搜档网
当前位置:搜档网 › 第四章 免疫球蛋白剖析

第四章 免疫球蛋白剖析

第四章 免疫球蛋白剖析
第四章 免疫球蛋白剖析

第四章免疫球蛋白

第一节基本概念

1、抗体:B淋巴细胞在有效的抗原刺激下分化为浆细胞,产生具有与相应抗原发生特异性结合功能的免疫球蛋白,这类免疫球蛋白称为抗体。

1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。

20世纪40年代初期,Tiselius和Kabat用肺炎球菌多糖免疫家兔,证实了抗体活性与血清丙种球蛋白组分相关。肺炎球菌多糖免疫家兔后可获得高效价免疫血清。然后加入相应抗原吸收以除去抗体,将除去抗体的血清进行电泳图谱分析,发现丙种球蛋白(γ-G)组分明显减少,从而证明了抗体活性是存在于丙种球蛋白内。

2、免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白(immunoglobulin,Ig)。

区别:

抗体都是免疫球蛋白,而免疫球蛋白并不都是抗体。如骨髓瘤蛋白,巨球蛋白血症、冷球蛋白血症等患者血清中存在的异常免疫球蛋白结构与抗体相似,但无抗体活性。

免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。

前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后

者是B细胞表面的抗原识别受体。

第二节免疫球蛋白结构

一、免疫球蛋白的基本结构

(一)重链和轻链

免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。X 射线晶体结构分析发现,IgG分子由3个相同大小的节段组成。

1. 重链

分子量约为50~75kD,由450~550个氨基酸残基组成。免疫球蛋白重链恒定区由于氨基酸的组成和排列顺序不同,故其抗原性也不同。据此,可将免疫球蛋白分为五类,即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。不同的同种型具有不同的特征,包括链内二硫键的数目和位置、连接寡糖的数量、功能区的数目以及铰链区的长度等。同一类Ig根据其铰链区氨基酸组成和重链二硫键的数目和位置的差别,又可分为不同的亚类。如IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。IgM、IgD和IgE尚未发现有亚类。

2.轻链

免疫球蛋白轻链的分子量约25 kD,由214个氨基酸残基构成。轻链可分为两型,即κ(kappa)型和λ(lambda)型,一个天然Ig分子上两条轻链的型别总是相同的,两型轻链的功能无差异。不同种属中,两型轻链的比例不同,正常人血清免疫球蛋白κ:λ约为2:1,而在小鼠则为20:1。κ:λ比例的异常可能反映免疫系统的异常,例如人类免疫球蛋白λ链过多,提示可能有产生λ链的B细胞肿瘤。根据λ链恒定区个别氨基酸的差异,又可分为λ1、λ2、λ3和λ 4 四个亚型。

(二)可变区和恒定区

通过分析不同免疫球蛋白重链和轻链的氨基酸序列,发现重链和轻链靠近N端的约110个氨基酸的序列变化很大,称为可变区(variable

region,V区),而靠近C端的其余氨基酸序列相对稳定,称为恒定区(constant region, C区)。

1.可变区重链和轻链的V区分别称为V

H 和V

L

①高变区(hypervariable region,HVR):比较许多不同抗体V区

的氨基酸序列,发现VH和VL各有三个区域的氨基酸组成和排列顺序特别易变化,这些区域称为高变区,分别用HVR1、HVR2和HVR3表示,一般HVR3变化程度更高。

VL的三个高变区分别位于28~35、49~56和91~98位氨基酸;VH 的三个高变区分别位于29~31、49~58和95~102位氨基酸。

②骨架区(framework region,FR):高变区之外区域的氨基酸组成

和排列顺序相对不易变化,称为骨架区。

V H 或V

L

各有四个骨架区,分别用FR1、FR2、FR3和FR4表示。

稳定CDR结构,以利IgCDR与抗原决定簇精细特异地结合。

③互补性决定区(complementarity-determining region,CDR):

VH和VL的三个高变区共同组成Ig的抗原结合部位,该部位形成一个与抗原决定簇互补的表面,故高变区又被称为互补性决定区,分别用CDR1、CDR2和CDR3表示。不同的抗体其CDR序列不相同,并因此决定抗体的特异性。

2. 恒定区

重链和轻链的C区分别称为CH和CL。不同类Ig重链CH长度不一,有的

包括C

H 1、C

H

2和C

H

3;有的更长,包括CH1、CH2、CH3和CH4。同一种属

动物中,同一类别Ig分子其C区氨基酸的组成和排列顺序比较恒定。例如:针对不同抗原的人IgG抗体,它们的V区不相同,只能与相应的抗原发生特异性结合,但其C区的抗原性是相同的,应用抗人IgG抗体(第二抗体),均能与不同人的IgG结合。

(三)免疫球蛋白的功能区:

1.定义:Ig的H链、L链每隔110个氨基酸由链内二硫键连接构成一个能行使特定功能的球形结构,称为Ig的功能区。

这些功能区的功能虽不同,但其结构相似。每个功能区约由110个氨基酸

组成,其氨基酸的序列具有相似性或同源性。

轻链有VL和CL两个功能区;IgG、IgA和IgD重链有VH、CH1、CH2和CH3

四个功能区;IgM和IgE重链有五个功能区,比IgG多一个CH4。

2.功能区的作用为:

①VH和VL是结合抗原的部位,其中HVR(CDR)是V区中与抗原表位互补

结合的部位;

②CH和CL上具有部分同种异型(allotype)的遗传标志;

③IgG的CH2和IgM的CH3具有补体C1q结合位点,可启动补体活化经典

途径;

④IgG可通过胎盘;

⑤IgG的CH3可与单核细胞、巨噬细胞、中性粒细胞、B细胞和NK细胞表

面的IgG Fc受体(FcγR)结合,IgE的CH2和CH3可与肥大细胞和嗜碱

性粒细胞的IgE Fc受体(FcεR)结合。

3.铰链区铰链区位于CH1与CH2之间,含有丰富的脯氨酸,因此易伸展

弯曲,而且易被木瓜蛋白酶、胃蛋白酶等水解。铰链区连接抗体的Fab

段和Fc段,使两个Fab段易于移动和弯曲,从而可与不同距离的抗原部

位结合。五类Ig或亚类的铰链区不尽相同,例如IgG1、IgG2、IgG4和

IgA的铰链区较短,而IgG3和IgD的铰链区较长。IgM和IgE无铰链区。

1.利于抗体分子超变区与抗原决定簇吻合

2.Ag和Ab结合后,铰链区发生构型变化,使存在于CH2区补体结合位点暴露,使补体得以结合。

二、免疫球蛋白的其他结构

(一)J链 J链(joining chain)是一条多肽链,富含半胱氨酸,由浆

细胞合成。J链可连接Ig 单体形成二聚体、五聚体或多聚体。两个单体

IgA由J链连接形成二聚体,五个单体IgM由二硫键相互连接,并通过二

硫键与J链连接形成五聚体。IgG、IgD、IgE为单体,无J链。

(二)分泌片分泌片(secretory piece,SP)又称为分泌成分(secretory component, SC),是分泌型IgA分子上的一个辅助成分,为一种含糖的

肽链,由粘膜上皮细胞合成和分泌,以非共价形式结合到二聚体上,并一

起被分泌到粘膜表面。分泌片具有保护分泌型IgA的铰链区免受蛋白水解

酶降解的作用,并介导IgA二聚体从粘膜下通过粘膜等细胞到粘膜表面的

转运。

三、免疫球蛋白的水解片段

(一)木瓜蛋白酶水解片段

木瓜蛋白酶水解IgG的部位是在铰链区二硫键连接的2条重链的近N端,

裂解后可得到两个片段:① 2个相同的Fab段即抗原结合片段(fragment antigen binding, Fab),相当于抗体分子的两个。Fab段为单价,与抗

原结合后,不能形成凝集反应或沉淀反应;② 1个Fc段(fragment crystallizable,Fc),即可结晶片段。Fc段相当于IgG 的CH2和CH3

功能区,无抗原结合活性,是抗体分子与效应分子和细胞相互作用的部位。

Ig同种型的抗原性主要存在于Fc段。

(二)胃蛋白酶水解片段

胃蛋白酶在铰链区连接重链的二硫键近C端水解IgG,获得一个F(ab’)2

片段,由于抗体分子的两个臂仍由二硫键连接,因此F(ab’)2片段为双

价,与抗原结合可发生凝集反应和沉淀反应。Ig的Fc段被胃蛋白酶裂解

为若干小分子片段,被称为pFc’,失去生物学活性。胃蛋白酶水解IgG

后的F(ab’)2片段,保留了结合相应抗原的生物学活性,又避免了Fc

段抗原性可能引起的副作用,因而作为生物制品有较大的实际应用价值,例如白喉抗毒素、破伤风抗毒素经胃蛋白酶消化后精制提纯的制品,因去掉Fc段而减缓发生超敏反应。

第二节免疫球蛋白的生物学活性

一、能与相应抗原发生特异性结合,形成抗原抗体复合物

识别并特异性结合抗原是免疫球蛋白分子的主要功能,这种特异性是由免疫球蛋白V区,特别是HVR(CDR)的空间构型所决定。抗体在体内与相应抗原特异结合,发挥免疫效应,清除病原微生物或导致免疫病理损伤。

例如,抗毒素可中和外毒素,保护细胞免受毒素作用,IgG和IgA都具有这种中和作用;病毒的中和抗体可阻止病毒吸附和穿入细胞从而阻止感染相应的靶细胞;分泌型IgA可抑制细菌粘附到宿主细胞。抗体在体外与抗原结合引起各种抗原抗体反应。B细胞膜表面的IgM和IgD是B细胞识别抗原受体,能特异性识别抗原分子。

二、可以激活补体

IgM、IgG(IgG1、IgG2和IgG3)与抗原结合后,可通过经典途径激活补体系统,产生多种效应功能,其中IgM、IgG1和IgG3激活补体系统的能力较强,IgG2较弱。IgD、IgE和IgG4不能激活补体;聚合的IgA可通过旁路途径激活补体系统。

三、可与许多细胞表面Fc受体发生结合

(一)调理促吞噬作用:如IgG促进吞噬细胞发挥吞噬功能;

抗体的调理作用是指IgG抗体(特别是IgG1和IgG3)的Fc段与中性粒细胞、巨噬细胞上的IgG Fc受体结合,从而增强吞噬细胞的吞噬作用。IgA也具有调理作用。

(二)介导过敏反应:如IgE与肥大细胞结合介导Ⅰ型过敏反应

IgE的Fc段可与肥大细胞和嗜碱性粒细胞表面的高亲和力IgE Fc受体(FcεRI)

结合,促使这些细胞合成和释放生物活性物质,引起Ⅰ型超敏反应。

(三)ADCC效应:IgGFc段与NK细胞、单核吞噬细胞上Fc段受体结合,使其发挥

ADCC效应。

抗体依赖的细胞介导的细胞毒作用(antibody-dependent cell-mediated

cytotoxicity,ADCC)是指表达Fc受体的细胞通过识别抗体的Fc段直接杀伤被抗体

包被的靶细胞。例如IgG抗体与带有相应抗原的靶细胞结合后,表达FcγR的NK

细胞、巨噬细胞和中性粒细胞,可通过与IgG Fc段的结合,而直接杀伤被IgG抗体

包被的靶细胞。NK细胞是介导ADCC的主要细胞。抗体与靶细胞上的抗原结合是特

异性的,而表达FcR的细胞其杀伤作用是非特异性的。IgG、IgA、IgE

四、穿过胎盘:IgG是唯一可穿过胎盘的抗体

五、免疫调节作用:负反馈性调节等

第三节免疫球蛋白的抗原性

一、同种型:

(一)定义:指同一种属所有正常个体Ig分子共同具有的抗原特异性标志。其决定

簇在Ig分子恒定区,具种属特异性。

(二)举例:IgM、IgG、IgA、IgD、IgE

二、同种异型:

(一)定义:指同一种属不同个体所产生的同一类型Ig,由于重链或轻链恒定区内

一个或数个氨基酸不同而表现的抗原性差异。其决定簇在Ig分子恒定区。

(二)举例:人类ABO血型抗原。

三、独特型:指不同B细胞克隆所产生的免疫球蛋白分子V区所具

有的抗原特异性标志。其决定簇在Ig分子可变区。

第四节各类免疫球蛋白的特性及功能

一、IgG

(一)特性

1、存在形式:单体,血清中含量最高的Ig,占血清Ig总量的3/4;分子量最小。再次免疫应答后形成的抗体的主要成分。

2、合成时期:婴儿出生后三个月开始合成。

3、半衰期:23天,是所有抗体中半衰期最长的。Ig38天

(二)生物活性

1、是主要的抗感染抗体:如抗细菌、抗病毒、中和毒素等。

2、是补体经典激活途径参与者。

3、是唯一可以穿过胎盘的抗体,是新生儿抗感染重要因素。

4、具有调理吞噬作用和介导ADCC效应的功能。

二、IgM

(一)特性

1、存在形式:五聚体,占血清Ig总量的10%,是分子量最大抗体(不能穿过血管壁和胎盘)。膜结合型为单体。

2、合成时期:合成最早(胎儿晚期已能合成);机体感染后最早出现的Ig。故检测I g M水平可用于传染病的早期诊断。

3、半衰期:5天,所以若血清中特异性IgM类抗体含量增加,表明有近期感染。

(三)生物活性

1、是高效能的抗菌抗体,是B细胞SmIg成分之一。

2、激活补体传统途径,只需一个IgM分子。

3、中和毒素或病毒,但不能介导ADCC效应。

4、ABO血型天然抗体。

●(3)具有强大的调理、激活补体及杀菌作用

●(4)血型抗体主要为IgM

●(5)参与自身免疫、超敏反应

●单体IgM:SmIgM为B细胞最早出现的重要表面标志

三、IgA

(一)特性:

1、存在形式:单聚体(血清型)和双聚体(分泌型);其中分泌型

主要分布于呼吸道、消化道及初乳、唾液、泪液等分泌液中。

2、合成时期:婴儿在出生4~6个月才能合成IgA。

(二)生物活性

1、是机体局部粘膜防御感染的重要因素(分泌型IgA)。

2、具有中和毒素作用(血清型IgA)。

3、辅助婴儿抵抗呼吸道、消化道感染(初乳中含分泌型IgA)。

四、IgD

(一)特性

1、存在形式:单聚体,仅占血清Ig总量的1%。

2、合成时期:较晚。

半衰期:3天

(二)生物活性

1、成熟B细胞的重要表面标志。

2、血清中IgD的功能尚不清楚。

五、IgE

(一)特性

1、存在形式:单聚体,仅占血清Ig总量的0.002%。

2、合成时期:最晚合成的抗体。

(三)生物活性

1、引发Ⅰ型过敏反应。

2、抗寄生虫的主要抗体。

又称亲细胞抗体,CH2和CH3功能区可与肥大细胞、嗜碱性粒细胞上的高亲和力Fcε受体结合,引起I型超敏反应

第五节免疫球蛋白的基因及抗体的多样性

一、Ig的基因结构

1.Ig轻链基因结构与重排

(1)Ig κ型轻链基因:V、J、CκV基因:CDR1、CDR2。人V约100(40)个;小鼠:350(250)

V-J:CDR3。人J:5;小鼠:5

C基因:C区;人C:1

κ链基因是V基因片断(Vκ)、J基因片断(Jκ)和C基因片断(Cκ)重排后组成。

(2)Igλ型轻链基因:V、J、C λ

V基因:CDR1、CDR2;人:100(30个);小鼠:3

V-J:CDR3;人:6个;小鼠:4

C基因:C区;人:6个;小鼠:4

2.Ig重链VDJ基因结构、重排及C基因类别转换

(1)V区:V、D、J基因编码

V基因:CDR1、CDR2

D基因及V-D:大部分CDR3

D-J基因:CDR3其余部分及骨架区

(2)C区:C基因编码

存在类别转换

由于Ig基因成簇存在,编码完整的功能性Ig多肽链必须通过基因重排。

三、抗体多样性产生的机制

1.组合多样性:Ig基因库中众多V、D、J、C基因家族成员极端多样性的排列组合;

2.连接多样性:基因重排过程中可出现不同的连接点,以及同一连接点上发生核苷酸的缺失、插入、和倒转,可形成连接多样性;

3.体细胞高频突变:体细胞高频突变是已成熟的B细胞受抗原刺激后,在发育过程中重排基因所发生的突变,这种突变可促进抗体的亲和力成熟。

4. L链H链相互随机配对。小鼠Ig多样性(举例)

重点掌握

抗体和免疫球蛋白的概念、

免疫球蛋白的基本结构、功能区及其功能、

抗体的生物学活性、

理解:抗体多样性的机制

了解:五类免疫球蛋白的特点与功能。

第四章 免疫球蛋白剖析

第四章免疫球蛋白 第一节基本概念 1、抗体:B淋巴细胞在有效的抗原刺激下分化为浆细胞,产生具有与相应抗原发生特异性结合功能的免疫球蛋白,这类免疫球蛋白称为抗体。 1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。 20世纪40年代初期,Tiselius和Kabat用肺炎球菌多糖免疫家兔,证实了抗体活性与血清丙种球蛋白组分相关。肺炎球菌多糖免疫家兔后可获得高效价免疫血清。然后加入相应抗原吸收以除去抗体,将除去抗体的血清进行电泳图谱分析,发现丙种球蛋白(γ-G)组分明显减少,从而证明了抗体活性是存在于丙种球蛋白内。 2、免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白(immunoglobulin,Ig)。 区别: 抗体都是免疫球蛋白,而免疫球蛋白并不都是抗体。如骨髓瘤蛋白,巨球蛋白血症、冷球蛋白血症等患者血清中存在的异常免疫球蛋白结构与抗体相似,但无抗体活性。 免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。 前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后 者是B细胞表面的抗原识别受体。 第二节免疫球蛋白结构

一、免疫球蛋白的基本结构 (一)重链和轻链 免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。X 射线晶体结构分析发现,IgG分子由3个相同大小的节段组成。 1. 重链 分子量约为50~75kD,由450~550个氨基酸残基组成。免疫球蛋白重链恒定区由于氨基酸的组成和排列顺序不同,故其抗原性也不同。据此,可将免疫球蛋白分为五类,即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。不同的同种型具有不同的特征,包括链内二硫键的数目和位置、连接寡糖的数量、功能区的数目以及铰链区的长度等。同一类Ig根据其铰链区氨基酸组成和重链二硫键的数目和位置的差别,又可分为不同的亚类。如IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。IgM、IgD和IgE尚未发现有亚类。 2.轻链 免疫球蛋白轻链的分子量约25 kD,由214个氨基酸残基构成。轻链可分为两型,即κ(kappa)型和λ(lambda)型,一个天然Ig分子上两条轻链的型别总是相同的,两型轻链的功能无差异。不同种属中,两型轻链的比例不同,正常人血清免疫球蛋白κ:λ约为2:1,而在小鼠则为20:1。κ:λ比例的异常可能反映免疫系统的异常,例如人类免疫球蛋白λ链过多,提示可能有产生λ链的B细胞肿瘤。根据λ链恒定区个别氨基酸的差异,又可分为λ1、λ2、λ3和λ 4 四个亚型。 (二)可变区和恒定区 通过分析不同免疫球蛋白重链和轻链的氨基酸序列,发现重链和轻链靠近N端的约110个氨基酸的序列变化很大,称为可变区(variable

第四章免疫球蛋白

第四章免疫球蛋白 抗体(antibody,Ab)是介导体液免疫的重要效应分子,是B细胞接受抗原刺激后增殖分化为浆细胞所产生的糖蛋白,主要存在于血清等体液中,通过与相应抗原特异性地结合,发挥体液免疫功能。早在十九世纪后期,von Behring和Kitasato就发现白喉或破伤风毒素免疫动物后可产生具有中和毒素作用的物质,称之为抗毒素(antitoxin),随后引入抗体一词来泛指抗毒素类物质。1937年Tiselius和Kabat用电泳方法将血清蛋白分为白蛋白以及α1、α2、β和γ球蛋白等组分,并发现抗体活性主要存在于γ区,故相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)(图4-1)。1968年和1972年世界卫生组织和国际免疫学会联合会的专门委员会先后决定,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin,Ig)。免疫球蛋白可分为分泌型(secreted Ig,sIg)和膜型(membrane Ig, mIg)。前者主要存在于血液及组织液中,具有抗体的各种功能;后者构成B细胞膜上的抗原受体。 第一节免疫球蛋白的结构 一、免疫球蛋白的基本结构 X射线晶体衍射结构分析发现,免疫球蛋白由四肽链分子组成,各肽链间有数量不等的链间二硫键。在结构上Ig可分为三个大小大致相同的片段,其中两

个大小完全一致的片段位于分子的上方,通过一易弯曲的区域与主干连接,形成一“Y”字型结构(图4-2),组成Ig单体,是免疫球蛋白分子的基本单位。 (一)重链和轻链 任何一类天然免疫球蛋白分子均含有四条多肽链,其中,分子量较大的称为重链(heavy chain,H),而分子量较小的为轻链(light chain,L)。同一天然Ig分子中的两条H链和两条L链的氨基酸组成完全相同。 1.重链分子量约为50~75kD,由450~550个氨基酸残基组成。各类免疫球蛋白重链恒定区的氨基酸组成和排列顺序不尽相同,因而其抗原性也不同。据此,可将免疫球蛋白重链分为五类(class)或五个同种型(isotype),即μ链、δ链、 链、α链和ε链,其相应的Ig分别为IgM、IgD、IgG、IgA和IgE。不同类的重链具有不同的特征,如链内二硫键的数目和位置、连接寡糖的数量、结构域的数目以及铰链区的长度等均不完全相同。即使是同一类Ig重链其铰链区氨基酸组成和二硫键的数目、位置也不同,据此又可将同一类Ig分为不同的亚类(subclass)。如人IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。IgM、IgD

第四章免疫球蛋白

第四章 免疫球蛋白 抗体(antibody,Ab)是介导体液免疫的重要效应分子,是B细胞接受抗原刺激后增殖分化为浆细胞所产生的糖蛋白,主要存在于血清等体液中,能与相应抗原特异性地结合,显示免疫功能。早在十九世纪 后期,von Behring及其同事Kitasato就发现白喉或破伤风毒素免疫动物后可产生具有中和毒素作用的物质,称之为抗毒素(antitoxin),随后引入抗体一词来泛指抗毒素类物质。1937年Tiselius和Kabat用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,并发现抗体活性存在于从α到γ的这一广泛区域(图4-1),但主要存在于γ区,故相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。1968年和1972年世界卫生组织和国际免疫学会联合会的专门委员会先后决定,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin,Ig)。免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。前者主要存在于血液及组织液中,具有抗体的各种功能;后者构成B细胞膜上的抗原受体。 第一节 免疫球蛋白的结构 一、免疫球蛋白的基本结构

X射线晶体衍射结构分析发现,免疫球蛋白由四肽链分子组成,各肽链间有数量不等的链间二硫键。结构上Ig可分为三个长度大致相同的片段,其中两个长度完全一致的片段位于分子的上方,通过一易弯曲的区域与主干连接,形成一”Y”字型结构(图4-2),称为Ig单体,构成免疫球蛋白分子的基本单位。 图4?2 (一)重链和轻链 任何一类天然免疫球蛋白分子均含有四条异源性多肽链,其中,分子量较大的称为重链(heavy chain, H),而分子量较小的为轻链(light chain, L)。同一天然Ig 分子中的两条H链和两条L链的氨基酸组成完全相同。 1. 重链 分子量约为50~75kD,由450~550个氨基酸残基组成。各类免疫球蛋白重链恒定区的氨基酸组成和排列顺序不尽相同,因而其抗原性也不同。据此,可将免疫球蛋白分为5类(class)或5个同种型(isotype),即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。不同类的免疫球蛋白具有不同的特征,如链内和链间二硫键的数目和位置、连接寡糖的数量、结构域的数目以及铰链区的长度等均不完全相同。即使是同一类Ig其铰链区氨基酸组成和重链二硫键的数目、位置也不同,据此又可将同类Ig分为不同的亚类(subclass)。如人IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。

d第四章抗体

第四章抗体 ?免疫术语 Ab(抗体,antibody):是免疫系统在抗原刺激下,由B淋巴细胞或记忆B细胞增殖分化成的浆细胞所产生的、可与相应抗原发生特异性结合的免疫球蛋白,主要分布在血清中,也分布于组织液、外分泌液及某些细胞膜表面,是介导体液免疫的重要效应分子。 Ig(免疫球蛋白,immunoglobulin):是指具有抗体活性或化学结构与抗体相似的球蛋白。HVR(高变区,hypervariable region):VH和VL各有3个区域的氨基酸组成和排列顺序高度可变,分别用HVR1 (CDR1)、HVR2 (CDR2)、HVR3 (CDR3)表示,共同组成抗体的抗原结合部位,决定着抗体的特异性,负责识别及结合抗原,从而发挥免疫效应。 又称CDR(互补决定区,complementarity determining region)。 调理作用(opsonization):细菌特异性的IgG(特别是IgG1和IgG3)以其Fab段与相应细菌的抗原表位结合,以其Fc段与巨噬细胞或中性粒细胞表面的IgG Fc受体(FcγR)结合,通过IgG的“桥联”作用,促进吞噬细胞对细菌的吞噬。 ADCC(抗体依赖的细胞介导的细胞毒作用,antibody-dependent cell-mediated cytotoxicity):抗体的Fab段结合病毒感染的细胞或肿瘤细胞表面的抗原表位,其Fc段与杀伤细胞(NK细胞表面、巨噬细胞等)表面的FcR结合,介导杀伤细胞直接杀伤靶细胞。 mAb(单克隆抗体,monoclonal antibody):由单一杂交瘤细胞产生,针对单一抗原表位的特异性抗体。 ?抗体的基本结构 抗体的基本结构是由两条完全相同的重链和两条完全相同的轻链通过二硫键连接的呈“Y”形的单体,每条肽链含2~5个结构域(功能区,约110个氨基酸),二级结构为“桶状”结构。(一)重链和轻链 ?重链(heavy chain,H):分子量约为50~75kD,由450-550个氨基酸残基组成。 按抗原性差异可分5类:α、γ、μ、δ、ε 相应抗体也分为5类:IgA、IgG、IgM、IgD、IgE 同一类抗体,据其铰链区的氨基酸组成及重链二硫键数目、位 置不同可分为不同的亚类。 IgA分IgA1和IgA2 IgG分IgG1~IgG4 ?轻链(light chain,L):分子量约为25kD,约由214个氨基酸残基组成。 分κ链和λ链两种,相应抗体分为κ、λ两型。λ型有λ1、λ2、λ3、 λ4四个亚型。 (二)可变区和恒定区 ?可变区:抗体分子中轻链和重链靠近N端氨基酸序列变化较大的区域。 (V区)分别占轻链的1/2和重链的1/4或1/5,分别称为VL和VH。 (variable region)高变区(HVR)或互补决定区(CDR)──

4第4章免疫球蛋白

第四章 免疫球蛋白 第一部分:学习习题 一、 填空题 1.免疫球蛋白分子是有两条相同的____和两条相同的____通过链____连接而成的四肽链结构。 2.根据免疫球蛋白重链抗原性不同,可将其分为IgA 、IgM 、 IgG 、IgE 、IgD 等五类,其相应的重链分别为___、___、___、___、___。 3.免疫球蛋白轻链可分为___型和___型。 4.用木瓜蛋白酶水解IgG 可得到两个相同的____片段和一个____片段,前者的抗原结合价为1;用胃蛋白酶水解IgG 则可获得一个抗原结合价为2的_____片段和无生物学活性的____片段。 二、 多选题 [A 型题] 1.抗体与抗原结合的部位: A.V H B. V L C. C H D.C L E. V H 和 V L 2.免疫球蛋白的高变区(HVR)位于 A.V H 和 C H B. V L 和V H C.Fc 段 D.V H 和C L E. C L 和C H 3.能与肥大细胞表面FcR 结合,并介导I 型超敏反应的Ig 是: A.IgA B. IgM C. IgG D.IgD E. IgE 4.血清中含量最高的Ig 是: A.IgA B. IgM C. IgG

D.IgD E. IgE 5.血清中含量最低的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 6.与抗原结合后激活补体能力最强的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 7.脐血中哪类Ig增高提示胎儿有宫内感染? A.IgA B. IgM C. IgG D.IgD E. IgE 8.在免疫应答过程中最早合成的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 9.下面哪一类Ig参与粘膜局部抗感染: A.IgA B. IgM C. IgG D.IgD E. IgE 10.分子量最大的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 11.ABO血型的天然抗体是: A.IgA类抗体 B. IgM类抗体 C. IgG类抗体 D.IgD类抗体 E. IgE类抗体 12.在种系发育过程中最早出现的Ig是: A.IgA类抗体 B. IgM类抗体 C. IgG类抗体

第四章 免疫球蛋白

第四章免疫球蛋白 一、填空题 1.免疫球蛋白分子是有两条相同的重链和两条相同的轻链通过间二硫键连接而成的四肽链结构。 2.根据免疫球蛋白重链抗原性不同,可将其分为IgA、IgM、IgG 、IgE 、IgD等五类,其相应的重链分别为α链、μ链、γ链、ε链、δ链。 3.免疫球蛋白轻链可分为κ型和λ型。 4.用木瓜蛋白酶水解IgG可得到两个相同的Fab片段和一个Fc片段,前者的抗原结合价为1;用胃蛋白酶水解IgG 则可获得一个抗原结合价为2的F(ab’)2片段和无生物学活性的PFc’片段。 二、多选题 [A型题] 1.抗体与抗原结合的部位: A.VH B.VL C.CH D.CL E.VH 和VL 2.免疫球蛋白的高变区(HVR)位于 A.VH和CH B.VL 和VH C.Fc段 D.VH 和CL E.CL和CH 3.能与肥大细胞表面FcR结合,并介导I型超敏反应的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 4.血清中含量最高的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 5.血清中含量最低的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 6.与抗原结合后激活补体能力最强的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 7.脐血中哪类Ig增高提示胎儿有宫内感染? A.IgA B.IgM

C.IgG D.IgD E.IgE 8.在免疫应答过程中最早合成的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 9.下面哪一类Ig参与粘膜局部抗感染: A.IgA B.IgM C.IgG D.IgD E.IgE 10.分子量最大的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 11.ABO血型的天然抗体是: A.IgA类抗体 B.IgM类抗体 C.IgG类抗体 D.IgD类抗体 E.IgE类抗体 12.在种系发育过程中最早出现的Ig是: A.IgA类抗体 B.IgM类抗体 C.IgG类抗体 D.IgD类抗体 E.IgE类抗体 13.新生儿从母乳中获得的Ig是: A.IgA类抗体 B.IgM类抗体 C.IgG类抗体 D.IgD类抗体 E.IgE类抗体 14.能引起I型超敏反应的Ig是: A.IgA类抗体 B.IgM类抗体 C.IgG类抗体 D.IgD类抗体 E.IgE类抗体 15.3—6个月婴儿易患呼吸道感染是因为粘膜表面哪一类Ig不足 A.IgA B.IgM C.IgG

免疫题目1-第4章免疫球蛋白

第四章免疫球蛋白 第一部分:学习习题 一、填空题 1.免疫球蛋白分子是有两条相同的____和两条相同的____通过链____连接而成的四肽链结构。 2.根据免疫球蛋白重链抗原性不同,可将其分为IgA、IgM、IgG 、IgE 、IgD等五类,其相应的重链分别为___、___、___、___、___。 3.免疫球蛋白轻链可分为___型和___型。 4.用木瓜蛋白酶水解IgG可得到两个相同的____片段和一个____片段,前者的抗原结合价为1;用胃蛋白酶水解IgG则可获得一个抗原结合价为2的_____片段和无生物学活性的____片段。 二、多选题 [A型题] 1.抗体与抗原结合的部位: ** B. VL C. CH ** E. VH 和VL 2.免疫球蛋白的高变区(HVR)位于 A.VH 和CH B. VL 和VH C.Fc段 ** 和CL E. CL和CH 3.能与肥大细胞表面FcR结合,并介导I型超敏反应的Ig是: ** B. IgM C. IgG D.IgD E. IgE 4.血清中含量最高的Ig是: ** B. IgM C. IgG ** E. IgE 5.血清中含量最低的Ig是: ** B. IgM C. IgG ** E. IgE 6.与抗原结合后激活补体能力最强的Ig是: A.IgA B. IgM C. IgG ** E. IgE 7.脐血中哪类Ig增高提示胎儿有宫内感染? ** B. IgM C. IgG ** E. IgE 8.在免疫应答过程中最早合成的Ig是: A.IgA B. IgM C. IgG ** E. IgE 9.下面哪一类Ig参与粘膜局部抗感染: ** B. IgM C. IgG D.IgD E. IgE 10.分子量最大的Ig是: ** B. IgM C. IgG ** E. IgE

04第四章 免疫球蛋白

第四章 免疫球蛋白 目的要求: 1.掌握抗体、免疫球蛋白和单克隆抗体概念 2.掌握免疫球蛋白的基本结构和抗体特异性的结构基础 3.掌握免疫球蛋白的功能 4.熟悉免疫球蛋白水解片段的结构及功能 5.熟悉五种免疫球蛋白的特性 6.了解免疫球蛋白的的辅助成分和异质性 教学时数:2学时 概 述 抗体(antibody, Ab):B细胞在抗原刺激下分化为浆细胞,产生能与相应抗原发生特异性结合的免疫球蛋白,称为抗体。 抗体活性存在血清蛋白α-γ区,主要存在γ区。 免疫球蛋白(immunoglobulin, I g):将具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白。 Ig根据存在的部位可分为两种:分泌型(sIg),具有抗体各种功能;膜型(mIg),构成B细胞膜上的抗原受体(BCR)。 第一节 免疫球蛋白的结构 一、免疫球蛋白的基本结构(图示) Ig分子的基本单体结构是由4条肽链构成的对称结构,包括两条相同的重链(H链)和两条相同的轻链(L链),彼此以二硫键连接而成。 1、重链和轻链: ⑴重链:450-550aa,据恒定区aa不同分:IgG、IgM、IgA、IgD、IgE 五类或同种型(isotype),对应的重链为:r μ α δ ε。 ⑵轻链:214aa,恒定区aa不同分:κ、λ两型 ⑶天然Ig单体结构中,两条重链同类,两条轻链同型。 2、可变区与恒定区 ⑴可变区(variable region,V区):位于Ig分子的N端、轻链1/2和重链1/4或1/5处;其氨基酸序列随Ig针对的抗原特异性变化而变化,是抗体与抗原特异性结合的部位。V区可进一步分为超变区(或者互补决定区)和骨架区。 * 超变区(hypervariable region, HVR):在VL和VH中,某些特定位置的氨基酸残基的排列顺序高度可变,此为HVR。轻、重链各有3个

相关主题