搜档网
当前位置:搜档网 › 图像增强算法综述

图像增强算法综述

图像增强算法综述
图像增强算法综述

图像增强算法研究综述

刘璐璐

宁波工程学院电子与信息工程学院计算机科学与技术071班,邮编:(315100)

E-mail:375212239@https://www.sodocs.net/doc/057401398.html,

摘要:本文简要介绍图像增强的概念和图像增强算法的分类,从图像的直方图均衡化处理方法,直方图规定化处理方法和图像平滑处理方法三方面对图像增强算法进行讨论和研究,并说明了图像增强技术的应用和前景展望。

关键词:图像增强直方图均衡化直方图规定化平滑处理

近年来,随着电子计算机技术的进步,计算机图像处理得到了飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量增强对某种信息的辨识能力,以更好的应用于现代各种科技领域,图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。在图像处理过程中,图像增强是十分重要的一个环节。

1.图像增强概念及现实应用

1.1 图像增强技术

图像增强是数字图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息。这类处理是为了某种应用目的去改善图像质量,处理的结果更适合于人的视觉特性或机器识别系统,图像增强处理并不能增加原始图像的信息,而只能增强对某种信息的辨识能力,使处理后的图像对某些特定的应用比原来的图像更加有效。

1.2图像增强技术的现实应用

目前,图像增强处理技术的应用己经渗透到医学诊断、航空航天、军事侦察、纹识别、无损探伤、卫星图片的处理等领域,在国民经济中发挥越来越大的作用。其中最典型的应用主要体现以下方面。

1

1.2.1通讯领域

包括图像传输、电视电话、电视会议等,主要是进行图像压缩甚至理解基础上的压缩是把文字、图表、照片等图像通过光电扫描的方式变成电信号加以传送。

1.2.2遥感

航空遥感和卫星遥感图像需要用数字技术加工处理,并提取有用的信息。主要用于地形地质,矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测预报,环境污染监测,气象卫星云图处理以及地面军事目标的识别。

1.2.3生物医学领域

图像处理在医学界的应用非常广泛,无论是在临床诊断还是病理研究都大量采用图像处理技术。它的直观、无创伤、安全方便的忧点受到普遍的欢迎与接受。其主要应用如X射线照片的分析,血球计数与染色体分类等。目前广泛应用于临床诊断和治疗的各种成像技术,如超声波诊断等都用到图像处理技术。有人认为计算机图像处理在医学上应用最成功的例子就是X射线CT(X-ray Computed Tomography)。

1.2.4军事、公安等方面的应用

军事目标的侦察、制导和警戒系统、自动灭火器的控制及反伪装;公安部门的现场照片、指纹、手迹、印章、人像等的处理和辨识;历史文字和图片档案的修复和管理等。

1.2.5工业生产中的应用

在生产线中对产品及部件进行无损检测是图像处理技术的重要应用领域。该领域的应用从70年代起取得了迅速的发展,主要有产品质量检测、生产过程的自动控制、CAD/CAM 等。在产品质量检测方面,如食品、水果质量检查,无损探伤,焊缝质量或表面缺陷。又如,金属材料的成分和结构分析,纺织品质量检查,光测弹性力学中应力条纹的分析等。在电子工业中,可以用来检验印刷电路板的质量、监测零件部件的装配等。在工业自动控制中,主要使用机器视觉系统对生产过程进行监视和控制,如港口的监测调度、交通管理、流水生产线的自动控制等。

总之,图像处理技术应用领域相当广泛,已在国家安全、经济发展、日常生活中充当越来越重要的角色,对国计民生的作用不可低估。

2

2.图像增强算法

图像增强方法从增强的作用域出发,可分为空间域增强和频率域增强两种。本文重点介绍空间域的图像加强算法,空间域方法直接对图像像素的灰度进行处理。频率域方法在图像的某个频率域中对变换系数进行处理, 然后通过逆变换获得增强图像。在空间域内对图像进行点运算, 它是一种既简单又重要的图像处理技术, 它能让用户改变图像上像素点的灰度值, 这样通过点运算处理将产生一幅新图像

2.1灰度变换

灰度变换可调整图像的灰度动态范围或图像对比度,是图像增强的重要手段之一。它是将原图中的灰度f(x,y)经过一个变换函数g=T[f]转化成一个新的灰度g(x,y)即

g(x,y)=T[f(x,y)] (2-1)灰度变换可使灰度动态范围加大,根据变换函数的形式,灰度变换分为线性变换,分段性变换和非线性变换。

2.1.1线性变换

在曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内。这时在显示器上看到的将是一个模糊不清、似乎没有灰度层次的图像。采用线性变换对图像每一个像素灰度作线性拉伸,可有效地改善图像视觉效果。

令图像f(i,j)的灰度范围为[a,b],线性变换后图像g(i,j)的范围为[a′,b′],如图1-1所示,g(i,j)与f(i,j)之间的关系式为:

3

4

这种线性变换使灰度小于a 和灰度大于b 的像素灰度强度强行变换成a 和b ,增强了图像

中绝大多数像素的灰度层次感。

2.1.2分段线性变换

为了突出感兴趣目标所在的灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段

线性变换。设原图像f(x,y )在[0,Mf ],感兴趣目标的灰度范围在[a,b ],欲使其灰度范围拉伸

到[c,d ],则对应的分段线性变换表达式为:

线性变换,通过变换参数的选择实现不同灰度区间的灰度扩张或压缩,

因此分段线性变换的(b )变换结果 (a )原始图像

5

使用也是非常的灵活。增加灰度区间的分割的段数,以及仔细调各个区间的分割点和变换直

线的斜率,可对任一灰度区间进行扩展和压缩。

2.1.3

非线性灰度变换 当用某些非线性函数如对数函数、指数函数等,作为映射函数时,可实现图像灰度的非

线性变换。

⑴对数变换

对数变换的一般表达式为

这里a,b,c 是为了调整曲线的位置和形状而引入的参数。当希望对图像的低灰度区较大

的拉伸而对高灰度区压缩时,可采用这种变换,它能使图像灰度分布与人的视觉特性相匹配。

(2)指数变换

指数变换的一般表达式为

这里参数a,b,c 用来调整曲线的位置和形状。这种变换能对图像的高灰度区给予较大的

拉伸。 2.2

直方图

灰度直方图反映了数字图像中每一灰度级与其出现频率间的关系,它能描述该图像的概

[]1),(),(-=-a j i f c b j i g

6

貌。通过修改直方图的方法增强图像是一种实用而有效的处理技术。直方图修正法包括直方

图均衡化及直方图规定化两类。

2.2.1直方图原理

对一幅数字图像,若对应于每-灰度值,统计出具有该灰度值的象素数,并据此绘出象

素数-灰度值图形,则该图形称该图像的灰度直方图,简称直方图。直方图是以灰度值作横

坐标,象素数作纵坐标。有时直方图亦采用某一灰度值的象素数占全图总象素数的百分比(即

某一灰度值出现的频数)作为纵坐标。

设变量r 代表图像中像素灰度级,在图像中,像素的灰度级可作归一化处理,这样r 的值

将限定在下述范围之内(0≤r≤1)在灰度级中,r=0代表黑,r=1代表白。对于一幅给定的图

像来说,每一个像素取得[0,1]区间内的灰度级是随机的,也就是说,是一个随机变量。

在离散的形式下,用rk 代表离散灰度级,用P(rk)代表概率密度函数,并且有下式成立:

式中Nk 为图像中出现rk 这种灰度的像素数,n 是图像中像素总数,Nk/n 就是概率论中

的频数,n 是灰度级的总数目。在直角坐标系中作出rk 与Pr(r)的关系图形,就得到直方图。

2.2.2直方图性质

(1)直方图是一幅图像中各像素灰度出现频次的统计结果,它只反映图像中不同灰度

值出现的次数,而不反映某一灰度所在的位置。也就是说,它只包含了该图像的某一灰度像

素出现的概率,而忽略了其所在的位置信息。

(2)任意一幅图像,都有唯一确定的一幅的直方图与之对应。但不同的图像可能有相

同的直方图,即图像与直方图之间是多对一的映射关系。

(3)由于直方图是对具有相同灰度值的像素统计得到的,因此,一幅图像各子区的直

方图之和等于该图像全图的直方图。

在实际应用中,有时并不需要考虑图像的整体均匀分布直方图,而只是希望有针对性

的增强某个灰度级分布范围内的图像,因此可人为地改变直方图,使之成为某个特定的形状,

即实施图像的直方图均衡化,以满足特定的增强效果

1210 )(-=≤≤=l ,,,k 1r 0n n r P k k k r

7

2.3直方图均衡化

直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方

法。直方图均衡化算法是图像增强空域法中的最常用、最重要的算法之一。它以概率理论作

基础, 运用灰度点运算来实现直方图的变换, 从而达到图像增强的目的。这些方法是不以图

像保真为原则的, 它们是通过增强处理设法有选择地突出某些对人或机器分析感兴趣地信

息, 抑制一些无用信息, 以提高图像地使有价值。在实际应用中, 应针对不同的图像应采用

不同的图像增强方法,或同时采用几种适当的增强算法进行实验, 从中选出视觉效果较好

的、计算不复杂的、又合乎应用要求的一种算法。

2.3.1直方图均衡化原理

为了改善图像质量,可以对灰度分布进行变换改变,其中一种方法称为直方图均衡化处

理。直方图均衡化处理是以累积分布函数变换法为基础的直方图修正法。假定变换函数为

式中ω是积分变量,而T(r)就是r 的累积分布函数。这里,累积分布函数是r

的函数,

?==r r d P r T s 0)()(ω

ω

8

并且单调地从0增加到1,所以这个变换函数满足T(r)在0≤r≤1内单值单调增加。可以证明,

用r 的累积分布函数作为变换函数可产生一幅灰度级分布具有均匀概率密度的图像。其结果

扩展了像素取值的动态范围。通常把为得到均匀直方图的图像增强技术叫做直方图均衡化处

理或直方图线性化处理。用离散形式表示累积分布函数为:

2.3.2直方图均衡化步骤

(1) 列出原始图像灰度级fj, j=0,1,…,k,…,L -1;

(2) 统计各灰度级的象素数目,nj, j=0,1,,…,k,…,L -1;

(3) 计算原始图像直方图Pf(fj)=nj/n ,n 为原始图像总的象素数目;

(4) 计算累积分布函数c(f);

(5) 应用转移函数,计算映射后的灰度级,gi=INT[(gmax-gmin)c(f)+gmin+0.5]

(6) 统计映射后各灰度级的象素数目ni, i=0,1,…,p -1;

(7) 计算输出图像直方图Pg(gi)= nj/n ,i=0,1,…,p -1;

(8) 用fj 和gi 的映射关系,修改原始图像灰度级,获得直方图近似均匀分布的输出图像。

1210)(0,l-,,, k n n r T s k j j k k ===∑

=

9

2.4直方图规定化

在某些情况下,人们并不一定需要具有均匀直方图的图像,有时需要具有特定的直方

图的图像,以便能够增强图像中某些灰度级。直方图规定化方法就是针对上述思想提出来的。

直方图规定化是使原图像灰度直方图变成规定形状的直方图而对图像作修正的增强方法,其

基本思想。直方图规定化是在运用均衡化原理的基础上,通过建立原始图像和期望图像之间

的关系,选择地控制直方图,使原始图像的直方图变成规定的形状,从而弥补了直方图均衡化

不具备交互作用的特性人们希望增强后的图像,其灰度级的分布不是均匀的,而是具有规定

形状的直方图,这样可突出感兴趣的灰度范围。令Pr(r)和 Pz(z) 分别为原始图像和期望图

像的灰度概率函数,对两者均作直方图均衡化处理,应有:

式子表明可以由均衡化后的灰度变量v 获得期望图像的灰度变量z ,这就意味着可以由

原始图像均衡化后的图像灰度值来计算期望图像的灰度值。因为对原始图像和期望图像都进

行了均衡化处理, 所以Ps( s) 和Pv( v) 具有相同的概率密度,直方图规定化处理后的新图像

将具有事先规定的概率密度Pz( z) ,从而达到预期处理效果

由此可见,直方图规范化就是把图像直方图均衡化结果映射到期望的理想直方图上,使

图像按照人们的意愿转换。

()V G Z 1-=()()?==Z Z dZ Z P Z G V 0()()?==r

r dr r P r T S

直方图规定化使图像增强的实质是:

(1)增大两个占有较多像素灰度之间的差距,一般来讲,背景和目标占有较多的象素,这样实际上加大了背景和目标的对比度,增大了反差。

(2)归并占有较少的像素,通常,目标和背景的过渡处的像素较少,由于归并,其或者变为背景点或者变为目标点,从而使边界变得陡峭,使图像细节清晰,达到图像增强的目的.

图(C)、(c)是将图像(A)按图(b)的直方图进行规定化得到的结果及其直方图。通过对比可以看出图(C)的对比度同图(B)接近一致,对应的直方图形状差异也不大。这样有利于影像融合处理,保证融合影像光谱特性变化小。

2.5图像平滑

一幅原始图像在获取和传愉过程中会受到各种噪声的干扰, 使图像质量下降,时分析图像不利。这些噪声干扰使图像退化, 质量下降。表现为图像模糊, 特征淹没, 对图像分析不利为了抑制噪声、改善图像质童, 要时图像进行平滑处理。图像平滑处理的方法多种多样, 有邻域平均法、掩膜平滑法,空间低通滤波、噪声门限法、中值滤波法,多幅图像平均法等。

10

11

2.5.1图像平滑方法原理

在空间域平滑滤波有很多种算法, 其中最常见的有线性平滑、非线性平滑、自适应平滑。

(1)线性平滑就是对每一个像素的灰度值用它的邻域值来代替, 其邻域的大小为N×N ,

N 一般取奇数。经过线性平滑滤波, 相当于图像经过了一个二维的低通滤波器, 可是虽然是

降低了噪声, 但同时也模糊了图像边缘和细节, 这是这类滤波器存在的通病。

(2)非线性平滑是对线性平滑的一种改进, 即不对所有像素都用它的邻域平均值来代

替, 而是取一个闭值, 当像素灰度值与其邻域平均值之间的差值大于已知值时才以均值代

替当像素灰度值与其邻域平均值之间的差值不大于闭值时取其本身的灰度值。非线性平滑可

消除一些孤立的噪声点, 对图像的细节影响不大, 但对物体的边缘会带来一定的失真。

(3)自适应平滑是一种根据当时、当地情况来尽量不模糊边缘轮廓为目标进行控制的

方法, 所以这种算法要有一个适应的目标。根据目的的不同, 可以有各种各样的自适应图像

处理方法。

下面再分别简单介绍几种线性平滑、非线性平滑算法和其它一些算法。

2.5.2邻域平均法

邻域平均法是一种局部空间域处理的算法。设一幅图像f(x,y)为N × N 的阵列,平滑后

的图像为f(x,y),它的每个像素的灰度级由包含在(x,y)的预定邻域的几个像素的灰度级的平

均值所决定,即用下式得到平滑的图像。

式中的x,y=1 , 1 , 2 ,… ,N-1, S 是(x,y)点邻域中心点的坐标的集合[不包括点(x,y)],

M 是S 内坐标点的总数。 以上方法简单,计算速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特

别在边沿和细节处,邻域越大,模糊越厉害。为了减少这种效应,可以采用阈值法。这样平

滑后的图像会比邻域平均法模糊度减少。当某些点的灰度值与各邻点灰度的均值差别较大

时,它必然是噪声,则取其邻域平均值作为该点的灰度值,它的平滑效果仍然是很好的。为

了克服简单局部平均的弊病,目前己提出许多保边沿保细节的局部平滑算法,它们讨论的课

题都在如何选择邻域的大小、形状和方向,如何选择参加平均的点数以及邻域各点的权重系

数等,它们有:灰度最相近的及个邻点平均法,梯度倒数加校平滑,最大均匀性平滑,小斜

面模型平滑等等.如果将受噪声干扰的图像看成是一个二维随机场,则可以运用统计理论来

分析受噪声干扰的图像平滑后的信噪比问题,一般的噪声属于加性噪声,在独立和分布的高

斯噪声的情况下,我们定义信噪比为含噪图像的均值与噪声方之比,

则含噪图像经邻域平均

12

法平滑之后,其信噪比将提高M1/2 倍(M 为邻域中包含的像素数目),可见邻域取得愈大,

像点愈多,则信噪比提高愈大,平滑效果好.

2.5.3空间域低通滤波法

从信号的角度看, 信号缓慢变化主要分布在频率域的低频部分, 而信号迅速变化的部

分主要集中在高频部分。对图像来说, 它的边缘以及噪声干扰的频率分量都处于频率较高的

部分, 因此可以用低通滤波方法去除噪声。而频率域滤波可以用空间域的卷积来实现, 为此

只要恰当地设计空间域系统冲激响应矩阵就可以达到滤波的效果。

设f(x,y)为带有噪声的原始图像(大小N×N ),g(x,y)为经滤波后的输出图像(大小M×M ),

h(x,y )为滤波系统的脉冲响应函数(大小L×L ),则存在

g(x,y)=f(x,y)* h(x,y) 其中f(x,y)是含有噪声图像的博里叶变换,g(x,y)是平滑处理后的图像之傅里叶变换,

g(x,y)是传递函数。选择传递函数h(x,y),利用h(x,y)使f(x,y)的高频分量得到衰减,得到g(x,y)

后再经反傅里叶变换就可以得到所希望的平滑图像g (x,y )。根据前面的分析,显然h(x,y)

应该具有低通滤波特性,所以这种方法被称之为低通滤波法平滑化处理。

2.5.4多图像平均法

多幅图像平均法是利用对同一景物的多幅图像相加取平均来消除噪声产生的高频成分。

多幅图像取平均处理常用于摄像机的视频图像中, 以减少电视摄像机光电摄像管或CCD 器件

所引起的噪声。这时对同一景物连续摄取多幅图像并将其数字化, 再对多幅图像求平均, 一

般选用幅图像取平均, 这种方法在实际应用中的难点在于如何把多幅图像配准, 以便使相

应的像素能正确地对应排列。

设g(x,y)为有噪声图像,n(x,y)为噪声,f(x,y)

g(x,y)=n(x,y)+f(x,y) 多图像平均法是把一系列有噪声的图像{g(x,y)}迭加起来,然后再取平均值以达到平

滑的目的. 当作平均处理的噪声图像数目增加时,其统计平均值就越接近原始无噪声图像。

这种方法在实际应用中的最大因难在于把多幅图像配准,以便使相应的像素能正确地对应排

列。

2.5.5中值滤波法

中值滤波也是一种典型的空间域低通滤波器, 它的目的是保护图像边缘的同时去除噪

声。所谓中值滤波,就是指把以某点(X×Y )了为中心的小窗口内的所有像素的灰度按从大

到小的顺序排列, 将中间值作为少处的灰度值若窗口中有偶数个像素, 则取两个中间值的

13

平均。

例:采用1×3窗口进行中值滤波

原图像为: 2 2 6 2 1 2 4 4 4 2 4

处理后为: 2 2 2 2 2 2 4 4 4 4 4

它对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多的图像却不太合适。

对中值滤波法来说,正确选择窗口尺寸的大小是很重要的环节。一般很难事先确定最佳的窗口尺寸,需通过从小窗口到大窗口的中值滤波试验,再从中选取最佳的。 中值滤波容易去除孤立点、线的噪声, 同时保持图像的边缘, 它能很好地去除二值噪声, 但对高斯噪声无能为力。要注意的是, 当窗口内噪声点的个数大于窗口宽度一半时, 中值滤波的效果不是太好。

2.5.6噪声门限法

噪声门限法是一种简单易行的消除噪声的方法,它对于因噪声传感器或者信道引起的呈现离散分布的单点噪声具有较好的效果,运用噪声门限法进行图像平滑时,首先设定门限值,然后顺序检测图像中的每一个像素,将该像素与其他像素进行比较判断,以确定是否为噪声点;若为噪声点,则以其邻域内所有像素灰度平均值代替,否则,以原灰度值输出。

假设像素(i,j )出的灰度为f(i,j),以给该像素为中心取一个N×N 的窗口(N=3,5,7...),该窗口内的和计数器像素点组成集合A ,定义灰度差值门限T ,误差计算器Cnt 和计数器门限值Y 。对每个窗口,Cnt 的初始值都是0。对集合A 中的每一个像素点(i′,j′)的灰度f(i′,j′),若满足

ε(i′,j′)=| f(i′,j′)-f(i,j) |≥ T 则误差计算器加1,位置(i,j )的输出为 g(i,j)= f(i,j) (Cnt

当窗口顺序移过整幅图像,即可完成噪声平滑。需要注意的是,该方法中门限值T 的选择至关重要,T 太大,则噪声平滑不够,T 太小,平滑图像就会变得模糊,计数器门限值的选择一般在窗口内像素的一半附近。

2.5.7掩膜平滑法

图像中存在这样一个基本事实:同一区域内部的像素之间灰度变化平缓,起伏较小,统计方差小;在区域边缘,像素之间灰度值得起伏变化大,统计方差大。掩膜平滑法的目的在于进行滤波操作的同时,尽可能不破坏区域边缘的细节。

掩膜平滑以一个5×5的窗口为基准,中心位置为(j,k),在这个窗口中确定9种不同的掩膜模版。

在平滑时,首先计算各模版的均值和方差。

Ai=[∑f(j+m,k+n) ]/Q (2-23)

Bi=∑{ [f(j+m,k+n)] 2-Ai 2}(2-24)

式中,i表示掩膜板编号,Q对应掩膜模版中包含像素的个数,(m,n)为掩膜模版中像素相对于中心像素(j,k)的位移量。也就是说,掩膜平滑的输出为具有最小方差的模版所对应的灰度均值。

当同样的方法作用于图中的每一个像素后,即可得到平滑的图像,平滑图像中相对很好的保留了图像区域边缘的细节。

2.5.8图像平滑处理方法比较

图像平滑处理的方法多种多样, 每种方法在不同的方面各有优点和缺点。中值滤波比较容易去除椒盐噪声, 同时能较好的保持图像的边缘, 它还能很好地去除二值噪声, 但对高斯噪声却无能为力。可是邻域平均法却在去处高斯噪声方面有比较好的效果, 但是用它处理椒盐噪声效果却并不理想, 虽然降低了噪声可也使图像出现了模糊, 而且这种模糊在边缘和细节出特别严重。空间域低通滤波法可以说是对邻域平均法的一种改进, 如果能选择比较合适的单位冲激响应阵列, 那么在达到图像平滑的同时还可以很好的保留图像细节, 可是如何选择单位冲激响应阵列却是一个难点。多幅图像平均法一般用于摄像机的视频图像, 用以减少电视摄像机光电摄像管或CCD器件所引起的噪声, 该算法有比较好的去噪效果, 但是在实际使用时, 该算法要用到多幅图像, 所以占用的空间也比较大, 尤其是把多幅图像配准也比较难。梯度倒数加权算法能够在降低噪声的同时, 较好地保持图像的边缘和细节信息, 然而, 对于被椒盐噪声或脉冲噪声污染的图像, 梯度倒数加权平滑算滤波效果并不明显, 而且该方法的计算量也比前面的几种算法要大。因此, 在对一幅图像进行平滑处理前, 必须仔细分析其产生噪声的原因、噪声的特点与类型, 并选择合适的平滑方法, 才能既消除图像噪声, 又不使图像边缘轮廓或线条变模糊。经过这样的处理后, 图像才能更符合人的视觉特性。

3.图像增强前景展望

图像处理内容涉及光学、微电子学、信息学、统计学、数学、计算机科学等领域,是一门综合性很强的交叉学科,其中任何一门学科的发展都将推动图像处理的进一步发展。近年来随着计算机技术和人工智能、视觉心理研究的迅速发展以及处理器硬件上的不断升级,图

14

像处理向更高、更深层次发展,因此带动图像增强技术的长足进步,其应用的需求也随之越来越广泛。

由于对图像质量的要求越来越高,单一的图像增强算法往往难以满足实际需求,因此几种算法相结合、取长补短、优势互补是图像增强算法发展必然趋势。更深入的研究可从以下几方面着手:

(1)在进一步提高精度的同时着重解决处理速度问题。如,在航天遥感、气象云图处理方面,巨大的数据量和处理速度仍然是主要矛盾之一,图像处理的发展将围绕HDTV(高清晰度电视)的研制,开展实时图像处理的理论及技术研究,向着高速、高分辨率、立体化、多媒体化、智能化和标准化方向发展。

(2)加强软件研究、开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法。

(3)加强边缘学科的研究工作,促进图像处理技术的发展。如,人的视觉特性、心理学特性等的研究,如果有所突破,将对图像处理技术的发展起到极大的促进作用。

(4)加强理论研究,逐步形成图像处理科学自身的理论体系,新理论与新算法研究。在图像处理领域,近几年来,引入了一些新的理论并提出了一些新的算法,如小波分析(Wavelet)、分形几何(Fractal)、形态学(Morphology)、遗传算法( Genetic Algorithms)、人工神经网络等(Artificial neural networks)。这些理论及建立在其上的算法,将会成为今后图像处理理论与技术的研究热点。

(5)图像处理领域的标准化,图像的信息量大、数据量大,因而图像信息的建库、检索和交流是一个重要的问题。就现有的情况看,软件、硬件种类繁多,交流和使用极为不便,成为资源共享的严重障碍。应建立图像信息库,统一存放格式,建立标准子程序,统一检索方法。

数字图像处理经过初创期、发展期、普及期及广泛应用几个阶段,如今已是各个学科竞相研究并在各个领域广泛应用的一门科学。随着科学技术的进步以及人类需求的不断增长,图像处理科学无论是在理论上还是实践上,均会取得更大的发展。

参考文献

[1]李弼程,彭天强,彭波等编著.智能图像处理技术[M].北京:电子工业出版社, 2004.

[2]阮秋琦.数字图像处理学[M].北京:电子工业出版社,2003.

[3]徐飞,施晓红. Matlab应用图像处理[M].西安:西安电子科技大学出版社,2002.

[4]陈传波,金先级.数字图像处理[M].北京:机械工业出版社,2004.

[5]冯清枝.基于直方图修正的图像增强技术[J].广东公安科技,2004.(9).

[6]陈书海,傅录祥.实用数字图像处理[M].北京:科学出版社,2005.

[7]沈志光.数字图像平滑算法的探究[J].科学大众,2006.(4).

15

[8]李世进.数字图像的平滑处理[J].湖南科技学院学报,2008.(12).

[9]杨乐.图像增强算法及其实现[J].现代电子技术,2007.(16).

[10]段竹,吴镝.图像增强方法研究[J].商场现代化,2009.(1).

[11]孙蕾,温有奎,李丙春.图像增强算法与评价方法研究[J].计算机工程,2007.(8).

[12]陈婷,曾飞.几种数字图像增强算法的比较[J].商品储运与养护,2008.(5).

[13]闫娟.数字图像的平滑处理方法研究[J].软件导刊,2009.(1).

[14] 高彦平.图像增强方法的研究与实现[D].山东:山东科技大学计算机软件与理论系,2005.

[15]盛道清.图像增强算法的研究[D].武汉:武汉科技大学控制理论与控制工程系,2007.

[16] 梁一江.图像平滑处理方法初探及简单的算法介绍[J].才智,2009.(4).

[17]任艳斐.直方图均衡化在图像处理中的应用[J].科技信息,2007.(4).

[18]高赟.图像灰度增强算法的研究[D].西安:西安电子科技大学计算机系统结构系,2007.

Title(三号,加粗,英文全用Times New Roman字体)

Author name(小四号)

Author address(五号)

Abstract(五号粗体)

In this paper………..(10 Points, Time New Roman)

Keywords: neural computation, ……

16

图像增强算法综述

图像增强算法研究综述 刘璐璐 宁波工程学院电子与信息工程学院计算机科学与技术071班,邮编:(315100) E-mail:375212239@https://www.sodocs.net/doc/057401398.html, 摘要:本文简要介绍图像增强的概念和图像增强算法的分类,从图像的直方图均衡化处理方法,直方图规定化处理方法和图像平滑处理方法三方面对图像增强算法进行讨论和研究,并说明了图像增强技术的应用和前景展望。 关键词:图像增强直方图均衡化直方图规定化平滑处理 近年来,随着电子计算机技术的进步,计算机图像处理得到了飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量增强对某种信息的辨识能力,以更好的应用于现代各种科技领域,图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。在图像处理过程中,图像增强是十分重要的一个环节。 1.图像增强概念及现实应用 1.1 图像增强技术 图像增强是数字图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息。这类处理是为了某种应用目的去改善图像质量,处理的结果更适合于人的视觉特性或机器识别系统,图像增强处理并不能增加原始图像的信息,而只能增强对某种信息的辨识能力,使处理后的图像对某些特定的应用比原来的图像更加有效。 1.2图像增强技术的现实应用 目前,图像增强处理技术的应用己经渗透到医学诊断、航空航天、军事侦察、纹识别、无损探伤、卫星图片的处理等领域,在国民经济中发挥越来越大的作用。其中最典型的应用主要体现以下方面。 1

线性插值算法实现图像缩放详解

线性插值算法实现图像缩放详解 在Windows中做过图像方面程序的人应该都知道Windows的GDI有?个API函数:StretchBlt,对应在VCL中是 TCanvas类的StretchDraw方法。它可以很简单地实现图像的缩放操作。但问题是它是用了速度最快,最简单但效果也是最差的“最近邻域法”,虽然在大多数情况下,它也够用了,但对于要求较高的情况就不行了。 不久前做了?个小玩意儿,用于管理我用DC拍的?堆照片,其中有?个插件提供了缩放功能,目前的版本就是用了StretchDraw,有时效果不能令人满意,我?直想加入两个更好的:线性插值法和三次样条法。经过研究发现三次样条法的计算量实在太大,不太实用,所以决定就只做线性插值法的版本了。 从数字图像处理的基本理论,我们可以知道:图像的变形变换就是源图像到目标图像的坐标变换。简单的想法就是把源图像的每个点坐标通过变形运算转为目标图像的相应点的新坐标,但是这样会导致?个问题就是目标点的坐标通常不会是整数,而且像放大操作会导致目标图像中没有被源图像的点映射到,这是所谓 “向前映射”方法的缺点。所以?般都是采用“逆向映射”法。 但是逆向映射法同样会出现映射到源图像坐标时不是整数的问题。这里就需要“重采样滤波器”。这个术语看起来很专业,其实不过是因为它借用了电子信号处理中的惯用说法(在大多数情 况下,它的功能类似于电子信号处理中的带通滤波器),理解起来也不复杂,就是如何确定这个非整数坐标处的点应该是什么颜色的问题。前面说到的三种方法:最近邻域法,线性插值法和三次样条法都是所谓的“重采样滤波器”。 所谓“最近邻域法”就是把这个非整数坐标作?个四舍五入,取最近的整数点坐标处的点的颜色。而“线性插值法”就是根据周围最接近的几个点(对于平面图像来说,共有四点)的颜色作线性插值计算(对于平面图像来说就是二维线性插值)来估计这点的颜色,在大多数情况下,它的准确度要高于最近邻域法,当然效果也要好得多,最明显的就是在放大时,图像边缘的锯齿比最近邻域法小非常多。当然它同时还带业个问题:就是图像会显得比较柔和。这个滤波器用专业术语来说(呵呵,卖弄?下偶的专业^_^)叫做:带阻性能好,但有带通损失,通带曲线的矩形系数不高。至于三次样条法我就不说了,复杂了?点,可自行参考数字图像处理方面的专业书籍,如本文的参考文献。 再来讨论?下坐标变换的算法。简单的空间变换可以用?个变换矩阵来表示: [x’,y’,w’]=[u,v,w]*T 其中:x’,y’为目标图像坐标,u,v为源图像坐标,w,w’称为齐次坐标,通常设为1,T为?个3X3的变换矩阵。 这种表示方法虽然很数学化,但是用这种形式可以很方便地表示多种不同的变换,如平移,旋转,缩放等。对于缩放来说,相当于: [Su 0 0 ] [x, y, 1] = [u, v, 1] * | 0 Sv 0 | [0 0 1 ] 其中Su,Sv分别是X轴方向和Y轴方向上的缩放率,大于1时放大,大于0小于1时缩小,小于0时 反转。 矩阵是不是看上去比较晕?其实把上式按矩阵乘法展开就是: { x = u * Su

开题报告(基于内容感知的图像缩放处理方法研究与实现)

长江大学 毕业设计(论文)开题报告 题目名称:基于内容感知的图像缩放方法研究与实现院 (系):计算机科学学院 专业班级:软工(实)11001班 学生姓名:邹会明 指导教师:余华平 辅导教师:余华平 开题报告日期: 2013年12月15日

基于内容感知的图像缩放方法研究与实现学生:邹会明院系:长江大学计算机科学学院 指导教师:余华平工作单位:长江大学计算机科学学院 1.题目来源 随着大屏幕显示设备的普及,4:3的图像信号与16:9的屏幕大小之间的矛盾变得日益突出。我们可以经常见到当4:3的图像变换为16:9的图像时,屏幕两侧或者上下会出现两条黑带。常规的图像等比例缩放显然已经不能满足这种需求,这就需要运用图像缩放技术对原始视频图像进行非等比例缩放。 图像缩放技术是数字图像处理领域一项基础而重要的技术,传统的图像缩放技术一般采用最近邻插值法,双线性插值法和双三次插值法这几种常用的差值法或者图像切割法进行缩放,这类方法存在的最大问题是,在将4:3视频图像转换为16:9时,X、Y方向是非等比例缩放,景物的畸变较大,使人难以接受。如果对图像切割,会使得图像部分内容丢失。而基于内容感知的图像缩放方法,它是采用Seam Carving技术的自适应图像缩放方法,通过不断移除或插入图像中对内容影响较小的缝合线,可以改变图像的长度比、实现图像重构、保留图像感兴趣区域、实现图像目标移除,实现图像尺寸的缩小和放大,并能够在缩放过程中保留图像重要内容,是目前非常有效的一种方法。所以基于内容感知的图像缩放方法研究与实现在自然图像处理方面有其较高应用价值和意义,以及研究的必要性。2.研究的目的及意义 1)目的 本文通过介绍一种基于内容感知的图像缩放方法,运用seam carving 技术,对图像上的关键部分和不重要区域进行计算,确定图像的能量低值点,找到最短路径,在纵横向上进行无缝裁剪,从而使得随意改变一个图像的高宽比但不让内容变得扭曲成为可能。 2)意义 电子产品的多样性对数字媒体提出了更高的要求,当把相同的图像或视频信息在不同分辨率和纵横比的电子产品上显示时,传统的缩放方法已经不能很好地满足用户的需求,传统的缩放方法一致地把这些信息缩放到目标大小,这样图像

图像压缩综述

图像压缩综述 摘要:随着信息时代的不断发展,数字图像处理技术得到了广泛的应用,而作为数字图像处理技术的重要组成部分——数字图像压缩,也得到了迅猛的发展。本文从数字图像压缩的概念、发展历史、图像压缩的必要性和可能性、图像压缩标准、图像压缩基本方法和图像压缩效果评价等方面进行了综述。 引言 在当前这个信息化社会中,新信息技术革命使人类被日益增多的多媒体信息所包围。多媒体信息主要是由图像、文本和声音三大元素组成。图像作为其主要元素之一,发挥着越来越重要的作用。而传输和存储图像需要占用大量的数据空间,这严重影响了传输速率和实时处理量,极大地制约了图像通信的发展。其中,数据量最大的是数字视频数据。未经处理的数字视频信息需要消耗巨大的存储资源,以主流高清视频为例,在分辨率为1280×720,帧率为30帧每秒的视频应用中,存储一分钟的视频信息,需要约18.5G(以常4:2:0视频,每像素12比特)比特存储空间,一部120分钟高清电影约需要2225G比特的存储空间。可见未经处理的视频信息量非常大,为了满足存储和传输需求,视频信息的压缩是十分必要的。在同等的通信容量下,如果图像数据可以压缩之后再传输,就可以使传输的数据量变得很小,也就能够增加通信能力。因此图像压缩编码技术受到了越来越多的关注及广泛的应用。如数码相机、USB摄像头、可视电话、视频点播、视频会议系统、数字监控系统等等,都使用到了图像或视频的压缩技术。 数字图像压缩是以尽可能少的比特数代表图像或图像中所包含的信息量的技术,图像通过压缩处理去掉其中的数据冗余、符号冗余、视觉冗余等各种冗余信息,提高传输速率,节省存储空间。 1图像压缩的发展历史 自1948年提出的电视信号数字化设想后, 即开始了图像压缩的研究,到现在已有60多年的历史。20世纪五六十年代的图像压缩编码主要集中在预测编码、哈夫曼编码等技术的研究,还不成熟。1969年在美国召开的第一届“图像编码会议”,标志着图像编码作为一门独立学科的诞生。到了七八十年代,图像压缩技术的主要成果体现在变换编码技术上, 矢量量化编码技术也有较大的发展。80年代末,小波变换理论、分形理论、人工神经网络理论、视觉仿真理论建立,人们开始突破传统的信源编码理论, 图像压缩编码向着更高的压缩率和更好的压缩质量的方向发展,进入了一个崭新的发展时期。 2图像压缩的可能性 图像之所以能够进行压缩有以下几个方面的原因: 一是原始图像数据是高度相关的,存在很大的数据冗余。如图像内相邻像素之间的空间冗余度、系列图像前后帧之间的时间冗余度、多光谱遥感图像各频谱间的频率域冗余度等,它们造成了大量的比特数浪费,消除这些冗余就可以节约码字,大大减少数据量,达到数据压 缩的目的。 二是信源符号出现的概率不同,若用相同码长表示不同出现概率的符号,就会造成符号冗余度。如果采用可变长编码技术,对出现概率高的符号用短码字,对出现概率低的符号用长码字表示,就可以消除符号冗余度,从而节约码字。 三是人眼具有视觉冗余,允许图像编码有一定的失真。人类视觉系统(HVS)是有缺陷的,人眼对于某些失真不敏感难以察觉。在许多场合中,并不要求经压缩及复原以后的图像和原始图像完全相同,可以允许有少量的失真,只要这些失真并不被人眼所察觉即可。这就为压缩比的提高提供了十分有利的条件,这种有失真的编码称为限失真编码。在多数应用中,人眼往

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

(完整版)基于matlab的图像缩小算法

一、基于matlab图像缩小算法 缩小算法与放大算法不同,图像缩小是通过减少像素个数来实现的。因此,需要根据缩小的尺寸来选择合适的像素点,使得图像缩小后尽可能保持源图像特征。基于等间隔采样的缩小算法。 这种算法是通过对图像像素的均匀采样来保持所选择的像素仍旧保持像素的概貌特征。 算法1通过matlab实现可得: function small=big2small(A,h,l) [m,n]=size(A); k1=m/h;k2=n/l; small=zeros(h,l); for i=1:h for j=1:l i0=i*k1;j0=j*k2; i1=floor(i0+0.5); j1=floor(j0+0.5); small(i,j)=A(i1,j1); end end end 1、基于局部均值的缩小算法。 这种算法通过采样间隔dx,dy将原图像矩阵分割为一系列小的矩阵,并计算这些小矩阵的元素的和,再求其均值赋给目标矩阵相应的像素。这样就避免了算法1中某些未取到的元素不能将其信息反映到目标矩阵的缺点。 算法2通过matlab实现可得: function small=big2small2(A,h,l) [m,n]=size(A); %获得矩阵A大小 A=im2double(A); small=zeros(h,l); for i=1:h for j=1:l sum=0; i1=round((m/h).*(i-1)+1); %将矩阵分块 j1=round((n/l).*(j-1)+1); %i1,j1为矩阵小块左上角元素下标 i2=round((m/h).*i); j2=round((n/l).*j); %i2,j2为矩阵小块右下角元素下标 for ii=i1:i2 for jj=j1:j2 sum=sum+A(ii,jj); %计算矩阵内元素值的和 end end small(i,j)=sum/((i2-i1+1).*(j2-j1+1)); %将均值赋给目标矩阵 end end end

数字图像镶嵌技术综述

1引言 传统的航空遥感图像镶嵌是先将一系列具有重叠区域的图像进行手工镶嵌,去除多余的重叠部分,再进行大幅区域的判读识别。随着航空航天遥感手段的不断进步,数字传感器大量应用于航空航天遥感图像的拍摄,获得的数字图像数量日益增多,依靠传统的人工镶嵌已不能满足“实时性”的需要。因此,依靠计算机技术的数字图像自动镶嵌技术应运而生。数字图像镶嵌技术就是通过计算机将一系列具有重叠区域的图像集合拼接成一幅大型的无缝的图像。通过图像镶嵌技术,可以剔除冗余信息,压缩信息存储量,从而更加有效地表达信息量。 图像镶嵌技术在宇宙空间探测、海底勘测、医学、气象、地质勘测、军事、视频压缩和传输,档案的数字化保存,视频的索引和检索,物体的3-D重建,军事侦察和公安取证等领域都有广泛的应用。主要表现为: (1)全景图和超宽视角图像的合成: 将普通图像或视频图像进行无缝镶嵌,得到超宽视角甚至360度全景图,这样就可以用普通相机实现场面宏大的景物拍摄。 (2)碎片图像的组合: 将医学和科研的显微碎片图像或者空间、海底探测得到的局部图像合成大幅的整体图像。 (3)虚拟现实: 图像镶嵌是虚拟现实领域里场景绘制(Image—basedRenderi-ng,IBR)方法中的一项基本技术。利用图像镶嵌技术可以生成全方位图像,用全景图表示实景可代替3D场景建模和绘制。 数字图像镶嵌技术综述 王志强,程红 (中国人民解放军空军航空大学,长春130022) 摘要:图像镶嵌技术可分为图像预处理、图像配准和图像缝合三个基本步骤,在现实生活中有着广泛的应用。 本文综述了国内外研究数字图像镶嵌的几类经典算法,对各步骤中所使用的算法进行了分析比较,总结了在不同情况下使用不同方法的优缺点,并对图像镶嵌技术的发展进行了展望。 关键词:图像镶嵌;几何校正;图像配准 中图分类号:TP751.1文献标识码:A文章编号:1001-0270(2008)02-0011-04 AReviewonDigitalImageMosaicTechnique WANGZhi-qiang,CHENGHong (PLAAirForceAviationUniversity,Changchun130022) Abstract:Thebasicimagemosaictechniqueincludesthreesteps:imagepretreatment,registrationandstitchingandisveryusefulinreallife.Inthispaper,sometypicaldomesticandoverseasalgorithmswerereviewedandcomparedbyeachstep.Theadvantagesandshortcomingsofusingdifferentmethodsindifferentconditionsweresummarized;theprospectsofthedevelopmentofimagemosaictechniquewerealsoputforward. KeyWords:imagemosaic;geometricrectification;imageregistration 作者简介:王志强,男(1982-),空军航空大学军事情报学专业在读研究生。 程红,女(1969-),硕士生导师、教授,主要从事遥感图像信息处理。 收稿日期:2007-06-14

PNG图像的压缩算法

PNG图像格式的压缩算法 便携式网络图形(Portable Network Graphics)简称为PNG,它是一种无损压缩的位图图形格式,其含有以下几种特性: 1、支持256色调色板技术以产生小体积文件 2、支持最高48位真彩色图像以及16位灰度图像 3、支持阿尔法通道(Alpha Channel,表示图片的透明度和半透明度)的透明/半透明 性 4、支持图像亮度的伽马校正(Gamma校准,用来针对影片或是影像系统里对于光线的 辉度 (luminance) 或是三色刺激值 (tristimulus values)所进行非线性的运算或 反运算)信息 5、使用了无损压缩的算法 6、使用了循环冗余校验(CRC,用来检测或校验数据传输或者保存后可能出现的错误) 防止文件出错 一、 PNG格式的文件结构 PNG定义了两种类型的数据块:一种是PNG文件必须包含、读写软件也都必须要支持的关键块(critical chunk);另一种叫做辅助块(ancillary chunks),PNG允许软件忽略它不认识的附加块。这种基于数据块的设计,允许PNG格式在扩展时仍能保持与旧版本兼容。 关键数据块中有4个标准数据块: 1、文件头数据块IHDR(header chunk):包含有图像基本信息,作为第一个数据块出现 并只出现一次。 2、调色板数据块PLTE(palette chunk):必须放在图像数据块之前。 3、图像数据块IDAT(image data chunk):存储实际图像数据。PNG数据允许包含多个 连续的图像数据块。 4、图像结束数据IEND(image trailer chunk):放在文件尾部,表示PNG数据流结束 二、PNG格式文件的压缩算法 PNG格式文件采用的是从LZ77派生的一个称为DEFLATE的非专利无失真式压缩算法,这个算法对图像里的直线进行预测然后存储颜色差值,这使得PNG经常能获得比原始图像更大的压缩率。

无损压缩算法的比较和分析

Adaptive-Huffman-Coding 自适应霍夫曼编码 压缩比:1.79 分析: 霍夫曼算法需要有关信息源的先验统计知识,而这样的信息通常很难获得,即使能够获得这些统计数字,符号表的传输仍然是一笔相当大的开销。 自适应压缩算法能够解决上述问题,统计数字是随着数据流的到达而动态地收集和更新的。概率再不是基于先验知识而是基于到目前为止实际收到的数据。随着接收到的符号的概率分布的改变,符号将会被赋予新的码字,这在统计数字快速变化的多媒体数据中尤为适用。 Lempel-Ziv-Welch 基于字典的编码 压缩比:1.86 分析: LZW算法利用了一种自适应的,基于字典的压缩技术。和变长编码方式不同,LZW使用定长的码字(本次实验使用12位定长码字)来表示通常会在一起出现的符号/字符的变长的字符串。 LZW编码器和解码器会在接受数据是动态的创建字典,编码器和解码器也会产生相同的字典。 编码器的动作有时会先于解码器发生。因为这是一个顺序过程,所以从某种意义上说,这是可以预见的。

算术编码(arithmetic coding) 压缩比:2 分析: 算术编码是一种更现代化的编码方法,在实际中不赫夫曼编码更有效。 算术编码把整个信息看作一个单元,在实际中,输入数据通常被分割成块以免错误传播。 算术编码将整个要编码的数据映射到一个位于[0,1)的实数区间中。并且输出一个小于1同时大于0的小数来表示全部数据。利用这种方法算术编码可以让压缩率无限的接近数据的熵值,从而获得理论上的最高压缩率。 比较分析: 一般来说,算术编码的性能优于赫夫曼编码,因为前者将整个消息看作一个单元,而后者受到了必须为每一个符号分配整数位的限制。 但是,算术编码要求进行无限精度的实数运算,这在仅能进行有限精度运算的计算机系统是无法进行的。随着研究的深入,有学者提出了一种基于整数运算的算术编码实现算法。在编码和解码的过程还需要不时的调整区间大小,以免精度不足,加大了实现的难度。 在3种无损压缩算法中,LZW算法相对来说,实现最为简单,但其压缩效果要在数据源足够大的时候,才能显现出来。

基于Retinex算法图像增强的MATLAB实现

基于Retinex算法视频增强的MATLAB实现 一、读书笔记 1:数字图像文件简介 BMP文件:Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。 GIF文件:GIF文件的数据是一种基于LZW算法的连续色调的无损压缩格式,不属于任何应用程序。 JPEG图像格式:后缀名为.jpg或者.jpeg,是一种有损压缩格式。 ICO文件:Windows的图标文件格式的一种,可以存储单个图案、多尺寸、多色板的图标文件 HDF文件:层次型数据格式可以存储不同类型的图像和数码数据,有函数库。 PNG文件:常用于JAVA程序、网页和S60中。 TIFF文件:主要用来存储包括照片和艺术图在内的文件格式。 DICOM文件:数字影像和通信标准。 2:基于MATLAB图像处理基础 1)图像数据类型 double类型:图像处理最常用的数据类型,也是matlab中默认的数 据类型。图像数据的取值范围为0-1。 Unit8类型:常用于从存储设备中读取数据时,操作不能使结果超出 [0,255]. Unit16类型:用于精度较高的图像中。 Logical类型:常用于二值图像中,可用true、false或关系运算符 得到。 2)数据类型转换 3)文件信息读取

Matlab提供imfinfo函数来实现所有格式(除DICOM)的信息读取,调用形式: info=imfinfo(’filename’) 4)读取图像 使用imread可以将图像读入matlab环境,语法: imread (‘filename’),其中,filename是一个含有文件全名的字符串。 函数size可给出一副图像的行数和列数 >>size(f) Ans= 1024 1024 5)显示图像 在matlab桌面上显示图像一般用imshow,语法: imshow (f,G) 其中,f是一个图像数组,G为显示该图像的灰度级数。若将G省略,则默认256.语法 imshow(f,[low high])会将小于或等于low的显示为黑色,大于或等于high的显示为白色,介于两者之间的值以默认的级数显示为中等亮度值。语法 imshow(f,[])可以将变量low设置为数组f的最小值,将high 设置为f的最大值。 6)保存图像 使用imwrite函数可将图像写入磁盘,语法; Imwrite(f,’filename’) Filename必须是一个可识别的文件格式扩展名 另一种常用但只用于jpeg图像的函数imwrite,其语法为 Imwrite(f,’filename.jpg’,’quality’,q), Q为一个0到100的整数,q越小,图像退化越严重 3:亮度变换与空间滤波 1)函数imadjust是对灰度图像进行亮度变换的基本IPT工具。语法 g=imadjust(f,[low_in high_in],[low_out high_out],gamma) 将low_in至high_in之间的值映射到low_out至high_out之间的值,其他的值被剪切掉了。 2)对数和对比度的拉伸变换 对数变换通过以下表达式实现: g=c*log(1+double(f)) 3)阈值变换 表达式:g=1./(1+(m./(double(f)+eps)).^E) Eps可避免f出现0值的溢出现象 4)计算并绘制图像直方图 函数:imhist(f); 直方图均衡化有函数histep实现,语法:g=histep(f,nlev) Nelv为输出图像制定的灰度等级 5)空间滤波: 工具箱使用函数imfilter来实现线性空间滤波,语法 g=imfilter(f,w,filter_mode,boundary_options,size_options)

任意比例视频图像放大算法的研究与实现

任意比例视频图像放大算法的研究与实现 摘要:随着多媒体信息技术的发展,针对视频信号的处理技术应运而生。其中实时缩放正是视频信号处理技术的关键。对于图像缩放,所用数学模型的优劣会直接影响用户观看图像的质量。在视频处理中,图像的缩放算法不仅影响视频质量,而且算法的处理速度也会影响视频流的显示,从而影响用户观看的连续性。本文针对视频信号对处理速度和精度的要求,采用只对亮度信号进行复杂处理的方法。分析图像边缘区域的特性,并通过数学推导,在边缘区域的插值中设计四个模板,从而设计改进的视频缩放算法。实验结果表明,本设计的视频信号缩放算法在主观视觉上保持了图像纹理细节和边缘信息。客观评价中,本算法处理得到的图像高频分量丢失少,且保证较好的低频分量处理效果;平均峰值信噪比较双线性插值提高0.24dB。 关键词:视频信号;图像处理;缩放;边缘 ABRSTRACT:With the rapid development of multimedia information technology,video signal's processing technology emerges at that time. Video’s real-time scaling is the key issue in video signal's processing technology. For image scaling,the mathematical model affects the picture’s visual quality. In video processing,not only the scaling algorithm influences the video’s quality,but also the alg orithm’s performance affects the display of the video so that influences the video playing smoothly.Due to the speed and precision demanded in video signal’s processing,only employ the proposed algorithm in Y channel signal. Under the analysis on the characteristic of the edge in image,four scaling masks are deduced mathematically. This paper issues a lot of experiments on the infrastructure of the theoretical study,which show that the video signal's scaling algorithm designed in this paper has obtained the better effectiveness than traditional algorithms. Our design keeps texture details in subjective vision,raises the PSNR 0.24dB on average,and it has well performance in both high and low frequency component in spectrum at the same. This is satisfied with the designated target of the project. Key words: video signals; image processing; scaling; edge 1 绪论 1.1 研究背景及意义 信息技术和互联网发展到今天,多媒体信息技术的应用范围日趋广泛,多媒体信息包括音频数据、图像和视频数据及文字数据。而人类获取的各种信息中,图像信息占有绝大部分,图像带给人们直观并具体的事物形象,这是声音、语言和文字不能比拟的。 人眼看到的是连续变化的景物,是模拟图像,而在数字设备中存储和显示的图像是经过采样和量化的数字图像。为满足人类视觉和实现信息传输的需求,针对图像和视频信息的实时缩放技术在生活中起着不可忽略的作用[1]。 视频图像的后期缩放处理势必将会作为显示呈现在终端之前的一个重要环节。无论其输入视频信源的分辨率大小尺寸多少,最终都应该以用户的实际物理显示设备的最佳观看分辨率作为显示输出结果,通常由于带宽有限的关系,该显示过程通常以放大为主,即输入视频图像分辨率小于输出分辨率。为了满足不同终端用户对图像尺寸的需求,改变图像尺寸的缩放技术应运而生。 图像缩放是数字图像处理中非常重要的技术之一。对于网络传输的图像,由于客观条件的种种限制,想要快速地传输高分辨率的图像一般难以达到,同时由于硬件性能的限制,图片往往也无法满足所需要的分辨率,而硬件的改进却需要复杂的技术并付出昂贵的代价,所以如果能够从软件技术方面进行改进,采用图像插值技术提高图像质量来达到所期望的分辨率和清晰度,其具有的实用意义将是十分重大的。因此,利用插值的方法将低分辨率图像插值放大成高分辨率图像就成为人们追求的目标。 用图像缩放算法进行处理时,存在一对相悖的要素:图像处理速度和图像精度。一般情况下,要想获得比较高的速度甚至达到实时的图像输出速率,只能采用相对来说运算量比较简单的缩放算法;而如果要想获得处理效果比较好的图像,就只能考虑牺牲处理速度,采用计算量大、比较复杂的缩放算法。图像缩

图像压缩方法综述

图像压缩方法综述 陈清早 (电信科学技术研究院PT1400158) 摘要:图像压缩编码技术就是对要处理的图像数据按一定的规则进行变换和组合,从而达到以尽可能少的数据流(代码)来表示尽可能多的数据信息。由于图像数据量的庞大,在存储、传输、处理时非常困难,因此图像数据的压缩就显得非常重要。图像压缩分为无损图像压缩和有损图像压缩或者分为变换编码、统计编码。在这里,我们简单的介绍几种几种图像压缩编码的方法,如:DCT编码、DWT编码、哈夫曼(Huffman)编码和算术编码。 关键字:图像压缩;DCT压缩编码;DWT压缩编码;哈夫曼编码;算术编码 1引言 在随着计算机与数字通信技术的迅速发展,特别是网络和多媒体技术的兴起,大数据量的图像信息会给存储器的存储容量、通信信道的带宽以及计算机的处理速度增加极大的压力。为了解决这个问题,必须进行压缩处理。图像数据之所以能被压缩,就是因为数据中存在着冗余。图像数据的冗余主要表现为:图像中相邻像素间的相关性引起的空间冗余;图像序列中不同帧之间存在相关性引起的时间冗余;不同彩色平面或频谱带的相关性引起的频谱冗余。数据压缩的目的就是通过去除这些数据冗余来减少表示数据所需的比特数。信息时代带来了“信息爆炸”,使数据量大增,无论传输或存储都需要对数据进行有效的压缩。因此图像数据的压缩就显得非常重要。 在此,我们主要介绍变换编码的DCT编码和DWT编码和统计编码的哈夫曼(Huffman)编码和算术编码。 2变换编码 变换编码是将空域中描述的图像数据经过某种正交变换转换到另一个变换域(频率域)中进行描述,变换后的结果是一批变换系数,然后对这些变换系数进行编码处理,从而达到压缩图像数据的目的。主要的变换编码有DCT编码和DWT编码 1.1DCT编码 DCT编码属于正交变换编码方式,用于去除图像数据的空间冗余。变换编码就是将图像光强矩阵(时域信号)变换到系数空间(频域信号)上进行处理的方法。在空间上具有强相关的信号,反映在频域上是在某些特定的区域内能量常常被集中在一起,或者是系数矩阵的分布具有某些规律。我们可以利用这些规律在频域上减少量化比特数,达到压缩的目的。也就是说,图像变换本身并不能压缩数据,但变换后图像大部分能量集中到了少数几个变换系数上,再采用适当的量化和熵编码便可以有效地压缩图像。量化是对经过DCT变换后的频率系数进行量化,其目的是减小非“0”系数的幅度以及增加“0”值系数的数目,它是图像质量下降的最主要原因。 图像经DCT变换以后,DCT系数之间的相关性就会变小。而且大部分能量集中在少数的系数上,因此,DCT变换在图像压缩中非常有用,是有损图像压缩国际标准JPEG的核心。从原理上讲可以对整幅图像进行DCT变换,但由于图像各部位上细节的丰富程度不同,这种整体处理的方式效果不好。为此,发送者首先将输入图像分解为8*8或16*16块,然后再对每个图像块进行二维DCT变换,接着再对DCT系数进行量化、编码和传输;接收者通过对量化的DCT系数进行解码,并对每个图像块进行的二维DCT反变换。最后将操作完成后所有的块拼接起来构成一幅单一的图像。对于一般的图像而言,大多数DCT系数值都接近于0,所以去掉这些系数不会对重建图像的质量产生较大影响。因此,利用DCT进行图像压缩确实可以节约大量的存储空间。 由于图像可看成二维数据矩阵,所以在图像编码中多采用二维正交变换方式,然而其正交变换的计算量太大,所以在实用中变换编码并不是对整幅图像进行变换和编码,而是将图像分成若

浅谈无损压缩算法

龙源期刊网 https://www.sodocs.net/doc/057401398.html, 浅谈无损压缩算法 作者:孔凡龙,程思远,关迅 来源:《电脑知识与技术》2011年第22期 摘要:该文介绍了经典的Huffman编码和目前压缩比最高的PAQ系列压缩算法,包括Huffman编码的原型,改进后的自适应Huffman编码及他们各自的实现方法和优缺点,PAQ系列压缩算法是如何进行上下文建模,预测和编码的。 关键词:无损压缩;Huffman;PAQ 中图分类号:TP311文献标识码:A文章编号:1009-3044(2011)22-5466-02 在信息高速发展的今天,人们进行交流沟通的数据量相当的庞大,如何更好,更快的传输和存储数据已成为一个重大的问题,单纯地提高存储容量,并不能从根本解决问题,而数据的压缩是解决这一问题的重要方法。从无损音乐格式ape到文档的存储,数据的无损压缩已广泛应用于各个领域。 1 无损压缩概述 数据压缩是按照特定的编码机制用比未经编码少的数据位(或者其它信息相关的单位)表示信息的过程。无损压缩是利用数据的统计冗余进行压缩,可完全回复原始数据而不引起任何失真,但压缩率是受到数据统计冗余度的理论限制,一般为20%到50%。这类方法广泛用于 文本数据,程序和特殊应用场合的图像数据的压缩。 2 无损压缩算法Huffman和PAQ 2.1 基于Huffman编码的压缩 2.1.1 静态Huffman和动态Huffman编码 Huffman编码使用变长编码表对源符号进行编码,其中变长编码表是通过一种评估来源符号出现机率的方法得到的,出现次数多的符号使用较短的编码,出现次数少的则使用较长的编码,这便使编码之后的符号串的平均长度降低,从而达到无损压缩数据的目的。Huffman编码是通过构建最优二叉树即带权路径长度最小的二叉树,来实现对数据的编码。Huffman编码的过程: (1)对数据中的源符号的种类和数量进行统计,共有n个源符号,其出现的频率分别为w1,w2...wn;

三种不同灰度图像增强算法对比

三种不同灰度图像增强算法对比 一、摘要 本文主要是运用直方图均衡化、平滑、锐化三种常见的图像增强算法对图像进行处理,并在此基础上分别用这 3 种算法处理的灰度图像进行比较,比对它们对图像的处理效果, 分析3 种方法在图像增强处理能力的优劣之处。 结果发现,直方图均衡化可以均衡图像的灰度等级, 经过直方图的均衡化,图像的细节更加清楚了,但是由于直方图均衡化没有考虑图像的内容,只是简单的将图像进行直方图均衡,提高图像的对比度,使图像看起来亮度过高,使图像细节受到损失; 图像平滑的目的是减少或消除图像的噪声, 图像平滑可以使图像突兀的地方变得不明显, 但是会使图像模糊,这也是图像平滑后不可避免的后果,只能尽量减轻,尽量的平滑掉图像的噪声又尽量保持图像细节,这也是图像平滑研究的主要问题; 图像锐化使图像的边缘、轮廓变得清晰,并使其细节清晰,常对图像进行微分处理,但是图像的信噪比有所下降。 关键词: 图像增强灰度图直方图平滑锐化 二、三种图像增强算法 图像预处理是相对图像识别、图像理解而言的一种前期处理,主要是指按需要进行适当的变换突出某些有用的信息,去除或削弱无用的信息,在对图像进行分析之前, 通常要对图像质量进行改善,改善的目的就是要使处理后的图像比原始图像更适合特定的应用。影响图像清晰度的因素很多,主要有光照不足、线路传输收到干扰等。 现存的图像增强技术主要分为空间域法和频率域法两类,其中的增强方法主要有直方图的修正、灰度变换、图像平滑、图像锐化、伪彩色和假彩色处理等。下面主要采用直方图均衡化、图像平滑、图像线性锐化对图像进行增强处理, 对比他们的处理效果,分析 3 种方法的在图像增强处理方面的优劣。 1、直方图均衡化 直方图均衡化也称为直方图均匀化,是一种常见的灰度增强算法,是将原图像的直方图经过变换函数修整为均匀直方图,然后按均衡后的直方图修整原图像。 为方便研究,先将直方图归一化,然后图像增强变换函数需要满足2个条件。 假设灰度级为归一化至范围[0,1]内的连续量,设其中任一灰度级别Z归一化为r,变换后图像的任一灰度级Z'归一化为s,显然r,s应当满足:0<=r<=1,0<=s<=1 因此直方图修正就是对下列公式的计算过程:s=T(r)或r=T'(s) 式中T(r)为变换函数,它必须满足下列条件: a在0<=r<=1区间内是单值单调增加函数; b对于0<=r<=1,有T(r)在[0,1]内。 条件a 保证灰度级从黑到白的次序,而条件b确保映射后的像素灰度在允许的范围内,避免整个图像明显变亮或者变暗。 从S 到r的反变换关系为r=T'(s) ;T'(s)对r同样满足上述条件。 灰度变换是对图像上各个像素点的灰度值x 按某个函数T 变换到y ,将图像的灰度级整个范围或其中某一段( A, B)扩展或压缩到( A, B)。直方图均衡化是灰度变换的一个重要应用,是以累计分布函数变换为基础的直方图修正法, 可以产生一幅灰度级分布具有均匀概率密度的图像。一幅图像灰度级r k 出现的概率近似为 其中n 是图像中像素的总和, nk 是灰度级为r k 的像素个数, L 为图像中灰度级总数。若

图像增强技术要点

数字图像处理期中论文 图像增强技术综述 学院信息工程学院 专业电子信息工程 方向信息处理方向 姓名何娜娜 学号200710113081 中国传媒大学 2010 年11 月27 日

图像增强技术综述 内容摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。 关键词:图像增强直方图增强对比度增强平滑锐化彩色图像增强 Abstract Digital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm. The application of occasions, and its image enhancement method of performance evaluation. Keywords:Image Enhancement histogram enhancement contrast enhancement smoothing sharpening 1 图像增强概述 1.1 图像增强背景及意义 在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚

相关主题