内的调速。好在风机通常不要求10%额定转速以下运行。

经过以上分析,可以看出风机非常适合使用无位置传感器方式控制。

国内高压无位置传感器BLDC技术仍处于不成熟阶段。使用该技术的产品应以稳定可靠为主要要求,而不是以性能优越为主要要求。高压无传感器BLDC如果追求性能优越,则成本太高,技术难度过大。

风机类产品通常起动后连续工作时间较长,所以通常不要求快速起动,不也要求反复起停。

风机类产品10%以下额定转速将造成风量过小,所以通常也不会要求10%额定转速以下运行。

无传感器BLDC起动时需要锁定转子、外同步加速(开环加速)等过程,所以起动较慢;起动过快易造成失败,所以通常不宜要求无传感器BLDC做快速起动。

二、虚拟中性点法过零检测电路

无位置传感器BLDC控制器的虚拟中性点法过零检测电路见图1。

UVW三相电压经电阻分压变为COMP_U、COMP_V、COMP_W。DUM_MID是虚拟中性点。ZCP_U、ZCP_V 、ZCP_W是过零信号。

图1

对于230V AC输入的系统,直流母线电压为320V。

UVW的电压峰值都是320V,而比较器接受15V以下信号。所以UVW需经电阻分压才能使用。

UVW分压电路上的电阻很大,通常数百KΩ。这使虚拟中性点法过零检测电路成为一个弱信号电路,极易受到干扰,布板时尤其要注意这一点。

布板时应尽量使虚拟中性点电路远离强电电路,并注意三相布线的对称性。

对于低速电机,虚拟中性点电路的滤波电容应取较大值,可取2.2nF或更大; 对于高速电机,电容应取较小值, 可取1nF或更小。

三、三段式起动方法

三段式起动方法是无位置传感器BLDC的常用起动方法。

起动过程包括转子锁定、外同步加速、自同步运行。

转子锁定:给UVW中的某两相通电,转子将被牵引至一个固定位置。

转子锁定的意义:转子锁定后, 转子位置变为已知,便于控制。

外同步加速:外同步加速完全是一个开环运行的过程。在未知转子位置的情况下,按一定规律换相,换相时间间隔逐渐缩短(也就是加速)。加速到一定阶段时,比较器输出易识别的过零信号,此时可以进入自同步运行阶段。

外同步加速阶段的步数不宜太少也不是太多。太少,电机转速不够高,不能产生易识别的过零信号。太多,其中错误的加电节拍会比较多,容易产生电流尖峰,容易产生“咔咔”声和卡顿感,容易造成失步。通常外同步加速的步数为2步至8步。

自同步运行:通过比较器输出信号识别出转子位置,根据转子位置通电和换相。

四、过零检测电路的比较器输出信号分析

比较器输出的信号波形可分为图2中(a)(b)(c)三种情况:

说明:图2中红色竖线表示换相时刻

(a)单纯过零波形

(b)过零波形+续流波形(橙色部分是续流波形)

(c)过零波形+过零噪声(蓝色部分是噪声波形)

续流波形可能不出现,也可能出现。当负载很轻,电流很小时,续流时间太短,又由于电路中有一定电容,此时比较器的输出将不出现续流波形。当电流较大时,电容无法将续流波形滤掉,此时比较器的输出将出现续流波形。

图2

续流波形可能不出现,也可能出现,这给控制带来一定困难。

可以采用延时滤波的方法滤掉续流波形。即在换相后,延时一定时间检测比较器输出。保证续流过程在该延时时间内结束。

使用该方法不必判断续流波形,而是将续流波形通过数字方法路掉。

对于过零信号,不必做跳变沿检测,而是做电平检测。即比较器信号为某一电平时,判断出是否已经过零。如果过零已经发生,则进行换相。

过零噪声信号也给控制带来一定困难。可以采用择多方法进行滤波,即在一定时间内多次读取比较器输出,如果“1”出现的次数多,则将结果记为“1”;如果“0”出现的次数多,则将结果记为“0”。通过该方法可以将噪声信号滤除。

滤除续流信号和过零噪声后,比较器输出信号的意义变得明确。它类似于hall信号,可以指示电机转子的位置,MCU根据该信号可以完成驱动和换相。

总结

无位置传感器BLDC技术特别适用于风机和水泵类负载。它们在起动时负载很轻,稳定运行过程中负载变化不大,加速曲线易于预测,是相对容易控制的负载。

无位置传感器在PCB布板上要求较高。虚拟中性点法过零检测电路是一个弱信号电路,极易受到干扰。布板时应尽量使虚拟中性点电路远离强电电路,并注意三相布线的对称性。

过零检测电路中比较器输出信号应注意对续流波形和过零噪声波形进行处理。数字滤波处理后的波形可用于换相控制。

BLDC无位置传感器控制技术

BLDC无位置传感器控制技术 2014.11.12 duguqiubai1234@https://www.sodocs.net/doc/0517009428.html, BLDC电机是一种结合了直流电机和交流电机优点的改进型电机。其转子采用永磁材料励磁,体积小、重量轻、结构简单、维护方便。BLDC电机又具有控制简便、高效节能等一系列优点,已广泛应用于仪表和家用电器等领域。 本文主要讨论高压BLDC风机无位置传感器起动和运行技术。 一、无位置传感器技术简介 BLDC电机最简单的控制方法是安装三个位置传感器,使用六步换相法控制。但传感器器会增大电机的体积和成本,另外传感器的位置精度影响电机的运行;特别对于极对数较多的电机,传感器偏差少许机械角度也可能引起电角度偏差很多。在某些恶劣环境下,如高温、潮湿、腐蚀性气体等环境,传感器易损坏,因而无法使用。 使用无位置传感器方式则可以克服上述缺点。 无传感器BLDC在性能上也存在一些不足: (1)难以实现重负载(例如额定转矩)起动。好在风机属于轻负载起动的情况。 (2)难以快速起动。例如很难实现1秒内从静止加速到全速。好在风机通常不要求很短时间内完成加速。 (3)无法实现全速范围内任意调速。有传感器BLDC能够实现0%~100%额定转速范围内的调速,而无传感器BLDC通常只能实现10%~100%额定转速范围内的调速。好在风机通常不要求10%额定转速以下运行。 经过以上分析,可以看出风机非常适合使用无位置传感器方式控制。 国内高压无位置传感器BLDC技术仍处于不成熟阶段。使用该技术的产品应以稳定可靠为主要要求,而不是以性能优越为主要要求。高压无传感器BLDC如果追求性能优越,则成本太高,技术难度过大。 风机类产品通常起动后连续工作时间较长,所以通常不要求快速起动,不也要求反复起停。

无速度传感器矢量控制

无速度传感器矢量控制技术的行业现状与展望 The Comprehensive Status Analysis and Future Development Tendency of Sensor-less Vector Control (SVC) Technology 1 引言 交流传动在高性能场合的应用始于矢量控制概念的引入,包括直接磁场定向与间接磁场定向控制。尽管这一概念早在60年代就已出现,并由Siemens 的Blaschke博士于1972年正式提出,但是真正应用还是在微电子技术发展的二十年后。矢量控制从基本原理上讲能够获得优异的动静态特性,但是对电机参数的敏感性却成为实际应用中必须解决的问题。驱动器通过启动前的自整定以及运行过程中的在线整定,适应电机参数变化,保持矢量控制的动静态性能,这些复杂的自适应控制算法都必须通过强大的信号处理器才能完成。 近年来随着半导体技术的发展及数字控制的普及,矢量控制的应用已经从高性能领域扩展至通用驱动及专用驱动场合,乃至家用电器。交流驱动器已在工业机器人、自动化出版设备、加工工具、传输设备、电梯、压缩机、轧钢、风机泵类、电动汽车、起重设备及其它领域中得到广泛应用。随着半导体技术的飞速发展,功率器件在不断优化,开关速度在提高而损耗在下降,功率模块的功率密度在不断增加;数字信号处理器的处理能力愈加强大,处理速度不断提升,交流驱动器完全有能力处理复杂的任务,实现复杂的观测、控制算法,现代交流传动的性能也因此达到前所未有的高度。以代表交流驱动控制最高水平的交流伺服为例,其需求随着新的生产技术与新型加工原料的出现而迅速增长。据相关统计,高性能交流伺服驱动器数量的年增长率超过12%。伺服驱动中应用最多的电机是异步电机及同步电机,额定功率从50W到200kW,位置环、速度环以及转矩环路的典型带宽分别为60Hz、200Hz 以及1000Hz。 交流电机驱动中的大部分问题应当说在当今的驱动器中已经得到解决,相关的成熟技术提供了被业界广泛接受的解决方案,并在许多领域中得到成功应用,因此从基本结构上来讲,交流驱动器的现有设计方案在未来的几年中不会有大的变化。现在,交流驱动器开发的一个重点是如何将驱动器与电机有机地结合在一起,开发出更低成本、高可靠性、高性能“驱动模块”。基于这一思路,为进一步减小成本、提高可靠性,开发人员在如何省去轴侧传感器以及电机相电流传感器进行了深入的研究,特别是高性能无速度传感器矢量控制(SVC)的实现吸引了各国研发人员的广泛关注,并已成为近年来驱动控制研究的热点。随着具有强大处理能力的数字信号处理器的推出,实现该控制方式所需要的高鲁棒性、自适应的参数估计以及非线性状态观测成为可能,新的无速度传感控制方案不断推出。Siemens、Yaskawa、Toshiba GE、Rockwell、Mistubishi、Fuji等知名公司纷纷推出自己的SVC控制产品(本文所指SVC均针对异步电机),控制特性也在不断提高。SVC目前已在印刷、印染、纺机、钢铁生产线、起重、电动汽车等领域中广泛应用,在高性能交流驱动中占有愈来愈重要的地位。 2 无速度传感器矢量控制的优势 概括来说,无速度传感器矢量控制可以获得接近闭环控制的性能,同时省去了速度传感器,具有较低的维护成本。与传统V/Hz控制比较,无速度传感器矢量控制可以获得改进的低速运行特性,变负载下的速度调节能力亦得到改善,同时还可获得高的起动转矩,这在高摩擦与惯性负载的起动中有明显的优势。正是由于这些驱动特性,该控制技术已逐渐成为通用恒转矩驱动应用的选择。事实上,基本上所有的AC驱动厂家都提供该控制模式。 Schneider公司的驱动市场经理Susan Bowler认为,该控制模式的吸引人之处在于利用最小的附加费用获得大大增强的性能,包括低速特性、转矩响应及定位能力等。由于其性能接近伺服驱动,公司在拓展需要更精确负载定位控制的场合。该公司的第三代Altivar无速度传感器驱动产品具有自调谐特性,确保驱动器在电机运行参数随时间发生变化的情况下

无速度传感器的矢量控制系统仿真

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:武汉理工大学 题目: 无速度传感器的矢量控制系统仿真 初始条件: 电机参数为:额定电压U=380V、频率50 =、定子电阻s R=0.252Ω、 f Hz 额定功率P=2.2KW、定子自感 L=0.0016H、转子电阻r R=0.332Ω、额定转速 s n=1420rpm、转子自感r L=0.0016H、级对数p n=2、互感m L=0.08H、转动惯量J=0.6Kgm2 要求完成的主要任务: (1)设计系统原理图; (2)用MATLAB设计系统仿真模型; (3)能够正常运行得到仿真结果,包括转速、转矩等曲线,并将推算转速与实际转速进行比较 参考文献: [1] 洪乃刚.《电力电子和电力拖动控制系统的MATLAB仿真》.北京:机械 工业出版社,2005:212-215 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 具体时间设计内容 12.5 指导老师就课程设计内容、设计要求、进度安排、评分标准等做具体介 绍;学生确定选题,明确设计要求 12.6-12.9 开始查阅资料,完成方案的初步设计 12.10—12.11 由指导老师审核设计方案,学生修改、完善并对其进行分析 12.12-12.13 撰写课程设计说明书 12.14 上交课程设计说明书,并进行答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 异步电动机具有非线性、强耦合、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电机的调速方案。矢量控制是目前交流电动机较先进的一种动态模型,它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。无速度传感器控制的高性能通用变频器是当前全世界自动化技术和节能应用中受到普遍关心的产品和开发课题。本文介绍无速度传感器的矢量控制系统的原理和Matlab仿真。 关键词:矢量控制、无速度传感器、Matlab

浅谈交流电机无速度传感器控制策略

龙源期刊网 https://www.sodocs.net/doc/0517009428.html, 浅谈交流电机无速度传感器控制策略 作者:吴宏宇吴兴宇史运涛 来源:《科技风》2016年第24期 摘要:目前,随着工业自动化的不断发展,交流电机将会被广泛使用。同时由于无速度 传感器技术具有低成本与高可靠性等优点,所以发展交流电机无速度传感器技术,对于提高科技生产力以及工业自动化具有极其重要的意义。本文将简要介绍高性能无速度传感器交流电机控制策略,一种是异步电机与速度自适应全阶观测器相结合,另一种永磁同步电机与滑模观测器相结合的控制方法,旨在进一步促进高性能无速度传感器交流电机控制策略的发展。 关键词:交流电机;无速度传感器;全阶观测器;滑模观测器 随着电力电子技术、微电子技术、现代电机控制理论的迅速发展,交流电机获得快速的推广与应用[ 1 ]。目前,在高性能交流电机控制领域中矢量控制[ 2 ]已经被广泛应用。在实际应用中,为了进一步提高交流电机在不同环境下运行的可靠性,交流电机无速度传感器控制技术被提出。无速度传感器控制方法主要分为两大类,一种为外部信号注入,这种方法只适应于极低速的工况运行,同时额外的信号注入会带来高损耗、噪声等问题。另一种为基于交流电机模型的方法,如:模型参考自适应[ 3 ]、卡尔曼滤波[ 4 ]、滑模观测器[ 5 ]、自适应全阶观测器[ 6 ]等方法,这些方法具有很高的控制精度以及鲁棒性。 本文将重点介绍自适应全阶观测器、滑模观测器与矢量控制在交流电机无速度传感器技术中的应用。 1 速度自适应全阶观测器 对于异步电机来说,定子磁链和电磁转矩通常无法直接得到,一般是采用实时测量的电压电流信息和电机参数,并根据电机数学模型构造观测器来对内部的状态变量进行估计。全阶观测器在较宽范围内都有很高的观测精度[ 7 ],通过引入速度自适应环节后可以在观测定子磁链的同时估计电机转速,实现无速度传感器控制。 在全阶观测器的设计中,反馈增益矩阵与自适应率系数的设计直接关系到系统的稳定性、鲁棒性以及收敛速度[ 7 ]。为了保证系统的稳定性与收敛性,本文将介绍一种采用极点左移的方法来设计增益矩阵并对其进行简化,最终得到一个常数增益矩阵。引入速度自适应环节,可以利用李雅普诺夫函数推导出转速估计的自适应率[ 7 ],在实际应用中为了保证估计转速的收敛速度一般采用PI调节器来代替纯积分环节。 2 滑模观测器 在无速度传感器永磁同步电机控制策略中,滑模观测器被广泛应用,因为其具有结构简单、鲁棒性强以及快速的动态响应[ 8 ]。滑模观测器的主要思想是通过选取滑模面与滑模增益

交流感应电动机无速度传感器的高动态性能控制方法综述

交流感应电动机无速度传感器的 高动态性能控制方法综述 清华大学 杨耕 上海大学 陈伯时 摘要:文章分析了交流感应电机无速度传感器的高动态性能控制方案的控制要点。在介绍国内外产业界已实用化的、以及正在研发中的几种代表性的控制策略的同时,讨论了各种方法理论要点和实际应用中的特点。最后,介绍了当前的几个研究热点问题并就发展方向提出了一点设想。 关键词:异步电动机控制 无速度传感器 转矩控制 磁链观测 速度辨识 Rev iew the M ethods for the Speed Sen sor-less Con trol of I nduction M otor Yang Geng Chen Bo sh i Abstract:T h is paper analyzes theo retical po ints of the i m p lem entati on fo r h igh perfo r m ance contro l of in2 ducti on mo to r w ithout speed senso r.A fter that,typ ical app roaches of the contro l strategy,w h ich are used in p ractical p roducts o r are being developed recently,are p resented and the characteristic of each app roach is dis2 cussed.F inally,som e unso lved p roblem s being researched as w ell as the develop ing po tentials are introduced. Keywords:contro l of inducti on mo to r speed senso r2less to rque contro l flux observer speed identifica2 ti on 1 前言 交流感应电机的无速度传感器高动态性能控制,是为了实现与有速度传感器的矢量控制(或直接转矩控制)相当的转矩和速度性能的方案,被用于无法设置速度传感器的设备或新一代高性能通用变频器之中[1,2]。相关的理论与技术也成为近10年来交流传动领域的热门研发内容之一。 本文主要综述在无速度传感器的前提下,具有速度反馈控制环的矢量控制方案(V C)和直接转矩控制方案(D TC),而不讨论诸如“V F控制+为补偿负载变动的滑差补偿”等只考虑静态的方法。本文在介绍各种方法的同时,综述其理论要点和实际应用中的特点、介绍所应用的厂家,从中总结出实现高动态性能控制的要点及主要成果。最后,介绍当前几个研究热点问题。 2 控制方法 211 方法分类的出发点 一般地,由转矩控制环及速度控制环构成的无速度传感器矢量控制(或直接转矩控制)系统由图1所示的3个环节构成。即:①速度调节器;②磁链和转矩控制器;③速度推算或辨识器(含磁链计算或观测) 。 图1 无速度传感器控制系统构成 对于环节②,需要控制转矩和磁链。由此可以分为:a以转子磁链定向控制为基础的矢量控制策略。目前常用的有计算滑差频率的被称为间接法(I V C)和把状态观测器观测到的转子磁链进行反馈控制的直接法(DV C)。b以控制定子磁链为特点的,被称之为直接转矩控制策略(D TC)。 环节③的结构依存于环节②的结构。实际上在计算或推定速度值时,常常也要获得(计算或观测)磁链(转子的或是定子的)值。因此,按其理论上的特点,可以把获得转速和磁链的方法大致分 3 电气传动 2001年 第3期

无位置传感器的无刷直流电机 (

基于中颖SH79F168单片机的航模无刷电调方案 摘要:本文提出了一种采用中颖8位单片机SH79F168作为主控芯片的航模无刷电调方案,用AD采样的方法进行反电动势检测以控制无位置传感器的无刷直流电机。该芯片内部集成了PWM、ADC、增强外部中断等有针对性的功能模块,使软硬件设计都大为简化。经实际项目应用,该系统运行稳定可靠,且与市面上的其它控制方案相比具有成本优势。 关键词:航模 无刷电调SH79F168 无位置传感器BLDC 反电动势法 1 概述 无位置传感器的无刷直流电机(Brushless Direct Current Motor, BLDCM)由于其快速、可靠性高、体积小、重量轻等特点,在航模领域得到了广泛的应用。但是与有刷电机和有位置传感器的无刷直流电机相比,其控制算法要复杂得多。加上航模设计中对重量和体积的要求非常严格,因此要求硬件电路尽可能简单,更增加了软件的难度。 本文提出了一种基于中颖8位单片机SH79F168的控制方案,借助于该芯片片内集成的针对电机控制的功能模块,只需很少的外围电路即可搭建控制系统,实现基于反电动势法的无位置传感器BLDC控制,在保证稳定性和可靠性的基础上大大降低了系统成本。而且该芯片与传统8051完全兼容,易于上手,从而也降低了研发成本。 2 系统硬件设计 本方案选用中颖的8位单片机 SH79F168做为主控芯片。该芯片采用优化的单机器周期8051核,内置16K FLASH存储器,兼容传统8051所有硬件资源,采用JTAG仿真方式,内置16.6M 振荡器,同时扩展了如下功能: 双DPTR指针. 16位 x 8乘法器和16位/8除法器. 3通道12位带死区控制PWM,6路输出,输出极性可设为中心或边沿对齐 模式;同时集成故障检测功能,可瞬时 关闭PWM输出; 7通道10位ADC模块; 内置放大器和比较器,可用作电流放大采样和过流保护; 增强的外部中断,提供4种触发方式; 提供硬件抗干扰措施; Flash自编程功能,方便存储参数; 主系统硬件架构如图1所示,从图中可以看出该系统大部分功能都由片内集成的模块完成。外围电路的简化一方面可以提高系统可靠性,另一方面也降低了成本。

永磁同步电机无位置传感器

Performance Comparison of Permanent Magnet Synchronous Motors and Controlled Induction Motors in Washing Machine Applications using Sensorless Field Oriented Control Aengus Murray, Marco Palma and Ali Husain Energy Saving Products Division International Rectifier El Segundo, CA 90245 Abstract—This paper describes two alternative variable speed motor drive systems for washing machine applications. Three phase induction motors with tachometer feedback and direct drive permanent magnet synchronous motors with hall sensor feedback are two drive systems commonly used in North American washers today. Appliance manufacturers are now evaluating sensorless drive systems because of the low reliability and high cost of the speed and position feedback sensors. A Field Oriented Control Algorithm with an embedded rotor flux and position estimation algorithm enables sensorless control of both permanent magnet synchronous motors and induction motors. The estimator derives rotor shaft position and speed from rotor flux estimates obtained from measured stator currents and the applied voltages. Sampling of currents in the dc link shunt simplifies stator current measurement and minimizes cost. Field oriented control algorithm allows good dynamic control of torque and enables an extended speed range through field weakening. The digital control algorithm runs on a unique hardware engine that allows algorithms to be designed using graphical tools. A common hardware platform can run either the PMSM or IM using sensorless field oriented control in a front loading washer application. Test results are presented for both drives in standard wash cycles. Keywords-component; Advanced Control; Field Oriented Control Algorithm;, Appliance control architecture; I.I NTRODUCTION Accurate control of drum speed is required in both horizontal and vertical axis washer machines [1]. In front loading horizontal axis washers, the drum speed determines the washing action. There is a critical drum RPM, depending on the drum radius, above which the clothes stick to the inside edge of the drum. At this speed, the centrifugal force due to rotation balances the weight of the wet clothes. At speeds below this, the clothes will stick to the side of the drum until the component of the weight acting along the radius is greater than the centrifugal force. Once this angle is reached, the clothes fall back down into the base of the drum. The speed of the drum determines how vigorously the clothes are washed and allows a gentle wash cycle to be selected for delicate items. In the spin mode, the water is drained and the drum speed is increased well beyond the critical speed and the water forced out of the cloths by the centrifugal force. In traditional top loading vertical axis machines, the agitation action is produced mechanically using a gearbox and clutch. However, the introduction of speed control systems not only simplifies the mechanical system but also allows for wash cycle control. The control of the speed and angle of stroke allows the system designer to better manage the washing action and so develop wash cycles that use less water. European front-loading washers have used variable speed control for many years and typically use a universal ‘brush type’ motor. However, the American washer uses a larger drum size, which requires a motor with a power range beyond that of the universal motor solution. The front-loading drive solutions on the market today include direct drive permanent magnet synchronous motor drives or a belt drive using an induction motor. Appliance manufacturers are now evaluating these two drive types in top-loading machine to reduce cost and improve performance. However, both these drive systems use shaft feedbacks sensors. The direct drive PMSM typically uses a Hall Effect sensor for position feedback while the induction motor drive typically uses an analog or digital tachometer for speed feedback. The ideal universal drive can run either a PMSM or an induction motor without shaft feedback sensors. However, a single hardware platform can efficiently run either a PMSM or an induction motor using sensorless field oriented control algorithm. In both cases, speed and position estimates derive from motor terminal voltages and currents. Induction motors were initially preferred for washing machine drives because of the ease of running in high speed field weakening mode even with simple scalar control methods. However, the PMSM is now becoming a viable solution because field oriented control approach enables high speed field weakening. In an induction motor, the torque producing current flows in both the rotor and stator windings while the air gap field generation needs additional field current. Therefore, in washing mode, the total copper losses are more than double

无刷直流电机无位置传感器控制方法综述

无刷直流电机无位置传感器控制方法综述所谓的无位置传感器控制,正确的理解应该是无机械的位置传感器控制。在电机运转的过程中,作为逆变桥功率器件换向导通时序的转子位置信号仍然是需要的,只不过这种信号不再由位置传感器来提供,而应该由新的位置信号检测措施来代替,即以提高电路和控制的复杂性来降低电机的复杂性。所以,目前永磁无刷直流电机无位置传感器控制研究的核心和关键就是架构一转子位置信号检测线路,从软硬件两个方面来间接获得可靠的转子位置信号,借以触发导通相应的功率器件,驱动电机运转。 1.反电势过零点法(端电压法):基于反电动势过零点的转子位置检测方法是 在忽略永磁无刷直流电机电枢反应影响的前提下。通过检测断开相反电动势过零点。依次得到转子的六个关键位置信号。但是存在如下缺点:反电动势正比于转速,低速时不能通过检测端电压来获得换相信息故这种方法严重影响了电机的调速范围。使电机起动困难;续流二极管导通引起的电压脉冲可能覆盖反电动势信号。尤其是在高速、重载、或者绕组电气时间常数很大等情况下,续流二极管导通角度很大,可能使得反电动势法无法检测。 反电势过零检测法的改进策略:针对以上缺点,利用神经网络的非线性任意逼近特性, 提出一种基于神经元网络的电机相位补偿控制。首先由硬件电路获得有效的反电动势信息, 再利用BP 神经网络进行正确相位补偿, 实现无刷直流电机的无位置传感器控制, 获得了较好的效果[1]。还有一种采用人工神经元网络的永磁无刷直流电机反电势预测新方法, 采用神经元网络方法对永磁无刷直流电动机反电势波形准确预测的结果进一步用于电机动、静态特性的仿真或预测, 这将比假设电机反电势波形为理想正弦波或梯形波所进行的仿真更接近电机的实际运行结果。较之传统的路和场的计算方法, 达到了快速性和准确性的统一, 且由于神经元网络的自学习神经元网络成功训练后, 就可以用以预测所研究类型的永磁无刷直流电机的反电势波形[2]。 直接检测法,通过比较逆变器直流环中点电压和电机断开相绕组端电压的关

无速度传感器简介

无速度传感器 在高性能的异步电机矢量控制系统中,转速的闭环控制环节一般是必不可少的。通常,采用光电码盘等速度传感器来进行转速检测,并反馈转速信号。但是,由于速度传感器的安装给系统带来一些缺陷:系统的成本大大增加;精度越高的码盘价格也越贵;码盘在电机轴上的安装存在同心度的问题,安装不当将影响测速的精度;电机轴上的体积增大,而且给电机的维护带来一定困难,同时破坏了异步电机的简单坚固的特点;在恶劣的环境下,码盘工作的精度易受环境的影响。因此,越来越多的学者将眼光投向无速度传感器控制系统的研究。国外在20世纪70年代就开始了这方面的研究,但首次将无速度传感器应用于矢量控制是在1983年由R.Joetten完成,这使得交流传动技术的发展又上了一个新台阶,但对无速度传感器矢量控制系统的研究仍在继续。 2无速度传感器的控制方法 在近20年来,各国学者致力于无速度传感器控制系统的研究,无速度传感器控制技术的发展始于常规带速度传感器的传动控制系统,解决问题的出发点是利用检测的定子电压、电流等容易检测到的物理量进行速度估计以取代速度传感器。重要的方面是如何准确地获取转速的信息,且保持较高的控制精度,满足实时控制的要求。无速度传感器的控制系统无需检测硬件,免去了速度传感器带来的种种麻烦,提高了系统的可靠性,降低了系统的成本;另一方面,使得系统的体积小、重量轻,而且减少了电机与控制器的连线,使得采用无速度传感器的异步电机的调速系统在工程中的应用更加广泛。国内外学者提出了许多方法。 (1)动态速度估计法主要包括转子磁通估计和转子反电势估计。都是以电机模型为基础,这种方法算法简单、直观性强。由于缺少无误差校正环节,抗干扰的能力差,对电机的参数变化敏感,在实际实现时,加上参数辨识和误差校正环节来提高系统抗参数变化和抗干扰的鲁棒性,才能使系统获得良好的控制效果。 (2)PI自适应控制器法其基本思想是利用某些量的误差项,通过PI自适应控制器获得转速的信息,一种采用的是转矩电流的误差项;另一种采用了转子q轴磁通的误差项。此方法利用了自适应思想,是一种算法结构简单、效果良好的速度估计方法。 (3)模型参考自适应法(MRAS)将不含转速的方程作为参考模型,将含有转速的模型作为可调模型,2个模型具有相同物理意义的输出量,利用2个模型输出量的误差构成合适的自适应律实时调节可调模型的参数(转速),以达到控制对象的输出跟踪参考模型的目的。根据模型的输出量的不同,可分为转子磁通估计法、反电势估计法和无功功率法。转子磁通法由于采用电压模型法为参考模型,引入了纯积分,低速时转子磁通估计法的改进,前者去掉了纯积分环节,改善了估计性能,但是定子电阻的影响依然存在;后者消去了定子电阻的影响,获得了更好的低速性能和更强的鲁棒性。总的说来,MRAS是基于稳定性设计的参数辨识方法,保证了参数估计的渐进收敛性。但是由于MRAS的速度观测是以参考模型准确为基础的,参考模型本身的参数准确程度就直接影响到速度辨识和控制系统的成效。 (4)扩展卡尔曼滤波器法将电机的转速看作一个状态变量,考虑电机的五阶非线性模型,采用扩展卡尔曼滤波器法在每一估计点将模型线性化来估计转速,这种方法

无刷直流电机的无位置传感器控制_0813

无位置传感器控制技术是无刷直流电机研究的热点之一,国内外相关研究已经取得阶段性成果。 在无刷直流电机工作过程中,各相绕组轮流交替导通,绕组表现为断续通电。在绕组不通电时,由于绕组线圈的蓄能释放,会产生感应电动势,该感应电动势的波形在绕组两端有可能被检测出来。利用感应电动势的一些特点,可有取代转子上的位置传感器功能,来得到需要的换相信息。由此,就出现了无位置传感器的无刷直流电动机。 尽管无位置传感器控制方式使得转子位置检测的精确度有所降低,但由于取消了位置传感器,电机的结构更加简单,安装更加方便,成本降低,可靠性进一步提高,在对体积和可靠性有要求的领域以及不适合安装位置传感器的场合,无位置传感器无刷直流电机应用广泛。 无位置传感器控制方式下的无刷直流电机具有可靠性高、抗干扰能力强等优点,同时在一定程度上克服了位置传感器安装不准确引起的换相转矩波动。 无位置传感器技术是从控制的硬件和软件两方面着手,以增加控制的复杂性换取电机结构复杂性的降低。 以采用120o电角度两两导通换相方式的三相桥式Y接无刷直流电机为例,讨论基于现代控制理论和智能算法的无刷直流电机无位置传感器控制方法。 转子位置间接检测法 目前无刷直流电机中主要采用电磁式、光电式、磁敏式等多种形式的位置传感器,但位置传感器的存在限制了无刷直流电机在某些特定场合的应用,主要体现在: 1、位置传感器可使电机系统的体积增大; 2、位置传感器使电机与控制系统之间导线增多,使系统易受外界干扰影响; 3、位置传感器在高温、高压和湿度较大等恶劣工况下运行时灵敏度变差,系统运行 可靠性降低 4、位置传感器对安装精度要求较高,机械安装偏差引起的换相不准确直接影响电机 的运行性能。 无位置传感器控制技术越来越受到重视,并得到了迅速发展。依据检测原理的不同,无刷直流电机无位置传感器控制方法主要包括反电势法、磁链法、电感法及人工智能法等。 反电势法 反电势法(感应电动势过零点检测法)目前是技术最成熟、应用最广泛的一种位置检测方法。该方法将检测获得的反电势过零点信号延迟30o电角度,得到6个离散的转子位 置信号,为逻辑开关电路提供正确的换相信息,进而实现无刷直流电机的无位置传感器控制。 无刷直流电机反电势过零点与换相时刻的对应关系如图所示,图中e A、e B、e C为相位互差120o电角度的三相梯形波反电势,Q1~Q6为一个周期内的6个换相点,分别滞后相应反电势过零点30o电角度。

PMSM无位置传感器控制中的相电流检测

PMSM无位置传感器控制中的相电流检测 2009年11月4日 摘要:在PMsM的无位置和无速度传感器控制驱动方面,构建了一种基于滑模变结构理论的状态观测器,同时,针对传统的三相电流检测或母线电流检测方式中存在的不足,根据基尔霍夫定理,提出了一种更为经济简洁的相电流检测方法,应用于PMsM矢量控制系统中,能准确有效地估算出转子磁链位置角。最后,采用TMS320c24x验证了检测和控制方法的正确胜。 关键词:元位置传感器;DsP;PlⅥsM;滑模观测器;电流检测 中图分类号:TM34l;TM351 文献标识码:A 文章编号:1004—7{】18f2009)10一IJll37—03 0引言 根据电机本体的差异及逆变器工作方式的不同,电子换相的永磁同步电动机可以分为方波式直流无刷电动机和正弦式永磁同步电动机。无刷直流电动机与120°导通型三相逆变器相匹配,可实现方波型驱动,其转子位置传感器只需要提供转子若干关键位置的离散信号,因而此类电机控制简单,但由于相绕组呈感性,电子换向时会产生电流脉动,进而引起电机的转矩脉动1。正弦 式PMsM控制方式灵活,与180°导通型逆变器匹配,可实现正弦波驱动,引入磁场定向的矢量控制控制策略可有效地削减转矩谐波,具有优良的调速性能,但是矢量控制中需要获取连续的、精确的转子磁链位置信息。为了提高系统的经济性和可靠性,系统采用无位置传感器控制,也就是利用电机绕组中相关电信号通过适当算法估计出转子位置和速度,由以软件实现的磁链观测器取代位置传感器。 为使状态观测器中的位置观测算法估算的位置量精确可靠,就必须对电机绕组中的电流等观测器 输入量有一个准确性要求,因此电机绕组中电流信号的检测方法很重要。 1 PMsM的无位置传感器控制 Habetler提出的空间矢量调制方法在异步电机中已有广泛的应用,矢量控制技术同样也适用于永 磁同步电动机的变频控制。PMsM一般通过检测电机转子磁链位置来控制定子电流或电压,使定子和转子磁动势保持确定的相位关系,从而产生恒定的转矩。 由于PMsM转子磁通位置与转子机械位置是一致的,我们通过检测转子的实际位置就可以得知 电机转子磁链位置。传统PMsM控制中最常用的获取转子位置和速度信号的方法是在转轴上安装传感器,本控制系统采用滑模状态观测器取代位置传感器,通过适当算法估算出转子位置和速度。观测器模型如图l所示。

无传感器矢量控制技术

1、PG卡是变频器控制带编码器电机时的选件.构成闭环控制.主要是实现高精度的带编码器(PG)矢量闭环控制.PG卡和带编码器的电机是变频器实现最高的控制精度的方式.可实现电机速度控制和位置控制(定位). 2、变频器的无PG矢量控制怎么接线? 无PG矢量控制接线与其它的变频器一样接线。(与PG矢量控制区别就是没有电机编码器的接线了。) 主要是控制方式选择PG矢量控制,并且要进行电机的自学习,以供变频器采集电机的必要参数。 3、变频器中说的有PG矢量控制中的PG指的是什么啊? PG:pulse Quantizer 就是脉冲编码器 有PG矢量控制,就是有编码器的矢量控制,也就是闭环矢量控制 4、变频器的VF控制和无PG 矢量控制什么区别怎么使用 区别在于无PG反馈矢量控制机械硬度较好,控制精度和调速范围更好些,但要求较多.V/F控制适用于大多数控制. 5、无PG矢量控制一般用在什么样的负载上呢?速度和转矩与VF控制有什么区别 回答 无PG反馈的矢量变频器通过变频器内部的检测电流测出三相输出电压和电流值矢量,通过变换电路得到两个相互垂直的电流信号,再用这两个信号通过运算调节器控制逆变电路的输出。整个过程全部在变频器内完成,工程上称为无PG反馈的矢量变频器。3.变频器矢量控制功能的设置只设置“用”或“不用”即可。4.设置矢量控制功能时应符合的条件(1) 变频器只能连接一台电动机;(2) 电动机应使用变频器厂家的原配电动机,若不是原配电动机,应先进行自整定操作;(3) 所配备电动机的容量比应配备电动机的容量最多小一个等级; (4) 变频器与电动机之间的电缆长度应不大于50m。(5) 变频器与电动机之间接有电抗器时,应使用变频器的自整定功能改写数据。 在需要较高精度的控制场合下,可选用无PG反馈的控制,比如数控车床:作为主轴电动机的驱动系统,可以根据切削需要改变主轴的转速,随着工件直径的变化,主轴转速亦随着变化,保持刀具的恒线速切削。还可以由数控系统控制主轴运行、停止,正、反转以及与进刀系统保持严格的传动比关系,完成工件的自动加工,从而大大提高工作效率和工件的成品率。一般可选用普通U∕f控制变频器,为了提高控制精度选用矢量控制变频器效果更好。 V/F控制方式在低速下输出机械转矩有所下降(如需要可设置转矩补偿,升高输出电压),后者低速高速转矩都一样;在转速方面都是一样的,只是对V/F控制来说,当负载转矩波动时会出现转速的变化.

无速度传感器说明

无速度传感器说明: 在现代交流调速系统中,为了获得高性能的转速控制,采用了速度闭环控制,必须在电机轴上安装速度传感器。但在实际系统中,速度传感器的安装往往受到一些限制,主要存在以下几个问题[3,4]: 1) 速度传感器的安装降低了系统的鲁棒性和简单性; 2) 高精度的速度传感器价格一般比较贵,增加了系统成本; 3) 在一些恶劣的条件下(如高温、潮湿等),速度传感器的安装会降低系统 的可靠性; 4) 速度传感器的安装存在一些困难,如果安装不当会成为系统的一个故障 源。 为了避免这些问题,使得人们转而研究无需速度传感器的电机转速辨识方法。近年来,这项研究也成为交流传动的一个热点问题。国外在20世纪70年代开始了这方面的研究。而首次将无速度传感器应用于矢量控制是在1983年由R.Joetten 完成的,这使得交流传动技术的发展又上了一个新的台阶。在其后的十几年中,国内外的学者在这方面做了大量的工作,到目前为止,提出了许多种方法,大体上可以分为:①动态转速估计器;②模型参考自适应(MRAS );③基于PI 调节器法;④自适应转速观测器;⑤转子齿谐波法;⑥高频注入法;⑦基于人工神经元网络的方法。 以下分别讨论动态转速估计器,模型参考自适应(MRAS ),基于PI 调节器法,滑模变结构观测器,在第二章建立的异步电机矢量控制仿真实验平台上仿真。 动态转速估计器[3] 这种方法从电机的电磁关系式,转速的定义中得到关于转差的表达式。电机角速度等于同步角速度s ω与转差角速度sl ω之差。 s sl ωωω=- (3-1) 同步角速度可以由静止坐标系下的定子电压方程式推得,由图3-1矢量关系可知 2 2 s s s s s s s s s s d d arctg dt dt p p βαβααβ αβ ωθψ? ?==?? ψ?? ψψ-ψψ= ψ+ψ (3-2)

无位置传感器直流无刷电机原理

无位置传感器直流无刷电机原理 位置传感器的直流无刷电机的换向主要靠位置传感器检测转子的位置,确 定功率开关器件的导通顺序来实现的,由于安装位置传感器增大了电机的体积, 同时安装位置传感器的位置精度要求比较高,带来组装的难度。 研究过程中发现,利用电子线路替代位置传感器检测电机在运行过程中产 生的反电动势来确定电机转子的位置,实现换向。从而出现了无位置传感器的 直流无刷电机,其原理框图如图3.1所示。 武汉理工大学硕士学位论文 图2-1无位置传感器无刷直流电机原理图 无位置传感器无刷直流电机(BLDCM)具有无换向火花、无无线电干扰、寿 命长、运行可靠、维护简便等特点,而且不必为一般无刷直流电机所必须的位 置传感器带来的对电机体积、成本、制造工艺的较高要求和抗干扰性差问题而 担忧,因此应用前景广阔。 由图2-1无刷直流电动机的运行原理图可知,当电机在运行

过程中,总有 一相绕组没有导通,此时可以在该相绕组的端口检测到该绕组产生反电动势, 该反电动势60度的电角度是连续的,由于电机的规格,制造工艺的差别,导致 相同电角度的反电动势值是不同,如要通过检测反电动势的数值来确定转子的 位置难度极大。因此必须找到该反电动势与转子位置的关系,才能确定转子的 位置。 由于BLDCM的气隙磁场、反电势、以及电流波型是非正弦的,因此采用 直交轴坐标变化不是很有效的分析方法。通常直接利用电机本身的相变量来建 立数学模型。假设三相绕组完全对称,磁路不饱和,不计涡流和磁滞损耗,忽 略齿槽相应,则三相绕组的电压平衡方程则可以表示为:根据电压方程得电机的等效电路图,如图2.2所示:

2.3.2反电势法电机控制的原理 无刷直流电机中,受定子绕组产生的合成磁场的作用,转子沿着一定的方 向转动。电机定子上放有电枢绕组,因此,转子一旦旋转,就会在空间形成导 体切割磁力线的情况,根据电磁感应定律可知,导体切割磁力线会在导体中产 生感应电热。所以,在转子旋转的时候就会在定子绕组中产生感应电势,即运 动电势,一般称为反电动势或反电势哺1。· 对于稀土永磁无刷直流电机,其气隙磁场波形可以为方波,也可以是梯形 波或正弦波,与永磁体形状、电机磁路结构和磁钢充磁等有关,由此把无刷直 流电机分为方波电机和正弦波电机。对于径向充磁结构,稀土永磁体直接面对 均匀气隙,由于稀土永磁体的取向性好,所以可以方便的获得具有较好方波形 状的气隙磁场,对于方波气隙磁场的电机,当定子绕组采用集中整距绕组,即 每极每槽数q=l时,定子绕组中感应的电势为梯形波,如图加

相关主题