搜档网
当前位置:搜档网 › 第六章半导体催化剂的催化作用及光催化原理.

第六章半导体催化剂的催化作用及光催化原理.

第六章半导体催化剂的催化作用及光催化原理.
第六章半导体催化剂的催化作用及光催化原理.

第六章半导体催化剂的催化作用及光催化

原理

?本章主要内容:

?半导体的能带结构及其催化活性

?从能带结构出发,讨论催化剂的导电性能、逸出功与催化活性的关

?半导体多相光催化原理

金属氧化物与金属硫化物催化剂概述

过渡金属氧化物与过渡金属硫化物有许多相似之处,多为半导体型化合物。

作为氧化用的过渡金属氧化物催化剂主要催化反应类型是烃类的选择性氧化和NOx的还原等;

作为催化剂的多为过渡金属硫化物,如Mo、W、Ni、Co、Fe等的金属硫化物具有加氢、异构、氢解等催化活性,用于油品的加氢精制;加氢脱硫(HDS)、加氢脱氮(HDN)、加氢脱金属(HDM)等过程。

半导体的能带结构及其催化活性

过渡金属氧化物、硫化物(半导体)催化剂

过渡金属氧化物、硫化物催化剂多属半导体类型,本章用半导体能带理论来说明这类催化剂的催化特性。将半导体的导电性能、电子逸出功与催化活性相关联,解释解释这类催化剂的催化作用。

固体的能带结构

原子核周围的电子是按能级排列的。例如1S,2S,2P,3S,3P……内层电子处于较低能级,外层电子处于较高能级。

固体是由许多原子组成的,固体中许多原子的电子轨道发生重叠,其中外层电子轨道重叠最多。由于这种重叠作用,电子不再局限于在一个原子内运动,而是在整个固体中运动,这种特性称为电子的共有化。

但重叠的外层电子也只能在相应的轨道间转移运动。例如3S引起3S共有化,形成3S 能带;2P轨道引起2P共有化,形成2P能带。

禁带、满带或价带、空带或导带

3S能带与2P能带之间有一个间隙,其中没有任何能级,故电子也不能进入此区,称之为禁带;

下面一部分的能级组成一个带,一般充满或部分充满价电子,称为满带或价带;

上面一部分的能带也组成一个带,在基态时往往不存在电子,只有处于激发态时才有电子进入此带,所以称为空带,又叫导带;

激发到空带中去的自由电子提供了半导体的导电能力。

金属的能带结构

导体、半导体、绝缘体的能带结构比较

金属的能带结构

导体都具有导带,能带没有被电子完全充满,在外电场的作用下,电子可从一个能级跃迁到另一个能级,因此能够导电。

绝缘体的能带结构

绝缘体的满带己被电子完全填满,而禁带很宽(>5eV),满带中的电子不能跃迁到空带上去,所以不能导电。

半导体

半导体的禁带很窄,在绝对零度时,电子不发生跃迁,与绝缘体相似;

当温度升高时,部分电子从满带激发到空带上去,空带变成导带,而满带则因电子移去而留下空穴。电子和空穴在外加电场作用下能够导电,称半导体。

半导体的类型

本征半导体:不含杂质,具有理想的完整的晶体结构,有电子和空穴两种载流子,例如Si、Ge等。

N 型半导体:含有能供给电子的杂质,此杂质的电子输入空带成为自由电子,空带变成导带。该杂质叫施主杂质。

P型半导体:含有易于接受电子的杂质,半导体满带中的电子输入杂质中而产生空穴,该杂质叫受主杂质。

本征半导体能带结构

不含杂质,具有理想的完整的晶体结构,具有电子和空穴两种载流子

N型半导体(电子型半导体)

在导带和满带之间另有一个能级,并有电子填充其中,该电子很容易激发到导带而引起导电,这种半导体就称为N型半导体。

中间的这个能级称为施主能级。满带由于没有变化在导电中不起作用。

实际情况中N型半导体都是一些非计量的氧化物,在正常的能带结构中形成了施主能级。

有四种情形的N型半导体

(1) 正离子过量:含有过量Zn的ZnO 属于N型半导体

(2) 负离子缺位氧化物属于N型半导体

(3)高价离子同晶取代

(4) 电负性较小的原子掺杂

P型半导体(空穴型半导体)

在禁带中存在一个能级,它很容易接受满带中跃迁上来的电子,使满带中出现空穴而导

电,这种导电方式就是P型导电。

这种能级称为受主能级,有受主能级的半导体称为P型半导体,P型半导体也是一些非计量的化合物,这些非计量关系造成半导体中出现受主能级。

有三种情形的P型半导体

(1) 氧化物中正离子缺位

例如,在NiO中Ni2+缺位,相当于减少了两个正电荷。为保持电中性,在缺位附近,必定有2-Ni2+个变成Ni3+,这种离子可看作为Ni2+束缚住一个空穴,即Ni3+=Ni2+·,这空穴具有接受满带跃迁电子的能力,当温度升高,满带有电子跃迁时,就使满带造成空穴,从而出现空穴导电。

(2) 氧化物中低价正离子同晶取代

若以Li+取代NiO中的Ni2+,相当于少了一个正电荷,为保持电荷平衡,Li+附近相应

要有一个Ni2+成为Ni3+。即Ni3+=Ni2+·,这空穴具有接受满带跃迁电子的能力,同样可以造成受主能级而引起P型导电。

(3)电负性较大原子的掺杂

在NiO晶格中掺入电负性较大的原子时,例如F,它可以从Ni2+夺走一个电子成为F-,同时产生一个Ni3+,也造成了受主能级。

总之,能在禁带中靠近满带处形成一个受主能级的固体就是P型半导体,它的导电机理是空穴导电。

费米能级EF

费米能级EF是半导体中价电子的平均位能。

本征半导体中,EF在满带和导带之间;

N型半导体中,EF在施主能级和导带之间;

P型半导体中,EF在受主能级和满带之间。

电子逸出功由Φ

电子逸出功:将一个具有平均位能的电子从固体内部拉到固体外部所需的最低能量。掺入施主杂质使费米能级提高,从而导带电子增多并减少满带的空穴。

对N型半导体来说,电导率增加了

对P型半导体而言,电导率降低

掺入受主杂质其作用正好相反

对N型半导体来说,电导率降低了

对P型半导体而言,电导率增加

半导体催化剂的化学吸附本质

半导体的催化作用把表面吸附的反应物分子看成是半导体的施主或受主。

半导体催化剂上的化学吸附:

对催化剂来说,决定于逸出功的大小;

对反应物分子来说,决定于电离势I的大小。

由Φ和I的相对大小决定了电子转移的方向和限度。

(1) 当I <Φ时

电子从吸附物转移到半导体催化剂上,吸附物带正电荷。

如果催化剂是N型半导体其电导增加,而P型半导体则电导减小。

这种情况下的吸附相当于增加了施主杂质,所以无论N型或P型半导体的逸出功都降低了。

(2) 当I>Φ时

电子从半导体催化剂转移到吸附物,于是吸附物是带负电荷的粒子吸附在催化剂上,可以把吸附物视作为受主分子。

对N型半导体其电导减小,而P型半导体则电导增加,吸附作用相当于增加了受主杂质从而增加了逸出功。

(3) 当I≈Φ时

半导体与吸附物之间无电子转移,此时形成弱化学吸附,吸附粒子不带电。

无论对N型或P型半导体的电导率都无影响。

例子

对于某些吸附物如O2,由于电离势很大,无论在哪种半导体上的化学吸附总是形成负离子;

有些吸附物,如CO 、H2,由于电离势小,容易形成正离子。

半导体催化剂的催化活性

催化剂的活性与反应物、催化剂表面局部原子形成的化学吸附键性质密切相关。

化学吸附键的形成和吸附键的性质与多种因素有关,对半导体催化剂而言,其导电性是影响活性的主要因素之一。 例子

对于2N2O =2N2十O2反应在金属氧化物催化剂上进行时,实验发现:

P 型半导体氧化物(Cu2O ,CoO ,NiO ,CuO ,CdO ,Cr2O3,Fe2O3等)活性最高

其次是绝缘体(MgO ,CaO ,Al2O3)

N 型半导体氧化物(ZnO)最差;

实验研究还发现,在P 型半导体上进行分解反应时,催化剂的电导率增加,而在N 型半导体上进行时电导下降。

据此可以推测:N2O 在半导体表面上吸附时是受主分子。

2N2O =2N2十O2的反应机理

若N 2O 分解分两步进行

2N 2O =2N 2十O 2 在P 型半导体上反应活性较高的解释

反应机理中的第一步是不可逆快反应,第二步是慢反应,是决定反应速度步骤。

催化剂的电导率应该由第一步所引起,总的结果为N 型电导下降,P 型电导上升。这与实验结果一致。

反应速率由第二步控制,所以要加快反应速率,必须提高催化剂接受电子的速率。由于P 型半导体的空穴能位比N 型半导体的导带能位更低,所以接受电子的速率快得多,这就解释了P 型半导体的活性较高的原因。

掺杂对2N2O =2N2十O2反应的影响

适当加入一些杂质使费米能级下降,即加入一些受主杂质会有助于加速反应。

但是反应的决定反应速度步骤随条件而变化,当受主杂质加得太多到一定程度已严重影响到第一步要求电子的速率,这样反过来第一步会成为决定反应速度步骤。

事实上对P 型半导体NiO 加一些Li2O 证实了上述的推论,适当加入一些Li2O 可以增加空穴浓度,提高反应速率,但当Li2O 的量超过0.1%时,反应速率反而降低。因为此时空穴浓度太高,使第一步吸附产生O-成为困难。所以添加Li2O 有一个最佳值。

半导体催化剂的选择原则

设反应为 A+B =C

A 为施主分子,

B 为受主分子。其电子转移过程如下图所示:

由于A 、B 的吸附速率常常是不一样的,所以决定反应速度步骤也往往不一样。

若A +十e 是慢过程,反应为施主反应,增加催化剂空穴,能增加反应速率。 若B 十

e -是慢过程,反应为受主反应,增加催化剂自由电子则能增加反应速率。

慢过程的确定

究竟哪一步为决定反应速度步骤?取决于反应物A 、B 的电离势(IA 、IB)和催化剂的电子逸出功的相对大小。

对上述A+B =C 反应,催化剂的逸出功必须介于IA 和IB 之间,且IA <<IB 才是有效的催化剂。

第一种类型

逸出功靠近IA,<。此时B得电子比A给出电子到催化剂容易,于是A的吸附成为决定反应速度步骤,属于P型反应。为了加快反应速率,必须提高催化剂的以使增加,必须降低费米能级EF,加入受主杂质对反应有利。

第二种类型

靠近IB,<。此时A给催化剂电子,比B从催化剂得到电子要容易得多,于是B 的吸附成为决定反应速度步骤。

加入施主杂质提高EF以降低来使增大而加速反应。

第三种类型

在IA和IB之间的中点即。此时二步反应速率几乎相近,催化反应速率也为最佳。

由此推论:如果已知IA和IB的话,只要测出催化剂的逸出功就可推断反应的活性大小

光催化原理及应用-以TiO2为例

TiO2光催化反应原理

光催化反应类型

TiO2光催化活性的影响因素与TiO2光催化剂的改性

TiO2光催化技术存在的问题

概述

20世纪60年代中期,发现半导体材料具有光敏性,并能引发吸附物种的氧化还原反应,开始了半导体光致催化研究。

20世纪70年代初期,Fujishima发现施加偏压的TiO2半导体单晶电极受光照后能将H2O 分解为H2 和O2,光催化在分解水制氢的研究中得到发展,但由于现有光催化剂的量子效率和催化活性低,这一研究目前仍未取得太大进展。

20世纪80年代以来,光催化研究较多集中在半导体多相光催化方面,在一定波长光照下,半导体中产生电子-空穴对,吸附到半导体催化剂表面的反应物种得到或失去电子实现光致氧化还原反应。

20世纪90年代以来,多相光催化用于环境污染的深度净化,取得了较大进展。

光催化及光催化作用的基本问题

光催化:既需要有催化剂的存在,又需要光的作用。有时光催化作用,还需要在一定的热环境中进行。光催化作用比一般催化作用涉及的问题要多得多。

光催化作用研究的基本问题

反应中,首先被光活化的是催化剂?还是反应物?其活化态是什么?

被光活化的催化剂或反应物分子通过什么途径完成整个光催化过程?

半导体多相光催化反应原理-TiO2为例

光催化反应原理

?半导体粒子具有能带结构:

?由填满电子的低能价带和空的高能导带构成,

?价带和导带之间存在禁带,禁带宽度为E g。

?当半导体受到能量等于或大于禁带宽度(E g)的光照射时,价带上的电子可被激发跃迁

到导带,同时,在价带产生相应的空穴,这样就在半导体内部生成电子(e-)-空穴( h+ )对。

TiO2光生空穴的电势

?当半导体受到受到光激发而跃迁到导带。由于带隙的存在,光生电子-空穴对有一定

的寿命,电子位于能量较高的状态,而空穴位于能量较低的状态。

?导带上的激发电子可作为还原剂被吸附物种捕获而发生还原反应,而价带上的空穴

作为氧化剂而使反应分子发生氧化反应。

?锐钛型TiO2的禁带宽度3.2eV,它上面的光生空穴的电势大于+3.0eV,比氯气的+

1.36eV和臭氧的+

2.07eV电势还高,具有很强的氧化性。

光催化剂上光生空穴的氧化性应用

?TiO2经光激发产生的h+的氧化性,比起氯气、臭氧的氧化性强得多。

?空穴( h+ )能够同吸附在催化剂粒子表面的OH- 或H2O 发生作用生成·OH。·OH是一

种活性更高的氧化物种,能够无选择性地氧化多种有机物并使之矿化。

?能够抗拒光催化强氧化性破坏的有机物为数极少。

?常用于对污染源中各种有机污物的光催化降解。

光催化剂表面可能发生的过程

电子和空穴的产生: e-h+(S.C.) + hν→e-cb +h+vb

电子和空穴的传递: e-(bulk) → e-(surface)

h+(bulk) → h +(surface)

电子和空穴的复合: e-(bulk)+ h +(bulk) →heat

e-(surface)+ h +(surface) →heat;

电子的俘获和空穴的氧化还原: e-(surface)+ A → A-

h +(surface) + D → D+

光催化反应的主要类型

光催化作用的类型(一)

反应物分子首先吸收一定能量的光而被激活后,再在催化剂作用下引起的催化反应。

这类光催化反应可表示为:

反应物(A) + hν→活化的反应物(A*)

活化的反应物(A*) + 催化剂(K) →反应中间物(AK)*→反应产物(B) +催化剂(K)

被光激发的分子与普通分子在结构和化学性质上有所不同(激发态的酸-碱强度差别大、有特殊的氧化还原性质、电子密度的重排也将影响到分子中发生反应的位置)。

由光激发的分子在催化剂作用下的反应可以完全不同于一般的催化反应。

光催化作用的类型(二)

催化剂首先吸收一定能量的光被激活,激活的催化剂再同反应物分子作用而得到产物。

这类光催化反应可表示为:

催化剂(K)+ hν→活化的催化剂(K*)

活化的催化剂(K*) + 反应物(A) →反应中间物(AK)* →反应产物(B) +催化剂(K) 许多半导体(如TiO2)的光催化反应属于这一类型。催化剂在光被激发下,产生的电子和空穴可以分别将反应还原和氧化。

光催化作用的类型(三)

?催化剂与反应物分子之间由于强相互作用而形成配合物,配合物吸收一定能量的光

再生成产物并将催化剂分离出来。这类光催化反应可表示为:

?催化剂(K) + 反应物(A) →配合物(AK)

?配合物(AK)+ hν→反应中间物(AK)*→反应产物(B) +催化剂(K)

````许多用金属有机化合物为催化剂的光催化反应属于这一类型,常以均相催化过程进行。如用Fe(CO)6为催化剂的戊烯的异构化反应.

光催化反应中的两个重要的参数

光催化反应就其本质也属于光化学反应,研究光催化反应时也需考虑光能利用率的问题。为此,有必要了解两个参数:

爱因斯坦的光化当量定律;

量子产率

爱因斯坦的光化当量定律

光化学反应中,反应分子吸收一定频率的光,进行化学反应。初步过程是一个光子活化一个反应分子。被活化后的反应分子进行分解或与别的分子化合。活化1摩尔的反应分子需要吸收N个(光子)量子(N为阿佛加得罗常数6.023 ?1023)。

如用U代表N个量子的总能量,,U= Nhν= Nhc/λ。(-爱因斯坦的光化当量定律)其中c为光速(3?108 m/s),为光的波长,单位为cm,h为普朗克常数(6.62 ?10-27)。

U为1mol物质吸收的能量,又叫一个爱因斯坦,它的值由吸收光的波长决定的。光的波长愈短,能量愈大。紫外光的爱因斯坦值最大,对光化学反应效率也大。

量子产率

量子产率=参加反应分子数/被吸收的光量子数。

根据爱因斯坦的光化当量定律,量子产率应该为1。但实际情况是有的光反应过程中,有部分被光活化的分子在生成产物前,因辐射或与另一分子碰撞而成为非活化分子,没有参加反应。这时量子产率<1。

另一情形,如果光活化的分子分解成原子后,后续步骤不易进行,则分解的原子再结合成分子,量子产率也较低。

在光参与的化学反应中,如被活化的分子进一步反应进行得很快,会出现量子产率>1的情况。

光催化反应的效率

只有当电子受体与电子给体同时存在,构成氧化还原催化循环,光激发产生的电子-空穴对才不至于再发生复合,或在半导体催化剂表面积累而造成光腐蚀。

光催化反应进行的效率将主要取决于电子和空穴的分离以及其向催化剂表面的迁移速率和被反应物种捕获而发生氧化还原的速率。

TiO2光催化活性的影响因素与改性

TiO2光催化活性的影响因素

TiO2晶相、表面结构和晶格缺陷的影响

温度、溶液的pH、外加氧化剂的影响

TiO2晶相的影响

在TiO2的三种晶型锐钛矿、金红石和板钛矿中,锐钛矿表现出高的活性。其主要原因:(1)锐钛矿的禁带宽度为 3.2eV,金红石的禁带宽度为3.0eV,较高的禁带宽度使其电子-空穴对具有更正和更负的电位,因而具有较高氧化能力;(2)在结晶过程中锐钛矿晶粒通常具有较小的尺寸和较大的比表面积,其表面吸附H2O、O2和OH的能力,较强的吸附能力对其活性有利。

研究表明,由锐钛矿和金红石以适当比例组成的混晶通常比单一晶体的活性高。金红石层能有效地提高锐钛矿晶型中电子-空穴分离效率。30%金红石和70%锐钛矿组成的混晶活性最高。高活性的P-25也是由两种晶型混合组成的。

温度及外加氧化剂的影响

温度对光催化反应速率的影响具有双重性,

提高温度有利于半导体表面的氧化还原反应的进行;

温度升高不利于反应物和氧在氧化剂表面的吸附。

外加氧化剂的影响

要降低电子-空穴对的复合,一种有效的方法是向反应液中加入氧化剂,氧化剂是一种良好的电子受体。常用的外加氧化剂的方法为:通入O2 ,投加Fe3+、H2O2 或Fenton试剂(Fe2+ + H2O2 )。

TiO2光催化剂的主要改性方法

贵金属沉积改性

半导体复合改性

离子掺杂

SnO2/TiO2 复合光催化剂电荷分离

两种半导体材料复合时,催化活性会显著改观。SnO2与TiO2 两者的能级不同,光激发TiO2 产生的电子从其较高的导带迁移至SnO2 的较低的导带;空穴的运动方向跟电子的运动方向相反,光生空穴则从SnO2 的价带迁移至TiO2的价带,实现了电子和空穴的良好分离。

材料复合还增大催化剂总的比表面,也有利于提高反应速率。

半导体光催化的应用

?

?光解水制氢、光催化有机合成、光催化消除环境污染物

?光催化沉积制备负载型贵金属催化剂,利用光照在半导体表面进行的氧化还原反应,

沉积贵金属制得相应的高活性担载型催化剂。

光催化作用举例

CO 在ZnO半导体催化剂上

与O2 反应生成CO2的反应

ZnO经紫外光照射激发产生了电子和空穴,产生的空穴可与CO作用生成中间物种CO+,而产生的电子则与O原子结合生成O-,最后,CO+与O-复合得到CO2 。反应过程如下:ZnO + hν→ ZnO + e-+h+

h+ + CO → CO+

O+ e-→ O-

CO+ + O- → CO2

为将O2分解为O,反应需要在一定温度(473K)下进行。此反应的速率方程为rco2=kPcoP O2

光催化分解水生成氢(H2)和氧(O2)

用n型半导体TiO2,以波长为400 nm( 能量约为3eV)的光照射,在半导体的导带生成e- ,而在其价带形成h+ 。水经解离生成的H+被e- 还原而得到H2 ,而OH-可被h+氧化成O2 。

为了提高半导体催化剂进行光催化分解水制氢(H2)和氧(O2)的效率,常采用以金属或金属氧化物修饰的TiO2半导体催化剂,如TiO2-Pt, TiO2-RuO2。在TiO2-Pt上,光生e-可迁移到金属Pt上,将H+ 还原成H2 。在TiO2- RuO2上,光生h+可迁移到RuO2表面,将OH-氧化成O2 。

第六章半导体催化剂的催化作用及光催化原理.

第六章半导体催化剂的催化作用及光催化 原理 ?本章主要内容: ?半导体的能带结构及其催化活性 ?从能带结构出发,讨论催化剂的导电性能、逸出功与催化活性的关 系 ?半导体多相光催化原理 金属氧化物与金属硫化物催化剂概述 过渡金属氧化物与过渡金属硫化物有许多相似之处,多为半导体型化合物。 作为氧化用的过渡金属氧化物催化剂主要催化反应类型是烃类的选择性氧化和NOx的还原等; 作为催化剂的多为过渡金属硫化物,如Mo、W、Ni、Co、Fe等的金属硫化物具有加氢、异构、氢解等催化活性,用于油品的加氢精制;加氢脱硫(HDS)、加氢脱氮(HDN)、加氢脱金属(HDM)等过程。 半导体的能带结构及其催化活性 过渡金属氧化物、硫化物(半导体)催化剂 过渡金属氧化物、硫化物催化剂多属半导体类型,本章用半导体能带理论来说明这类催化剂的催化特性。将半导体的导电性能、电子逸出功与催化活性相关联,解释解释这类催化剂的催化作用。 固体的能带结构 原子核周围的电子是按能级排列的。例如1S,2S,2P,3S,3P……内层电子处于较低能级,外层电子处于较高能级。 固体是由许多原子组成的,固体中许多原子的电子轨道发生重叠,其中外层电子轨道重叠最多。由于这种重叠作用,电子不再局限于在一个原子内运动,而是在整个固体中运动,这种特性称为电子的共有化。 但重叠的外层电子也只能在相应的轨道间转移运动。例如3S引起3S共有化,形成3S 能带;2P轨道引起2P共有化,形成2P能带。 禁带、满带或价带、空带或导带 3S能带与2P能带之间有一个间隙,其中没有任何能级,故电子也不能进入此区,称之为禁带; 下面一部分的能级组成一个带,一般充满或部分充满价电子,称为满带或价带; 上面一部分的能带也组成一个带,在基态时往往不存在电子,只有处于激发态时才有电子进入此带,所以称为空带,又叫导带; 激发到空带中去的自由电子提供了半导体的导电能力。 金属的能带结构 导体、半导体、绝缘体的能带结构比较

催化燃烧原理及催化剂

催化燃烧的基本原理 催化燃烧是典型的气-固相催化反应,其实质是活性氧参与的深度氧化作用。在催化燃烧过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行。借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H20, 同时放出大量热能,其反应过程为: 2 催化燃烧的特点及经济性 2.1催化燃烧的特点 2.1.1起燃温度低,节省能源 有机废气催化燃烧与直接燃烧相比,具有起燃温度低,能耗也小的显著特点。在某些情况下,达到起燃温度后便无需外界供热。 二、催化剂及燃烧动力学 2.1催化剂的主要性能指标 在空速较高,温度较低的条件下,有机废气的燃烧反应转化率接近100%,表明该催化剂的活性较高[9]。催化剂的活性分诱导活化、稳定、衰老失活3 个阶段,有一定的使用限期,工业上实用催化剂的寿命一般在2年以上。使用期的长短与最佳活性结构的稳定性有关,而稳定性取决于耐热、抗毒的能力。对催化燃烧所用催化剂则要求具有较高的耐热和抗毒的性能。有机废气的催化燃烧一般不会在很严格的操作条件下进行,这是由于废气的浓度、流量、成分等往往不稳定,因此要求催化剂具有较宽的操作条件适应性。催化燃烧工艺的操作空速较大,气流对催化剂的冲击力较强,同时由于床层温度会升降,造成热胀冷缩,易使催化剂载体破裂,因而催化剂要具有较大的机械强度和良好的抗热胀冷缩性能。 2.2催化剂种类 目前催化剂的种类已相当多,按活性成分大体可分3 类。2.2.1贵金属催化剂 铂、钯、钌等贵金属对烃类及其衍生物的氧化都具有很高的催化活性,且使用寿命长,适用范围广,易于回收,因而是最常用的废气燃烧催化剂。如我国最早采用的Pt-Al203 催化剂就属于此类催化剂。但由于其资源稀少,价格昂贵,耐中毒性差,人们一直努力寻找替代品或尽量减少其用量。2.2.2过渡金属氢化物催化剂 作为取代贵金属催化剂,采用氧化性较强的过渡金属氧化物,对甲烷等烃类和一氧化碳亦具有较高的活性,同时降低了催化剂的成本,常见的有Mn0x、CoOx和CuOx等催化剂。大连理工大学研制的含Mn02催化剂,在130C及空速13000h-1 的条件下能消除甲醇蒸气,对乙醛、丙酮、苯蒸气的清除也很有效果。

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

新型半导体光催化剂——纳米氧化亚铜的性质以及应用研究

新型半导体光催化剂——纳米氧化亚铜的性质以及应用研究 作者:黄祖斌 摘要:综述了纳米氧化亚铜作为半导体光催化材料的性质和在污染降解方面的应用。全文分三部分,首先对半导体光催化材料的应用现状进行了阐述;然后简要对纳米氧化亚铜作为半导体光催化材料的结构和电磁性能进行分析,详细描述了半导体光催化的光催化机理;最后,指出了该材料目前研究的前沿状况同时也指出了其目前的研究困境和需要进一步改善的方面。 关键词:纳米氧化亚铜;光催化,电子—空穴对;光量子产率及光能利用率 1.引言 近几十年来,随着现代化工工业的飞速发展,工业废气、废水、农业农药和生活垃圾等污染物的骤增,使人类赖以生存的环境——空气和水源受到日益严重的污染。这些污染物可归为3类:(1)有机污染物(R);(2)元机污染物;(3)有害金属离子(M )和有害氮氧化合物(NO x )。不容置疑,空气和水的净化、解毒已成为人们必须十分重视的环境保护研究课题。传统的污染处理措施.如空气分离(air-stripping)、碳吸附(carbon—absorption)等,只是对有机、元机污染物的一种转移、转化、稀释处理,没从根本上把它们分解成无毒物质,有时还造成二次污染;而采用氧化和臭氧处理的方法,因为可能会对环境带来其它副作用,具有风险性而被弃用在环境保护应用方面。近20多年来.光催化技术作为一种行之有效的方法对环境污染物具有很好的处理效果,因而成为研究的热点问题。其中半导体异相光催化因其能够完全催化降解污染空气和废水中的各种有机物和无机物而成为最引人注目的新技术,该技术能将许多有机污染物可以完全降 解成为C02、H 20、C1-、P0 4 3-等无机物,从而使体系的总有机物含量(TOC)大大降 低;许多无机污染物如CN-、NO x 、NH 3 、H 2 S等也同样能通过光催化反应而被降解。 半导体光催化是指半导体催化剂在可见光或紫外光作用下产生电子——空穴对,吸附在半导体表面的02、H 2 0及污染物分子接受光生电子或空穴,从而发生一系列的氧化还原反应,使有毒的污染物得以降解为无毒或毒性较小的物质的一种光化学方法:此法可在常温下进行,可利用太阳光,具有催化剂来源广、价廉、无毒、稳定、可回收利用、无二次污染等优点。目前降解有机污染物的光催 化剂多为N 型半导体材料.如TiO 2、ZnO 、CdS、WO、SnO 2 、Fe 2 3 等。但在众多 半导体光催化剂中,二氧化钛、纳米氧化亚铜因其氧化能力强、催化活性高、稳定性好等优势一直处于光催化研究的核心地位。本文就纳米氧化亚铜作为优质半导体催化材料进行阐述。 2纳米氧化亚铜结构 Cu 2 O的晶格结构是带有共价性低配位的所谓红铜矿(氧化亚铜)型结构,如图1

光催化原理

光催化原理 光催化的原理: (1)它是一种利用新型的复合纳米高科技功能材料的技术。 (2)它一种是低温深度反应技术,光催化剂纳米粒子在一定波长的光线照射下受激生成电子—空穴对,空穴分解催化剂表面吸附的水产生氢氧自由基,电子使其周围的氧还原成活性离子氧,从而具备极强的氧化—还原作用,将光催化剂表面的各种污染物摧毁。 (1)低温深度反应: 光催化氧化可在室温下将水、空气和土壤中有机污染物完全氧化成无毒无害的物质。而传统的高温焚烧技术则需要在极高的温度下才可将污染物摧毁,即使用常

规的催化氧化方法亦需要几百度的高温。 (2)净化彻底: 它直接将空气中的有机污染物,完全氧化成无毒无害的物质,不留任何二次污染,目前广泛采用的活性炭吸附法不分解污染物,只是将污染源转移。 (3)绿色能源: 光催化可利用太阳光作为能源来活化光催化剂,驱动氧化—还原反应,而且光催化剂在反应过程中并不消耗。从能源角度而言,这一特征使光催化技术更具魅力。(4)氧化性强: 大量研究表明,半导体光催化具有氧化性强的特点,对臭氧难以氧化的某些有机物如三氯甲烷、四氯化炭、六氯苯、都能有效地加以分解,所以对难以降解的有机物具有特别意义,光催化的有效氧化剂是羟基自由基(HO),HO的氧化性高于常见的臭氧、双氧水、高锰酸钾、次氯酸等。 (5)广谱性: 光催化对从烃到羧酸的种类众多有机物都有效,美国环保署公布的九大类114 种污染物均被证实可通过光催化得到治理,即使对原子有机物如卤代烃、染料、含氮有机物、有机磷杀虫剂也有很好的去除效果,一般经过持续反应可达到完全净化。 (6)寿命长: 理论上,催化剂的寿命是无限长的。

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备,表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备, 表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。 1.1研究背景与意义

络合催化剂及其催化作用机理

络合催化剂及其催化作用机理 1 基本知识 络合催化剂,是指催化剂在反应过程中对反应物起络合作用,并且使之在配位空间进行催化的过程。 催化剂可以是溶解状态,也可以是固态;可以是普通化合物,也可以是络合物,包括均相络合催化和非均相络合催化。 络合催化的一个重要特征,是在反应过程中催化剂活性中心与反应体系,始终保持着化学结合(配位络合)。能够通过在配位空间内的空间效应和电子因素以及其他因素对其过程、速率和产物分布等,起选择性调变作用。故络合催化又称为配位催化。 络合催化已广泛地用于工业生产。有名的实例有: ①Wacker工艺过程: C2H4 + O2 CH3?CHO C2H4 + O2 + CH3?COOH CH3?COO C2H4 + H2O R?CH? (CHO) ?CH3R?CH2?CH2?CH② 0X0 工艺过程: R?CH=CH2 + CO/H2 催化剂:HCo(CO)4 , 150 °C, 250X 105Pa;RhCI(CO)(PPh3)2 , 100 C, 15X 105Pa ③Monsanto甲醇羰化工艺过程: CH3OH + CO CH3?COOH 催化剂:RhCI(CO)(PPh3)2/CH3I 从以上的几例可以清楚地看到,络合催化反应条件较温和,反应温度一般在100~200 C左右,反应压 力为常压到20X105Pa上下。反应分子体系都涉及一些小分子的活化,如CO、H2、O2、C2H4、C3H6等,便于研究反应机理。主要的缺点是均相催化剂回收不易,因此均相催化剂的固相化,是催化科学领域较重要的课题之一。 2 过渡金属离子的化学键合 (1 )络合催化中重要的过渡金属离子与络合物 过渡金属元素(T.M.)的价电子层有5个(n - 1)d,1个ns和3个np,共有9个能量相近的原子轨道,容易组成d、s、p 杂化轨道。这些杂化轨道可以与配体以配键的方式结合而形成络合物。凡是含有两个或两个以上的孤对电子或n键的分子或离子都可以作配体。过渡金属有很强的络合能力,能生成多种类型的络合物,其催化活性都与过渡金属原子或离子的化学特性有关,也就是和过渡金属原子(或离子)的电子结构、成键结构有关。同一类催化剂,有时既可在溶液中起均相催化作用,也可以使之成为固体催化剂在多相催化中起作用。 空的(n - 1)d轨道,可以与配体L(CO、C2H4…等)形成配键(M?:L),可以与H、R-①-基形成M-H、M-C型b键,具有这种键的中间物的生成与分解对络合催化十分重要。由于(n - 1)d轨道或nd外轨道参与 成键,故T.M.可以有不同的配位数和价态,且容易改变,这对络合催化的循环十分重要。 大体趋势是:①可溶性的Rh、lr、Ru、Co的络合物对单烯烃的加氢特别重要;②可溶性的Rh、Co 的络合物对低分子烯烃的羰基合成最重要;③Ni络合物对于共轭烯烃的齐聚较重要;④ Ti、V、Cr络合物 催化剂适合于a烯烃的齐聚和聚合;⑤第VHI族T.M.元素的络合催化剂适合于烯烃的齐聚。这些可作为研 究开发工作的参考。 (2)配位键合与络合活化各种不同的配体与T.M.相互作用时,根据各自的电子结构特征形成不同的配位键合,配位体本身得到活化, 具有孤对电子的中性分子与金属相互作用时,利用自身的孤对电子与金属形成给予型配位键,记之为L- M,如:NH3、H2就是。给予电子对的L:称为L碱,接受电子对的M称为L酸。M要求具有空的d或p空轨道。 H?, R?等自由基配体,与T.M.相互作用,形成电子配对型b键,记以L-M。金属利用半填充的d、p轨道电 子,转移到L 并与L 键合,自身得到氧化。 带负电荷的离子配位体,如C-、Br- OH -等,具有一对以上的非键电子对,可以分别与T.M.的2个 空d或p轨道作用,形成一个b键和一个n键。这类配位体称为n-给予配位体,形成o- n键合。具有重键的配位

光催化材料的基本原理

二,光催化材料的基本原理 半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子-空穴对的还原氧化性能,可以降解周围环境中的有机污染物以及光解水制备H2和O2。 高效光催化剂必须满足如下几个条件:(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。因此,开发可见光响应的高效光催化材料是该领域的研究热点。只是,现在的研究状况还不尽人意。 三,光催化材料体系的研究概况 从目前的资料来看,光催化材料体系主要可以分为氧化物,硫化物,氮化物以及磷化物 氧化物:最典型的主要是TiO2及其改性材料。目前,绝大部分氧化物主要集中在元素周期表中的d区,研究的比较多的是含Ti,Nb,

Ta的氧化物或复合氧化物。其他的含W,Cr,Fe,Co,Ni,Zr等金属氧化物也见报道。个人感觉,d区过渡族金属元素氧化物经过炒菜式的狂轰乱炸后,开发所谓的新体系光催化已经没有多大潜力。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。 硫化物:硫化物虽然有较小的禁带宽度,但容易发生光腐蚀现象,较氧化物而言,稳定性较差。主要有ZnS,CdS等 氮化物:也有较低的带系宽度,研究得不多。有Ta/N,Nb/N等体系 磷化物:研究很少,如GaP 按照晶体/颗粒形貌分类: (1)层状结构 **半导体微粒柱撑于石墨及天然/人工合成的层状硅酸盐 **层状单元金属氧化物半导体如:V2O5,MoO3,WO3等 **钛酸,铌酸,钛铌酸及其合成的碱(土)金属离子可交换层状结构和半导体微粒柱撑于层间的结构 **含Bi层状结构材料,(Bi2O2)2+(An-1BnO3n+1)2- (A=Ba,Bi,Pb;B=Ti,Nb,W),钙钛矿层(An-1BnO3n+1)2-夹在(Bi2O2)2+层之间。典型的有:Bi2WO6,Bi2W2O9,Bi3TiNbO9

催化作用原理课论文

各类催化剂的特点及应用 姓名 xxx 学号 201400xx 院系化学工程学院 专业化学工程与技术 年级研究生1班 科目催化作用原理

1.前言 催化剂的主要作用是降低化学反应的活化能,加快反应速度,因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动这些行业发展的最有效的动力之一。一种新型催化材料或新型催化工艺的问世,往往会引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913年,铁基催化剂的问世实现了氨的合成,从此化肥工业在世界范围迅速发展;20世纪50年代末,Ziegler-Natta催化剂开创了合成材料工业;20世纪50年代初,分子筛凭借其特殊的结构和性能引发了催化领域的一场变革;20世纪70年代,汽车尾气净化催化剂在美国实现工业化,并在世界范围内引起了普遍重视;20世纪80年代,金属茂催化剂使得聚烯烃工业出现新的发展机遇。 目前,人类正面临着诸多重大挑战,如:资源的日益减少,需要人们合理开发、综合利用资源,建立和发展资源节约型农业、工业、交通运输以及生活体系;经济发展使环境污染蔓延、自然生态恶化,要求建立和发展物质全循环利用的生态产业,实现生产到应用的清洁化。这些重大问题的解决无不与催化剂和催化技术息息相关。因此,许多国家尤其是发达国家,非常重视新催化剂的研制和催化技术的发展,均将催化剂技术作为新世纪优先发展的重点。 催化剂和催化作用:催化剂能加速化学反应而本身不被消耗的物质。催化作用是一种化学作用,是靠少量催化剂来加速化学反应的现象。 催化剂的基本特性:加快反应速度,但只能加速热力学上可能进行的化学反应;不能改变化学平衡的位置,故对正反应有效的催化剂对逆反应也有效;对反应有选择性。 催化剂的分类:目前工业上用的催化剂有2000多种,有不同的分类方法,按工艺与工程特点分为多相固体催化剂、均相配合物催化剂和酶催化剂三类。2. 均相催化 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作用,能起均相催化作用的催化剂为均相催化剂。均相催化剂包括液体酸、碱催化剂和色可赛思固体酸和碱性催化剂。溶性过渡金属化合物(盐类和络合物)等。均相催化剂以分子或离子独立起作用,活性中心均一,具有高活性和高选择性。

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

(精选)半导体材料光催化作用的机理

半导体光催化机理 纳米二氧化钛主要有二种晶体结构,即:锐钛矿和金红石。它们的结构基本单位都是TiO 6八面体,其结构如图1-1所示。二种结构的不同在于八面体的扭曲程度和连接形式。锐钛矿结构由TiO 6八面体通过共边组成,而金红石结构则由共顶点且共边组成。利用纳米TiO 2为光催化剂,在溶液或空气中发生多相光催化降解污染物的反应过程大致包括以下几个主要步骤[5]: 1)TiO 2在光的照射下,被能量大于或等于其禁带宽度的光子所激发,产生具有一定能量的光生电子(e -)和空穴(h +); 2)光生电子(e -)和空穴(h +)在TiO 2颗粒的内部以及界面之间的转移或失活; 3)光生电子(e -)和空穴(h +)到达TiO 2粒子表面并与其表面吸附物质或溶剂中的物质发生相互作用,即发生氧化还原反应,从而产生一些具有强氧化性的自由基团(?OH ,O 2-)和具有一定氧化能力的物质(H 2O 2)。 4)上述产生的具有强氧化性的自由基团和氧化性物质与被降解污染物充分作用,使其氧化或降解为CO 2与H 2O 。 Fig. 1-1 Ti -O 6 octahedron 图1-1 钛氧八面体 H OH Organic h e +— E g O 2O 2-H 2O OH +2-water 2 2Compounds CO 2 2VB CB sun hv + - ·OH Fig. 1-2 Schematic diagram of photocatalytic degradation on semiconductor photocatalysts (TiO 2) [6]

图1-2 半导体光催化反应原理示意图(TiO 2 )[6] 以锐钛矿TiO 2光催化材料为例,当TiO 2 光催化剂受到大于其禁带能量的光 照射时,在其内部和表面都会产生光生电子和光生空穴。一部分光生电子和光生空穴参与光催化反应,另外一部分光生电子与空穴会立即发生复合,以热量的形式散发出去。如果二氧化钛中没有电子和空穴俘获剂,储备的光能在几毫秒的时间内就会通过光生电子和空穴的复合以热能的形式释放出来,或以其它形式散发掉;如果在二氧化钛的表面或者体相中有俘获剂或表面缺陷态时,能够有效阻止光生电子和空穴的重新复合,使电子和空穴有效转移,从而能在催化剂表面发生一系列的氧化-还原反应,将吸收的光能转换为化学能。如图1-2所示[6,7]。以下是一些具体的化学反应式: TiO 2 + h→ h vb+ + e cb- (1-1) h vb + + e cb -→ heat (1-2) h vb + + H 2 O →·OH + H+ (1-3) h vb + + OH-→·OH (1-4) e cb - + O 2 →O 2 -· (1-5) O 2-· + O 2 -· + 2H+→H 2 O 2 + O 2 (1-6) O 2-· + H+→HO 2 · (1-7) HO 2· + H+ + e cb -→H 2 O 2 (1-8) H 2O 2 + h→2·OH (1-9) H 2O 2 + e cb -→·OH + OH- (1-10) 上面的反应式子中,羟基自由基(·OH)和超氧离子自由基(·O 2 -)都有很强 的氧化性,无论它们在气相还是在液相中,都能将一些有机或无机物质氧化,因此,一般认为,·OH和·O 2 -是光催化氧化中主要的也是最重要的活性基团,可 以氧化包括自然界中生物难以转化的各种有机物污染物并使之最后降解成CO 2 、 H 2 O和无毒矿物。对反应的作用物几乎没有选择性,在光催化氧化反应过程中起着决定性作用。而且由于它们的氧化能力强,氧化反应一般不会停留在中间步骤,因而一般不会产生中间副产物。故这种深度氧化的过程在处理环境污染物中具有很大的应用前景,例如:水中的无机、有机污染物卤代烃、芳烃、染料、杀虫剂和除草剂等物质均可根据此原理进行降解除去。但是它们的最大缺点之一是对反应物没有选择性,一定程度上制约了其发展。

光催化原理

光催化原理 光催化的原理: 1.光催化净化的基本原理是什么? (1)它是一种利用新型的复合纳米高科技功能材料的技术。 (2)它一种是低温深度反应技术,光催化剂纳米粒子在一定波长的光线照射下 受激生成电子一空穴对,空穴分解催化剂表面吸附的水产生氢氧自由基,电子使 其周围的氧还原成活性离子氧,从而具备极强的氧化一还原作用,将光催化剂表面的各种污染物摧毁。 mm 伽的w啊轴刊蛉恳Mtn抽iok甜1■自翊HI II住萨轉棉割愉沛抽齢讨堰闵鋼離曲毗n 總需旳擁. 2. 光催化净化的技术特征? (1)低温深度反应: 光催化氧化可在室温下将水、空气和土壤中有机污染物完全氧化成无毒无害的物质。而传统的高温焚烧技术则需要在极高的温度下才可将污染物摧毁,即使用常规的催化氧化方法亦需要几百度的高温。

(2)净化彻底: 它直接将空气中的有机污染物,完全氧化成无毒无害的物质,不留任何二次污染,目前广泛采用的活性炭吸附法不分解污染物,只是将污染源转移。 (3)绿色能源: 光催化可利用太阳光作为能源来活化光催化剂,驱动氧化一还原反应,而且光催 化剂在反应过程中并不消耗。从能源角度而言,这一特征使光催化技术更具魅力。(4)氧化性强: 大量研究表明,半导体光催化具有氧化性强的特点,对臭氧难以氧化的某些有机物如三氯甲烷、四氯化炭、六氯苯、都能有效地加以分解,所以对难以降解的有机物具有特别意义,光催化的有效氧化剂是羟基自由基(HO , H0的氧化性高 于常见的臭氧、双氧水、高锰酸钾、次氯酸等。 (5)广谱性: 光催化对从烃到羧酸的种类众多有机物都有效,美国环保署公布的九大类114 种污染物均被证实可通过光催化得到治理,即使对原子有机物如卤代烃、染料、含氮有机物、有机磷杀虫剂也有很好的去除效果,一般经过持续反应可达到完全净化。 (6)寿命长: 理论上,催化剂的寿命是无限长的。 3. 光催化空气净化器基本净化流程

光催化原理及应用

光催化原理及应用 起源 光触媒,是一个外来词,起源于日本,由于日本文字写成“光触媒”,所以中国人就直接把她命名为“光触媒”。其实日文“光触媒”翻译成中文应该叫“光催化剂”翻译成英文叫“photo catalyst”。光触媒于1967年被当时还是东京大学研究生的藤岛昭教授发现。在一次试验中对放入水中的氧化钛单结晶进行了光线照射,结果发现水被分解成了氧和氢。这一效果作为“ 本多· 藤岛效果” (Honda-Fujishima Effect)而闻名于世,该名称组合了藤岛教授和当时他的指导教师----东京工艺大学校长本多健一的名字。 这种现象相当于将光能转变为化学能,以当时正值石油危机的背景,世人对寻找新能源的期待甚为殷切,因此这一技术作为从水中提取氢的划时代方法受到了瞩目,但由于很难在短时间内提取大量的氢气,所以利用于新能源的开发终究无法实现,因此在轰动一时后迅速降温。 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行,日本的研究机构发表许多关于光触媒的新观念,并提出应用于氮氧化物净化的研究成果。因此二氧化钛相关的专利数目亦最多,其它触媒关连技术则涵盖触媒调配的制程、触媒构造、触媒担体、触媒固定法、触媒性能测试等。以此为契机,光触媒应用于抗菌、防污、空气净化等领域的相关研究急剧增加,从1971年至2000年6月总共有10,717件光触媒的相关专利提出申请。二氧化钛 TiO 2 光触媒的广泛应用,将为人们带来清洁的环境、健康的身体。 催化剂是加速化学反应的化学物质,其本身并不参加反应。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。 光触媒是一种纳米级的金属氧化物材料,它涂布于基材表面,在光线的作用下,产生强烈催化降解功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理;同时还具备除臭、抗污等功能。光催化是在光的辐照下使催化剂周围的氧气和水转化成极具活性的氧自由基,氧化力极强,几乎可以分解所有对人体或环境有害的有机物质总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 早在1839 年, Becquere 就发现了光电现象, 然而未能对其进行理论解释。直到1955 年, Brattain 和Gareet才对光电现象进行了合理的解释, 标志着光电化学的诞生。1972 年, 日本东京大学Fu jishmi a和H onda研究发现[ 3] , 利用二氧化钛单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去30 年里, 人们在光催化材料开发与应用方面的研究取得了丰硕的成果。 以二氧化钛为例, 揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的影响机制; 采用元素掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围; 通过在其表面沉积贵金属纳米颗粒可以提高电子- 空穴对的分离效率, 提高其光催化活性。尽管人们对光催化现象的认知与应用取得了长足的进步, 然而受认知手段与认知水平的限制, 目前对光催化作用机理的研究成果仍不足以指导光催化技术的大规模工业化应用, 亟待大力开展光催化基本原理研究工作以促进这一领域的发展。另一方面, 现有光催化材料的光响应范围窄, 量子转换效率低, 太阳能利用率低, 依然是制约光催化材料应用的瓶颈。寻找和制备高量子效率光催化材料是实现光能转换的先决条件, 也是光催化材料研究者所需要解决的首要任务之一。 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形

催化剂及其作用机理

1基本概念 金属氧化物催化剂常为复合氧化物(Complex oxides),即多组分氧化物。如VO5-MoO3,Bi2O3-MoO3,TiO2-V2O5-P2O5,V2O5-MoO3-Al2O3,MoO3-Bi2O3-Fe2O3-CoO-K2O-P2O5-SiO2(即7组分的代号为C14的第三代生产丙烯腈催化剂)。组分中至少有一种是过渡金属氧化物。组分与组分之间可能相互作用,作用的情况常因条件而异。复合氧化物系常是多相共存,如Bi2O3-MoO3,就有α、β和γ相。有所谓活性相概念。它们的结构十分复杂,有固溶体,有杂多酸,有混晶等。 就催化剂作用和功能来说,有的组分是主催化剂,有的为助催化剂或者载体。主催化剂单独存在时就有活性,如MoO3-Bi2O3中的MoO3;助催化剂单独存在时无活性或很少活性,但能使主催化剂活性增强,如Bi2O3就是。助催化剂可以调变生成新相,或调控电子迁移速率,或促进活性相的形成等。依其对催化剂性能改善的不同,有结构助剂,抗烧结助剂,有增强机械强度和促进分散等不同的助催功能。调变的目的总是放在对活性、选择性或稳定性的促进上。 金属氧化物主要催化烃类的选择性氧化。其特点是:反应系高放热的,有效的传热、传质十分重要,要考虑催化剂的飞温;有反应爆炸区存在,故在条件上有所谓“燃料过剩型”或“空气过剩型”两种;这类反应的产物,相对于原料或中间物要稳定,故有所谓“急冷措施”,以防止进一步反应或分解;为了保持高选择性,常在低转化率下操作,用第二反应器或原料循环等。 这类作为氧化用的氧化物催化剂,可分为三类:①过渡金属氧化物,易从其晶格中传递出氧给反应物分子,组成含2种以上且价态可变的阳离子,属非计量化合物,晶格中阳离子常能交叉互溶,形成相当复杂的结构。②金属氧化物,用于氧化的活性组分为化学吸附型氧物种,吸附态可以是分子态、原子态乃至间隙氧(Interstitial Oxygen)。③原态不是氧化物,而是金属,但其表面吸附氧形成氧化层,如Ag对乙烯的氧化,对甲醇的氧化,Pt对氨的氧化等即是。 金属硫化物催化剂也有单组分和复合体系。主要用于重油的加氢精制,加氢脱硫(HDS)、加氢脱氮(HDN)、加氢脱金属(HDM)等过程。金属氧化物和金属硫化物都是半导体型催化剂。因此由必要了解有关半导体的一些基本概念和术语。 2半导体的能带结构及其催化活性 催化中重要的半导体是过渡金属氧化物或硫化物。半导体分为三类:本征半导体、n-型半导体和p型半导体。具有电子和空穴两种载流子传导的半导体,叫本征半导体。这类半导体在催化并不重要,因为化学变化过程的温度,一般在300~700℃,不足以产生这种电子跃迁。靠与金属原子结合的电子导电,叫n-型(Negative Type)半导体。靠晶格中正离子空穴传递而导电,叫p-型(Positive Type)半导体。 属n-型半导体的有ZnO、Fe2O3、TiO2、CdO、V2O5、CrO3、CuO等,在空气中受热时失去氧,阳离子氧化数降低,直至变成原子态。属于p-型半导体的有NiO、CoO、Cu2O、PbO、Cr2O3等,在空气中

(精选)半导体材料光催化作用的机理

H2O OH degradati on on semic on ductor 2)[6] 半导体光催化机理 纳米二氧化钛主要有二种晶体结构,即:锐钛矿和金红石。它们的结构基本单位都是TiO6八面体,其结构如图1-1所示。二种结构的不同在于八面体的扭曲程度和连接形式。锐钛矿结构由TiO6八面体通过共边组成,而金红石结构则 由共顶点且共边组成。利用纳米 TiO2为光催化剂,在溶液或空气中发生多相光催化降解污染物的反应过程大致包括以下几个主要步骤⑸: 1)T iO2在光的照射下,被能量大于或等于其禁带宽度的光子所激发,产生具有一定能量的光生电子(e)和空穴(h+); 2)光生电子(e )和空穴(h+)在TiO2颗粒的内部以及界面之间的转移或失活; 3)光生电子(e)和空穴(h+)到达TiO2粒子表面并与其表面吸附物质或溶剂中的物质发生相互作用,即发生氧化还原反应,从而产生一些具有强氧化性的自由基团(QH Q-)和具有一定氧化能力的物质(HQ)。 4)上述产生的具有强氧化性的自由基团和氧化性物质与被降解污染物充分 作用,使其氧化或降解为 Fig. 1-1 Ti —Q octahedron O2- O2 皿匚 Fig. 1-2 Schematic diagram of photocatalytic photocatalysts (TiO

图1-2半导体光催化反应原理示意图(TiO2)[6] 以锐钛矿TiO2光催化材料为例,当TiO2光催化剂受到大于其禁带能量的光照射时,在其内部和表面都会产生光生电子和光生空穴。一部分光生电子和光生 空穴参与光催化反应,另外一部分光生电子与空穴会立即发生复合,以热量的形式散发出去。如果二氧化钛中没有电子和空穴俘获剂,储备的光能在几毫秒的时 间内就会通过光生电子和空穴的复合以热能的形式释放出来,或以其它形式散发掉;如果在二氧化钛的表面或者体相中有俘获剂或表面缺陷态时,能够有效阻止光生电子和空穴的重新复合,使电子和空穴有效转移,从而能在催化剂表面发生一系列的氧化-还原反应,将吸收的光能转换为化学能。如图1-2所示[6,7]。以下是一些具体的化学反应式: TiO2 + h —h vb + e cb (1 -1) h vb++ e cb —heat (1 -2) h vb++ H 2O —?OH + H+(1 -3) + h vb + OH-—? OH (1 -4) e cb + O 2 —Q-?(1 -5) O-?+ O 2 + 2H f F2Q + O 2 (1 -6) O-?+ H +—HO' (1 -7) HO + H ++ e cb f H2O (1 -8) HQ + h — 2 ? OH (1 -9) H2O + e cb —? OH+ OH-(1 —10) 上面的反应式子中,羟基自由基(? 0H)和超氧离子自由基(? Q)都有很强的氧化性,无论它们在气相还是在液相中,都能将一些有机或无机物质氧化,因此,一般认为,? 0H和?Q-是光催化氧化中主要的也是最重要的活性基团,可以氧化包括自然界中生物难以转化的各种有机物污染物并使之最后降解成CO、HO和无毒矿物。对反应的作用物几乎没有选择性,在光催化氧化反应过程中起着决定性作用。而且由于它们的氧化能力强,氧化反应一般不会停留在中间步骤,因而一般不会产生中间副产物。故这种深度氧化的过程在处理环境污染物中具有很大的应用前景,例如:水中的无机、有机污染物卤代烃、芳烃、染料、杀虫剂和除草剂等物质均可根据此原理进行降解除去。但是它们的最大缺点之一是对反应物没有选择性,一定程度上制约了其发展。

相关主题