搜档网
当前位置:搜档网 › 基于虚拟试验的轿车正面碰撞安全性分析(正式)

基于虚拟试验的轿车正面碰撞安全性分析(正式)

基于虚拟试验的轿车正面碰撞安全性分析(正式)
基于虚拟试验的轿车正面碰撞安全性分析(正式)

编订:__________________

审核:__________________

单位:__________________

基于虚拟试验的轿车正面碰撞安全性分析(正式)

Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.

Word格式 / 完整 / 可编辑

文件编号:KG-AO-2394-61 基于虚拟试验的轿车正面碰撞安全

性分析(正式)

使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。

一、引言

长期以来,轿车安全性能一直是汽车工业界非常关注的课题。用实车碰撞试验可测定轿车安全性能,但因其需在实物样机上安装各种测试设备,进行实地试验,成本高、时间长,所以探索新的试验方法一直是汽车工业界所追求的目标。随着计算机技术的发展和各种应用软件的出现,人们可以用计算机来模拟轿车碰撞试验。利用虚拟现实技术设计的汽车虚拟试验场可逼真地实现试验过程,通过交互改变汽车设计参数、试验道路环境,可以验证设计方案,从而达到缩短设计周期、降低开发成本、提高产品质量的目的。与传统的实车试验相比,应用虚拟试验场具有快速、逼真、可重复性等特点,可无危险、无损坏地进行碰

撞、翻倾等极限试验。这种方法虽然不能完全取代实际的轿车碰撞试验,但却使人们能够根据计算机模拟试验的结果更好地、更精确地安排实际试验,以减少试验次数和时间,降低试验成本。

正面碰撞是汽车碰撞事故中最多、对人体危害最大的碰撞形式,也是国际上许多安全法规中规定的小型客车和轿车的最主要标准试验。本文选取国产燃料电池轿车“超越二号”为虚拟试验对象,模拟其正面碰撞,从而预测和评价该车型的被动安全性,对该车型安全设计的改进具有指导作用。由于燃料电池轿车目前仍属于前‘瞻型产品,其高昂的制造成本决定了暂时无法、进行实车碰撞试验,而虚拟试验场由于其无危险、无损坏、可重复性等特点正是非常合适的试验方法。

由于虚拟现实系统需要实时计算,对计算速度要求较高。因此,实现虚拟试验场景及仿真必须要有相应的软硬件支持,本试验采用的操作系统为UNIX(多任务、多线程),硬件为双CPU高速SCSI接口硬盘的

HP可视化工作站。

作者利用HYPERMESH软件对整车模型进行网格划分,建立了车辆的有限元模型,用PAM-CRASH软件建立了虚拟试验场,并模拟了正面碰撞,把分析的数据传送到虚拟环境中,驱动场景中的车辆使之形象、逼真地实现试验。

二、虚拟试验对象的建立

由于计算技术的局限性,在早期的计算机模拟碰撞试验中一般只独立模拟乘员的运动响应或者整车的变形吸能,而很少将两者结合起来研究。随着虚拟现实技术的发展,计算机模拟碰撞试验的能力不断提高,因此本文要将乘员及约束系统模型导入到“超越二号”燃料电池轿车整车碰撞计算模型中,其中主要包括仪表板、转向系统、座椅、人体模型以及安全带等,并将两者结合起来作为一个整体进行研究,这样建立的虚拟试验对象更加符合实际情况,从而得出更可信的结果。

(一)建立燃料电池轿车的整车有限元模型

1.料电池轿车车身建模

燃料电池轿车车身CAE建模使用ALTAIRHYPERMESH软件。

由于白车身零件基本上是薄壁板材结构,所以单元类型选择为壳单元,燃料电池车身模型总共划分为177298个单元,其中燃料电池动力系统零部件及其车架、连接件模型单元数量为76082个(图1)。

由于研究的是整车的碰撞特性,因而单元划分原则上采用四边形单元。但是车身零部件结构形状非常复杂,仅使用规则的四边形单元会产生在边界和结构形状突变处的单元过于狭小,长宽比过大,所以在定义网格时,允许在局部(非平面处)使用内角大于45°的三角形单元,三角形单元数占单元总数的比值应尽量小,控制在10%左右,否则将会影响计算精度。单元边长为10~30MM,如果值太小会减小时间步长,增加计算时间,

2.材料定义

由于在整车的正面碰撞模拟中,燃料电池汽车前

舱中的动力系统零件的质量会影响整车质量的分布和转动惯量,因此需要进行质量的重新分配和局部配重,力求使模型的质量和重心位置与实际相差无几。根据要求,钣金件通常使用ST13及ST14号材料,属于PAM-GENERIS中的103号弹性材料。燃料电池动力系统中,电机为刚体,对于高压接线盒、低压接线盒以及电动转向泵等材料为塑料的零部件,选用ABS塑料材料。

3.刚体的定义

刚体用于碰撞中变形很小或不变形的部分。如在正面碰撞模型中,可将BA立柱之后的部分定义成刚体。这样可大大节省计算时间,提高计算效率。

4.连接的模拟

动力系统零部件通过螺栓连接在车架上,在碰撞模拟中采用杆单元连接点焊连接。零部件与车架或梁的螺栓连接其实也可以简化为杆单元连接焊点的方式,因为螺栓的失效表现为剪切和拉断,只要定义此处焊点在这些方向上的失效就能代替螺栓连接。

5.接触定义

将整车和车架模型分别定义为36号自接触(SELFCONTACT),对于接触参数的定义,如穿透厚度、惩罚系数、摩擦系数等的定义,则均通过多次模拟结果与试验数据对比获得。

(二)建立乘员约束系统的有限元模型

计算、模型中主要定义材料、刚体、爆点、接触几项。

1.材料(MATERIAL)

分别对仪表板、转向系统零件以及座椅、假人进行材料定义。其中假人材料为PAM-SAFE软件中自动生成的,仪表板材料定义为脆性材料,转向系统零件材料为铁。

2.刚体(RIGIDBODY)

由于在碰撞过程中座椅骨架的变形很小,因此将座椅骨架部分定义为了刚体。

3.焊点(SPOTWELD)

根据实际情况,将导入的转向系统和仪表板与整车连接起来。

4.接触(CONTACTINTERFACE)

由于导入了仪表盘、转向系统以及含约束系统的座椅假人模型,在碰撞过程中,人体由于惯性作用力,会和乘员舱内部件发生二次碰撞,为了能较好地模拟出在碰撞过程中人体运动响应,我们分别以下三类接触类型的共8对接触对(CONTACTPAIR)。

(1)点对面的接触

在PAM-GENERIS中提供了一种点对面的接触类型,即1#接触。本文将这种接触运用于上下转向柱之间,以模拟他们之间的滑动运动副。因为在实际的转向系统中,两者在受到冲击后将产生相对滑动,以减少对乘员的伤害。

(2)面对面的接触

面对面的接触是本文中运用的最多的一种接触类型,譬如人体与乘员约束系统之间的接触均采用这种类型,包括头-胸部之间的接触、躯干-座椅之间的接触、躯干与安全带之间的接触、肢体与内饰之间的接触和头部与方向盘之间的接触。

(3)自接触

除了燃料电池轿车车身的自接触外,由于考虑到座椅在碰撞过程中,亦同样会受到挤压变形,所以还同时定义了一个座椅骨架的自接触。对于接触的参数如穿透厚度、惩罚系数、摩擦系数等的定义,则均通过多次模拟结果与试验数据的对比获得。

带乘员约束系统的燃料电池轿车整车有限元模型如图3所示,至此虚拟试验对象建立完成。

三、虚拟试验场的建立

根据中华人民共和国国家标准GB/T11551-89关于汽车乘员碰撞保护的规定,当车辆以48KM/H的速度向前行驶,与一个垂直于车辆行驶方向、或与车辆行驶方向成大于或等于60°角的固定屏障壁相碰撞时,前排座位处用座椅安全带束紧的假人,应满足下列条件:

(1)假人的各部分自始至终都应在车厢内。

(2)假人头部伤害指数(HIC)不得大于1000。

(3)当作用时间超过3MS时,假人胸部质心处的

合成加速度应不大于60G。

(4)假人每条大腿轴向的合力应不大于LOKN。

作者在PAM-CRASH的前处理模块GENERIS中依照国家标准定义了重力场、整车初速、垂直车速方向的刚墙等边界条件。

根据法规,整车试验是车撞刚性壁障。在GENERIS 中可通过刚墙来模拟壁障。在本次的正面碰撞模拟中还考虑了重力(即在Z方向加一9.8M/S的加速度场)对碰撞的影响,地面也采用刚墙方式定义,并考虑了轮胎与地面接触部分的摩擦力。

整车初速度定义为48KM/H。

带乘员约束系统的“超越二号”燃料电池轿车整车计算模型包括197047个节点,192308个壳单元,3578个体单元,18个杆单元,计算的时间步长为10-4S,碰撞时间为150MS,即直到假人回弹为止。至此虚拟试验场建立完成。

四、虚拟试验结果分析

使用PAM-CRASH的后、处理模块PAM-VIEW可以观

察轿车在碰撞过程中假人所受伤害指数。

(一)头部伤害指数日HIC(HEADINJURYCRITERION)在正面碰撞过程中,作用在人体头部沿车身纵向的加速度是最主要的加速度荷载,因此HIC是汽车碰撞研究中最常用的评价头部损伤的标准,并且被认为是一个能适当区分接触与非接触冲击的标准。

我国的相应法规将头部伤害指数值1000定为正面碰撞过程中人体头部所能忍受的极限,高于此值将被认为会造成对乘员的伤害。图5为超越二号燃料电池轿车的HIC值的模拟计算结果:

在本文中,由模拟计算得出的超越二号燃料电池轿车的人体头部加速度模拟值HIC为1072.1。

(二)胸部3MS合成加速度指标(Α3MS)

生理学的研究表明,对于人体胸部的伤害指标是,人体能够忍受3MS或者更长时间的作用在上胸部(因为心、肺位于上胸腔)重心处的合成线加速度应小于60G,超出这个界限就很可能造成对人体胸腔内脏器的损伤。

图6是超越二号燃料电池轿车的3MS胸部合成加速度指标的模拟计算结果:

超越二号模拟计算得出的值为54.481G,即533.914M/S+2。和国家安全性法规中人体3MS胸部合成加速度指标值60G相比,超越二号燃料电池轿车的人体3MS胸部合成加速度指标模拟值达到了国家规定标准。

(三)腿部轴向力荷载

在碰撞过程中由于车内的结构限制,人体的某些部位,主要是腿部会受到很大的轴向力载荷,这种大力载荷会造成如骨折、组织拉伤或挫伤等伤害,因此有必要用轴向力载荷来做为一个伤情指数。

本文分别对假人的左右大腿骨受力进行了模拟,见图7和图8。

国际法规和我国的法规均规定在48KM/H正面碰撞中“假人每条大腿轴向的合力应不大于10000N”。模拟的结果表明,超越二号燃料电池轿车的人体左大腿骨最大受力值为5800N,右大腿骨最大受力值为

汽车碰撞虚拟仿真

(一)研究目的 随着社会的发展,科技在飞速得更新,汽车受到越来越多的人的青睐,成为人们的代步工具。然而,随着汽车的不断增加,汽车交通事故也越来越多,如何更好地了解事故原因减少汽车事故成为了重点。由于现如今的大学生汽车事故试验实验涉及到的人身安全、汽车设备昂贵,汽车操作危险性高,实验损坏后不易修复等问题,使得学生实验操作机会很少,而且不敢深入实验,达不到预定的实验效果。通过软件仿真,就可以很好地解决这个问题。 (二)研究内容 “汽车碰撞”虚拟实验仿真汽车爆胎,汽车正碰、侧碰、追尾、汽车刹车不及时等实验。 (三)国内外研究现状及发展动态 由于计算机软、硬件的发展和汽车市场的竞争日益激烈,国际上近20年来,汽车碰撞的计算机仿真技术发展迅速。进入80年代,欧美等先进国家推出了用于汽车碰撞仿真的商业化软件包,这些功能强大的软件包在安全车身开发、事故鉴定分析、碰撞受害者保护、碰撞试验用标准假人开发和人体生物力学等研究工作中发挥了较大作用。 国内一些高校和科研机构正在积极从事汽车碰撞理论与仿真技术的研究。尽管总体上与国外相比还有很大差距,但预计不久的将来,在我国会有适于工程应用的仿真软件问世,汽车碰撞的计算机仿真技术将会有更为广泛的应用。车辆碰撞计算机仿真技术的一个主要应用方面就是交通事故的再现,辅助事故处理人员快速、高质量地进行现

场勘察、参数计算和事故分析,进而研究事故发生的原因,探求避免事故、减少损失的策略。 (四)创新点与项目特色 “汽车碰撞”虚拟实验项目是基于多媒体、仿真和虚拟现实等技术,在计算机上实现的机械操作虚拟实验环境,实验者可以像在真实的环境中一样完成各种预定的实验项目,所取得的实验效果等价于甚至优于在真实环境中所取得的效果。机械安全工程虚拟实验平台项目的开发、建设与应用彻底打破空间、时间限制,提高实验的效率和效果;有利于减少资源消耗与环境污染;避免真实实验和操作所带来的各种危险。 (五)技术路线、拟解决的问题及预期效果 1、“汽车碰撞”虚拟实验仿真汽车爆胎,汽车正碰、侧碰、追尾,汽车刹车不及时等实验。 重点解决以上实验的计算机虚拟仿真的软件实现,以及足够的容错、纠错能力。 2、前期工作关于有关被仿真实验项目、要求、注意事项、实验过程等都已经确定;马上要开展的工作重点在于有关开发软件的确定以及相关编程技巧的掌握与熟练。 3、预期成果与形式: 虚拟实验平台实现以下基本功能: 1.完全基于Web:分布在各地的用户只要访问特定的地址或者在实验机房进行实验。

虚拟仿真实验方案设计

实用文档 虚拟仿真实验解决方案 华一风景观艺术工程 2017年8月

目录 第一章需求分析 (2) 一、项目背景 (2) 二、实验教学现状 (3) 三、用户需求 (3) 第二章建设原则 (5) 一、建设目标 (5) 二、建设原则 (6) 第三章系统总体解决方案 (7) 一、总体架构 (7) 二、学科简介 (8) 第四章产品优势 (14) 第五章产品服务 (16) 一、服务方式 (16) 二、服务容 (16) 三、故障响应服务流程 (17) 四、故障定义 (18) 五、故障响应时间 (18) 六、故障处理流程 (19) 七、应急预案 (19)

第一章需求分析 一、项目背景 《国家中长期教育改革和发展规划纲要(2010-2020年)》明确指出:把教育信息化纳入国家信息化发展整体战略,超前部署教育信息网络。到2020年,基本建成覆盖城乡各级各类学校的教育信息化体系,促进教育容、教学手段和方法现代化。加强优质教育资源开发与应用,建立数字图书馆和虚拟实验室。鼓励企业和社会机构根据教育教学改革方向和师生教学需求,开发一批专业化教学应用工具软件,并通过教育资源平台提供资源服务,推广普及应用。 在“十三五规划”方针政策指引下,各地陆续出台政策,强调数理化实验教学的重要性。 2016年,公布了中高考的新方案,强调义务教育阶段所有科目都设为100分,表示它们在义务教育与学生成长中同等重要,不再人为去区分主次,使学校、老师、家长、社会对每一门学科都很重重视,其中物生化实验部分占分比例为30%,高考不再文理分科。 继重磅发布此消息后,教育厅发布《关于2016年普通高中招生工作的意见》,其中明确要求理化生实验操作考试满分为30分;省初中毕业升学理化实验操作考试分数为15分,考试成绩计入考生中考录取总分;省理化实验操作10分。

关于汽车正面碰撞的国内外安全法规综述(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 关于汽车正面碰撞的国内外安全法规综述(最新版) Safety management is an important part of production management. Safety and production are in the implementation process

关于汽车正面碰撞的国内外安全法规综述 (最新版) 在日益发达的今天,作为一种交通工具,汽车在给人们生活带来便利的同时,也带来了各种安全隐患。车速越来越快,给人们的安全和财产带来的伤害也越来越大。因此,汽车的安全性是汽车厂商、消费者及政府部门高度重视的问题。 按照碰撞事故形态,汽车碰撞主要包括正面碰撞,侧面碰撞,追尾碰撞以及碰撞翻滚等。其中,根据美国的一项统计资料显示,大约60%的碰撞事故发生于车辆前方,因此,进行汽车正面碰撞的探索研究尤其重要,制定汽车的正面碰撞法规、标准也是各个国家相关部门首要解决的问题。目前,国际上流行的实车碰撞试验法规主要有美国的FMVSS和欧盟的ECE两大体系,其他国家的技术法规大多是参照以上两个法规体系制定的。中国在碰撞法规的研究中主要

借鉴了欧盟ECE法规体系,自从20世纪90年代中国颁布了《汽车正面碰撞乘员保护的设计规则》到2007年7月1日正式实施《汽车侧面碰撞的乘员保护》,中国在汽车安全法规的研究上正在积极地与国际接轨。本文基于汽车正面碰撞研究,主要介绍欧美和中国的汽车碰撞法规。 1美国 美国是世界上最早开始实施车辆正面碰撞法规的国家,其于上世纪60年代授权美国运输部(DOT)对乘用车、多用途乘用车、载货车、挂车、大客车、学校客车、摩托车以及这些车辆的装备和部件制定并实施联邦机动车安全标准(FederalMotorVehicleSafetyStandards,简称FMVSS),并率先于1986年颁布了FMVSS208《乘员碰撞保护》法规。随着汽车各项技术的成熟应用,DOT不断对法规进行了修订,规定应用生物逼真度更好的HybridⅢ型碰撞生物假人,与固定壁障碰撞。FMVSS208最新一次修订在2010年8月份,文中主要针对修订后的208对其100%重叠正面碰撞的情况进行解读。碰撞过程中车门不能被撞开,碰撞后不用

汽车碰撞模拟实验台设计

目录 1 绪论 (1) 1.1 课题来源与国内外现状 (1) 1.1.1 研究背景 (1) 1.1.2 汽车安全性的种类 (1) 1.1.3 汽车模拟碰撞的研究 (2) 1.1.4 本课题主要内容 (3) 2. 碰撞试验台结构特点和技术要求 (4) 2.1 结构特点和技术要求 (4) 2.2 缓冲过程建模 (4) 3. 碰撞试验台的设计和计算 (5) 3.1 碰撞试验台的总体设计 (5) 3.2 导轨机构的设计和计算 (5) 3.3 小车的选择和设计及释放机构 (6) 3.4 墙体的选择 (7) 3.5 传动装置 (7) 4. 减速缓冲装置的设计和计算 (9) 4.1 减速缓冲器的种类 (9) 4.2 吸能缓冲器 (9) 4.3 多孔式液压缓冲器 (11) 4.4 圆槽减速缓冲器的设计计算 (14) 4.4.1 液压缓冲器的设计原理 (14) 4.4.2 缓冲器的结果设计 (19) 4.4.3 液压缓冲器装配图 (21) 4.4.4 驻退液 (22) 4.4.5 缓冲装置的运动 (22) 结论 (24) 致谢 (25) 参考文献 (26) 附录一液压缸体设计VB编程代码 (28) 附录二加速度曲线VB编程代码 (30) 附录三液压缸设计数据表 (31) 附录四液压缸圆槽设计数据表 (33)

1.1 课题来源与国内外现状 随着科技的进步、经济的发展、人民生活水平的不断提高,汽车己经成为人们学习、工作、生活中不可缺少的代步工具,对人们的生活、生产产生了深刻的影响。作为一种便捷的现代化交通工具,汽车在给人们带来极大便利的同时,也因其造成的交通事故给人类的生命和财产安全带来了严重威胁。随着全球汽车保有量的不断增加,交通事故也随之增加,交通事故己经成为全球范围内的一大社会问题。 这是一组让人膛目结舌的数字。美国的汽车保有量为1.3亿辆,每年道路交通死亡4万人左右;日本的汽车保有量近8000万辆,每年道路交通死亡1.1万人,去年降到8000人。中国的汽车保有量是3000万辆,每年道路交通死亡近11万人,单车事故率相当于美国的近13倍,日本的近40倍。除去交通状况等客观因素,一个不可回避的原因就是中国汽车安全系数低,我国交通事故的严重程度由此可想而知。随着我国道路交通状况的不断改善,我国汽车的保有量不断增加,车速也逐渐提高,交通事故总量和所造成的人员伤亡与财产损失近年来也呈上升趋势。加强道路交通系统和汽车安全的研究,预防交通事故,是需要全社会共同关注和迫切改善的重要课题[1-2]。 汽车安全性问题与汽车的各种性能等直接或间接有关,对其研究最初是与提高汽车的整车性能的研究交织在一起的。随着二战后汽车工业的持续发展,到60年代中期,西方发达国家中汽车的保有量和汽车的动力性能有了明显的提高,公路上的车流密度和车流速度己达到了一个空前高的水平,汽车事故发生率空前高涨,汽车安全性受到了公众和政府部门的高度重视。从这一时期开始,各国相继制定或修订了安全法规,如美国的汽车安全标准FMVSS等[3]。在这些法规的制约下,以及为了提高汽车产品的竞争力,各大汽车制造商和一些研究机构开展了汽车安全性的专门研究。汽车安全性研究逐渐从汽车技术研究的其他领域分离出来形成了一个独立的分支。 1.2 汽车安全性的种类 汽车安全性可划分为主动安全性和被动安全性[4-5]。被动安全性是指汽车发

汽车碰撞安全法规大全

汽车碰撞安全法规大全(中文版) 中国篇 乘用车正面碰撞的乘员保护(GB 11551-2003) 汽车侧面碰撞的乘员保护(GB 20071-2006) 乘用车后碰撞燃油系统安全要求(GB 20072-2006) 防止汽车转向机构对驾驶员伤害的规定(GB 11557-1998) 汽车座椅、座椅固定装置及头枕强度要求和试验方法(GB 15083-2006)汽车安全带固定点(GB 14167-2006) 汽车前、后端保护装置(GB 17354-1998) C-NCAP 前部正面刚性壁障碰撞试验方法 C-NCAP 前部偏置碰撞试验方法 C-NCAP 侧面碰撞试验方法 C-NCAP 评分方法 欧洲篇 防止汽车碰撞时转向机构对驾驶员伤害认证的统一规定(ECE R12) 关于汽车安全带安装固定点认证的统一规定(ECE R14) 关于车辆座椅、座椅固定装置及头枕认证的统一规定(ECE R17) 关于车辆内部安装件认证的统一规定(ECE R21) 关于后面碰撞汽车结构特性认证的统一规定(ECE R32) 关于正面碰撞汽车结构特性认证的统一规定(ECE R33) 关于车辆火险预防措施认证的统一规定(ECE R34) 关于汽车前后端保护装置(保险杠等)认证的统一规定(ECE R42) 关于车辆正面碰撞乘员保护认证的统一规定(ECE R94)

关于车辆侧面碰撞乘员保护认证的统一规定(ECE R95)EuroNCAP 前部碰撞试验方法 EuroNCAP 侧面碰撞试验方法 EuroNCAP 侧面撞柱评估标准 EuroNCAP 车辆对乘员颈部保护的动态评估试验方法EuroNCAP 行人保护试验方法 EuroNCAP 儿童保护评估方法 EuroNCAP 评估方法与生物力学极限 GTR 行人保护法规 EC 行人保护法规 北美篇 内饰件碰撞特性要求及试验方法(FMVSS 201) 头枕的碰撞保护(FMVSS 202a) 转向机构对驾驶员的碰撞保护(FMVSS 203) 对方向盘后移量的要求(FMVSS 204) 座椅系统(FMVSS 207) 乘员碰撞保护(FMVSS 208) 乘员离位(OOP)保护(FMVSS 208) 儿童约束系统要求(FMVSS 208) 安全带安装固定点认证的统一规定(FMVSS 210) 儿童约束系统(FMVSS 213) 侧面碰撞保护(FMVSS 214)

汽车正面碰撞仿真建模与分析作业指导书

1 主题内容和适用范围 1.1本标准规定了零部件几何模型处理的基本方法; 1.2本标准规定了零部件有限元模型的命名方法; 1.3本标准规定了白车身与底盘有限元模型的网格划分与检测的基本方法; 1.4本标准规定了白车身与底盘有限元模型的焊点、螺栓、铆钉连接的基本方法; 1.5本标准规定了汽车正面碰撞仿真分析的基本参数设置、操作流程、评价方法。 1.6本标准适用于M1类车辆正面碰撞仿真分析。 2 引用标准 2.1 CMVDR 294 —关于正面碰撞乘员保护的设计准则 2.2 GB 11557-1998—防止汽车转向机构对驾驶员伤害的规定 3 术语 3.1整车质量—整车整备质量+两位法定假人质量 3.2 HIC—头部性能指标 3.3 ThPC—胸部性能指标 3.4 FPC—大腿性能指标 3.5保护系统—用来约束和保护乘员内部安装件及装置 4 零部件几何模型的处理 在UG中处理白车身数模,需检查各总成内部零件的干涉和各总成之间的干涉,同时对一些缺失的面和有质量问题的面进行修补。对

于对称件,可先去掉一半。具体操作可参照样车的实际结构进行必要的几何处理(见附录-1) 5 零部件有限元模型的命名方法 模型处理好后,将各零件以iges格式分别输出,并以三维数模对应的零件号命名。 6 有限元网格划分标准 6.1 整车网格尺寸规定 6.1.1 对于B柱之前的零件,单元尺寸初步定在8-12mm,可根据零件的复杂程度适当的减小尺寸,但是决不能小于5mm,其间需考虑单元的过渡(如顶盖,地板等结构),以确保网格连续、平滑、均匀、美观;对于B柱之后的零件,可适当增大网格尺寸,初步定在20-30mm; 6.1.2 对于倒角,半径小于5mm时可删去,半径在5-10mm之间时划分一个单元,半径大于10mm时划分两个单元; 6.1.3 对于孔,半径小于5mm时可删去,半径大于5mm时应保证孔边沿上至少有4个节点; 6.1.4 对于对称件,网格划分完后镜像生成完整的网格模型。 6.2 网格检查标准

基于虚拟试验的轿车正面碰撞安全性分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 基于虚拟试验的轿车正面碰撞安全性分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2394-61 基于虚拟试验的轿车正面碰撞安全 性分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、引言 长期以来,轿车安全性能一直是汽车工业界非常关注的课题。用实车碰撞试验可测定轿车安全性能,但因其需在实物样机上安装各种测试设备,进行实地试验,成本高、时间长,所以探索新的试验方法一直是汽车工业界所追求的目标。随着计算机技术的发展和各种应用软件的出现,人们可以用计算机来模拟轿车碰撞试验。利用虚拟现实技术设计的汽车虚拟试验场可逼真地实现试验过程,通过交互改变汽车设计参数、试验道路环境,可以验证设计方案,从而达到缩短设计周期、降低开发成本、提高产品质量的目的。与传统的实车试验相比,应用虚拟试验场具有快速、逼真、可重复性等特点,可无危险、无损坏地进行碰

汽车碰撞模拟分析流程

汽车碰撞模拟分析流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

ANSYS 汽车碰撞分析流程Flow Chart of Auto Impact Analysis Prepared By 史志远 Date: Nov.1, 2004

汽车碰撞模拟分析流程 一、碰撞安全性试验介绍: 在汽车模拟分析的过程中,提高汽车碰撞安全性的目的是在汽车发生碰撞时确保乘员生存空间、缓和冲击、防止发生火灾等等。但是从碰撞事故分析中可知,汽车碰撞事故的形态也千差万别,所以对汽车碰撞安全性能的评价也必须针对不同的碰撞形态来进行。按事故统计结果,汽车碰撞事故主要可分为正面碰撞、侧面碰撞、追尾碰撞和翻车等几种类型。但随着公路条件的改善,正面碰撞和侧面碰撞形态成了交通事故中最常见的碰撞形式。 按照碰撞试验的目的区分,现在碰撞试验大体可以分为三类: 1)由政府法规要求的强制性试验:例如FMVSS208、ECE R94法规规定的正面碰撞试 验,FMVSS214、ECE R95法规规定的侧面碰撞试验等等; 2)由汽车制造厂自己制定的碰撞试验方法:例如用于提出改善汽车碰撞安全性的新 措施等等; 3)为消费者提供信息的试验:例如美国、欧洲等国家实施的新车评价程序 (NCAP), 汽车安全法规中规定了达到政府规定的最低安全性能要求,NCAP以 更高的车速进行正面碰撞试验,以展示汽车产品的碰撞安全性能。 由于法规试验是政府强制实施的,所以,汽车碰撞试验法规是人们关注的热点。下表列出了一些美国FMVSS, 欧洲ECE的汽车被动安全性法规的试验项目。 表一 FMVSS 与 ECE 的一些汽车安全性法规

虚拟仿真(虚拟现实)实验室解决方案设计

数虎图像提供虚拟仿真实验室硬件设备搭建和内容制作整体解决 方案 虚拟现实实验室是虚拟现实技术应用研究就的重要载体。 随着虚拟实验技术的成熟,人们开始认识到虚拟实验室在教育领域的应用价值,它除了可以辅助高校的科研工作,在实验教学方面也具有如利用率高,易维护等诸多优点.近年来,国内的许多高校都根据自身科研和教学的需求建立了一些虚拟实验室。数虎图像拥有多名虚拟现实软硬件工程师,在虚拟现实实验室建设方面有着无与伦比的优越性! 下面请跟随数虎图像一起,让我们从头开始认识虚拟现实实验室。【虚拟现实实验室系统组成】: 建立一个完整的虚拟现实系统是成功进行虚拟现实应用的关键,而要建立一个完整的虚拟现实系统,首先要做的工作是选择确实可行的虚拟现实系统解决方案。 数虎图像根据虚拟现实技术的内在含义和技术特征,并结合多年的虚拟现实实验室建设经验,最新推出的虚拟现实实验室系统提供以下组成:

虚拟现实开发平台: 一个完整的虚拟现实系统都需要有一套功能完备的虚拟现实应用开发平台,一般包括两个部分,一是硬件开发平台,即高性能图像生成及处理系统,通常为高性能的图形计算机或虚拟现实工作站;另一部分为软件开发平台,即面向应用对象的虚拟现实应用软件开发平台。开发平台部分是整个虚拟现实系统的核心部分,负责整个VR场景的开发、运算、生成,是整个虚拟现实系统最基本的物理平台,同时连接和协调整个系统的其它各个子系统的工作和运转,与他们共同组成一个完整的虚拟现实系统。因此,虚拟现实系统开发平台部分在任何一个虚拟现实系统中都不可缺少,而且至关重要。 虚拟现实显示系统: ·高性能图像生成及处理系统 ·具有沉浸感的虚拟三维显示系统 在虚拟现实应用系统中,通常有多种显示系统或设备,比如:大屏幕监视器、头盔显示器、立体显示器和虚拟三维投影显示系统,

汽车碰撞模拟实验台设计

汽车碰撞模拟实验台设计 1 绪论 1.1 课题来源与国内外现状 随着科技的进步、经济的发展、人民生活水平的不断提高,汽车己经成为人们学习、工作、生活中不可缺少的代步工具,对人们的生活、生产产生了深刻的影响。作为一种便捷的现代化交通工具,汽车在给人们带来极大便利的同时,也因其造成的交通事故给人类的生命和财产安全带来了严重威胁。随着全球汽车保有量的不断增加,交通事故也随之增加,交通事故己经成为全球范围内的一大社会问题。 这是一组让人膛目结舌的数字。美国的汽车保有量为1.3亿辆,每年道路交通死亡4万人左右;日本的汽车保有量近8000万辆,每年道路交通死亡1.1万人,去年降到8000人。中国的汽车保有量是3000万辆,每年道路交通死亡近11万人,单车事故率相当于美国的近13倍,日本的近40倍。除去交通状况等客观因素,一个不可回避的原因就是中国汽车安全系数低,我国交通事故的严重程度由此可想而知。随着我国道路交通状况的不断改善,我国汽车的保有量不断增加,车速也逐渐提高,交通事故总量和所造成的人员伤亡与财产损失近年来也呈上升趋势。加强道路交通系统和汽车安全的研究,预防交通事故,是需要全社会共同关注和迫切改善的重要课题[1-2]。 汽车安全性问题与汽车的各种性能等直接或间接有关,对其研究最初是与提高汽车的整车性能的研究交织在一起的。随着二战后汽车工业的持续发展,到60年代中期,西方发达国家中汽车的保有量和汽车的动力性能有了明显的提高,公路上的车流密度和车流速度己达到了一个空前高的水平,汽车事故发生率空前高涨,汽车安全性受到了公众和政府部门的高度重视。从这一时期开始,各国相继制定或修订了安全法规,如美国的汽车安全标准FMVSS等[3]。在这些法规的制约下,以及为了提高汽车产品的竞争力,各大汽车制造商和一些研究机构开展了汽车安全性的专门研究。汽车安全性研究逐渐从汽车技术研究的其他领域分离出来形成了一个独立的分支。 1.2 汽车安全性的种类 汽车安全性可划分为主动安全性和被动安全性[4-5]。被动安全性是指汽车发生不可避免的交通事故后,能够对车内乘员或车外行人进行保护,以免发生伤害或使伤害减低到最低程度的性能。目前,汽车被动安全性研究内容包括车身结构抗撞性研究、碰撞生物力学研究以及乘员约束系统及安全驾驶室内饰组件的开发研究这三个方面。

客车(轿车)正面碰撞的简要受力计算

求客车(轿车)正面碰撞的简要受力计算公式,可理想化为刚体,不变形,可设撞墙壁或车,仅求碰撞瞬间的受力。 1 客车(轿车)正面碰撞的简要受力计算公式,可理想化为刚体、不变形,可设撞墙壁或车,仅求碰撞瞬间的受力。简要计算公式,能算f出来就好。 若有答如F=ma,请帮说明下a怎么计算,对于这个公式我就是a不知怎么算,希望大家多加帮助下 若有朋友知道一些已有的问答也可引用下,多谢! 可设定为求客车50公里时速下正面碰撞的受力大小,碰撞对象可为墙壁 或请直接给出实际已经测量得出的车辆碰撞试验中的碰撞力数值大小,多谢 如果这力的大小与其质量和速度有关系,请帮顺便列出式子 这个我觉得用冲量定理好算一点。假设碰撞前的一瞬间汽车的速度为v1,碰撞后速度为v2,碰撞时间为t,则Ft=mv2-mv1,由此可算出碰撞力F. 这样的话如果是仅碰撞瞬间,v2怎么确定;如果认定v2=0,那t怎么确定? 如果没有能量损失的话,速度和碰撞之前的大小相等,方向相反。 那么F=2mv1/t 。假设速度为50km/h =50/3.6=125/9=14m/s(大概值),客车的质量为2000kg,碰撞时间为1s的话。F=2*2000*14/1=56000N (相当于5.6吨中的物体所受的重力,想想有多大的撞击力吧,这只是 个概数,实际中会比他略小) 不过这t取1秒好像过大了吧这有经验值或经验公式吗? 同时想问下客车是在完全弹性碰撞中受力更大还是在非弹性碰撞中或 完全非弹性碰撞中受力更大 假设碰撞质量很大的墙壁,变形量为S,根据动能定理: FS=mv2/2(合外力的功等于动能的变化) F=mv2/2S. a=F/m=v2/2S(牛顿第二定律) 说明:实际上应当再乘以一个校正的经验系数。 追问 mv^2/2 为动能变化量的话数值怎么计算? v怎么算? v若是平均值 t或Vt都不确定 s也不确定

全球汽车安全碰撞实验详细介绍及安全常识

(一)碰撞指标查询系统 1. 欧洲评鉴协会Euro-NCAP (1)NCAP碰撞简介 衡量性能好不好,不能由自己说了算,要经过试验验证。其中“碰撞性能试验”就是主要项目之一,也是人们最关注的试验项目,因为车祸大部分都是碰撞,这个测试结果基本反映了对乘员和行人的程度。 美国、欧洲和日本都制定了相关的乘员碰撞保护法规。例如美国国家公路交通管理局(NHTSA)颁布的FMVSS208《乘员碰撞保护》法规、欧盟重新修订的《正面碰撞乘员保护》法规、日本运输省颁布的TRAIS11-4-30《正面碰撞的基准》法规等,定期对本国生产及进口进行正面碰撞或侧面碰撞进行性试验,以检查内驾驶员及乘员在碰撞时的受伤害程度。但是,这些法规仅是这些国家或区域国家政府管理部门对产品性的最低要求,而生产企业追求的却是行业上公认的NCAP(New Car Assessment Program),中文称为评估计划。它是一个行业性组织,定期将企业送来或者上出现的进行碰撞试验,它规定的实车碰撞速度往往比政府制定的法规的碰撞速度要高,从而在更严重的碰撞环境下评价车内乘员的伤害程度,根据头部、胸部、腿部等主要部位的伤害程度将试验车的性进行分级。尽管NCAP不是政府强制性实验,但由于它代表性广泛,标准科学,试验严格,组织公正,直接面向消费者公布试验结果,通过碰撞测试向消费者表示什么是的或是最的。因此各大企业都非常重视NCAP,把它作为开发的重要评估依据,在NCAP试验取得良好成绩的,也将试验结果作为产品推广的宣传内容。 NCAP最早出现在美国,随后欧洲和日本等国都制订了相关的NCAP。其中欧洲的NCAP(European New Car Assessment Program)最具影响力和代表性。它由欧洲各国联合会、政府机关、消费者权益组识、俱乐部等组织组成,由国际联合会(FIA)牵头。欧洲NCAP不依附于任何生产企业,所需经费由欧盟提供,不定期对已上市的和进行碰撞试验,每年都组织几次。 欧洲NCAP的碰撞测试有两个基本项目,即正面和侧面碰撞。正面碰撞速度为64公里/小时,侧面碰撞速度为50公里/小时。在车辆碰撞时邀请生产企业直接参与以示公正性,还允许其产品有两次碰撞机会,当获知初次碰撞结果不理想时,会对产品进行改进或安装装置,再进行第二次碰撞,以获得最好的成绩为准。 NCAP的碰撞测试成绩通过星级(★)表示,共有五个星级,星级越高表示该车的碰撞性能越好,达到33分为满分。?

汽车碰撞模拟分析流程

ANSYS 汽车碰撞分析流程Flow Chart of Auto Impact Analysis Prepared By 史志远 Date: Nov.1, 2004

汽车碰撞模拟分析流程 一、碰撞安全性试验介绍: 在汽车模拟分析的过程中,提高汽车碰撞安全性的目的是在汽车发生碰撞时确保乘员生存空间、缓和冲击、防止发生火灾等等。但是从碰撞事故分析中可知,汽车碰撞事故的形态也千差万别,所以对汽车碰撞安全性能的评价也必须针对不同的碰撞形态来进行。按事故统计结果,汽车碰撞事故主要可分为正面碰撞、侧面碰撞、追尾碰撞和翻车等几种类型。但随着公路条件的改善,正面碰撞和侧面碰撞形态成了交通事故中最常见的碰撞形式。 按照碰撞试验的目的区分,现在碰撞试验大体可以分为三类: 1)由政府法规要求的强制性试验:例如FMVSS208、ECE R94法规规定的正面碰撞 试验,FMVSS214、ECE R95法规规定的侧面碰撞试验等等; 2)由汽车制造厂自己制定的碰撞试验方法:例如用于提出改善汽车碰撞安全性的新 措施等等; 3)为消费者提供信息的试验:例如美国、欧洲等国家实施的新车评价程序(NCAP), 汽车安全法规中规定了达到政府规定的最低安全性能要求,NCAP以更高的车速 进行正面碰撞试验,以展示汽车产品的碰撞安全性能。 由于法规试验是政府强制实施的,所以,汽车碰撞试验法规是人们关注的热点。下表列出了一些美国FMVSS, 欧洲ECE的汽车被动安全性法规的试验项目。

二、人体伤害评价指标: 在碰撞试验或碰撞模拟分析的过程中,都使用了标准的碰撞试验假人,通过测量假人的响应计算出伤害的指标,用于定量的评价整车及安全部件的保护效能。 1) Hybrid III假人家族的伤害评价基准值: 下表列出了正面碰撞试验用的Hybrid III假人家族的伤害评价基准值。Hybrid III第50百分位男性假人是目前生物保真性最好的正面碰撞试验假人,另外,为了评价汽车对不同身材乘员的安全保护性能,按比例方法开发了第95百分位男性的大身材假人和第5百分位女性的小身材假人。 2)侧面碰撞假人的伤害评价基准值: 下表所示为目前使用的用于侧面碰撞用的假人SID, EuroSID-1的伤害评价基准值:

医学虚拟仿真实验具体内容介绍

(1)机能学基础性虚拟实验教学软件包含四个相对独立的操作实验:家兔的基本实验虚拟操作、蟾蜍的基本实验虚拟操作、大鼠的基本实验虚拟操作、小鼠的基本实验虚拟操作。所有内容全部采用人机互动的虚拟仿真操作来完成,同时配合动画演示,相关仪器设备的使用和操作知识。 我们以大小鼠和蟾蜍的基本实验虚拟操作举例说明: 《大、小鼠基本操作综合实验》介绍了大、小鼠在实验中经常用到的几种基本操作,通过虚拟操作的演示和互动,把实验中的重点、难点表示出来,使学生通过该虚拟实验,熟悉大小鼠实验的各项基本操作,掌握实验的重点。 虚拟实验操作流程及技术点描述: 大小鼠的捉持主要采用动画演示的形式,生动体现了捉持的要点。 大小鼠的固定,又分为徒手固定,固定板固定,头部固定以及固定器固定。学生可以自行选择固定方式,对大小鼠进行固定。 大小鼠的分组与编号;分组演示了如何使用Excel软件取得随机数字后分组。编号着重介绍了背毛单色标记法。 常用给药方法的虚拟操作:灌胃法,皮下注射法,皮内注射法,肌肉注射法,腹腔注射法,静脉注射法.部分采用透视或同步放大局部让学生更直观更系统的学习以上的给药方式及注意事项。 常用麻醉方法的虚拟操作:通过虚拟实验——吸入麻醉和腹腔注射麻醉,让学生熟悉并掌握常用麻药的使用及配制方法。 大小鼠取血的虚拟操作:分为摘眼球取血法,眼眶后静脉丛穿刺取血法,心脏取血,腹主动脉采血法。 大鼠处死方法的演示,脊椎脱臼法,急性失血法,麻醉致死法,气体窒息致死法,击打法。 大鼠主要脏器摘取:学生可动手摘取虚拟大鼠的主要脏器,可掌握各主要脏器的位置和摘取后的性状。 家兔的基本实验虚拟操作内容包括: 家兔麻醉方法,颈部手术包含颈部皮肤切开、分离皮下筋膜、气管插管、颈动脉插管、颈外静脉插管、颈部迷走神经、交感神经、降压神经分离等内容,家兔腹部手术包含回盲部肠系膜分离术、输尿管插管术、膀胱插管术等内容,家兔

汽车碰撞模拟实验台设计

1绪论 1.1课题来源与国内外现状 随着科技的进步、经济的发展、人民生活水平的不断提高,汽车己经成为人们学习、工作、生活中不可缺少的代步工具,对人们的生活、生产产生了深刻的影响。作为一种便捷的现代化交通工具,汽车在给人们带来极大便利的同时,也因其造成的交通事故给人类的生命和财产安全带来了严重威胁。随着全球汽车保有量的不断增加,交通事故也随之增加,交通事故己经成为全球范围内的一大社会问题。 这是一组让人膛目结舌的数字。美国的汽车保有量为1.3亿辆,每年道路交通死亡4万人左右;日本的汽车保有量近8000万辆,每年道路交通死亡1.1万人,去年降到8000人。中国的汽车保有量是3000万辆,每年道路交通死亡近11万人,单车事故率相当于美国的近13倍,日本的近40倍。除去交通状况等客观因素,一个不可回避的原因就是中国汽车安全系数低,我国交通事故的严重程度由此可想而知。随着我国道路交通状况的不断改善,我国汽车的保有量不断增加,车速也逐渐提高,交通事故总量和所造成的人员伤亡与财产损失近年来也呈上升趋势。加强道路交通系统和汽车安全的研究,预防交通事故,是需要全社会共同关注和迫切改善的重要课题[1-2]。 汽车安全性问题与汽车的各种性能等直接或间接有关,对其研究最初是与提高汽车的整车性能的研究交织在一起的。随着二战后汽车工业的持续发展,到60年代中期,西方发达国家中汽车的保有量和汽车的动力性能有了明显的提高,公路上的车流密度和车流速度己达到了一个空前高的水平,汽车事故发生率空前高涨,汽车安全性受到了公众和政府部门的高度重视。从这一时期开始,各国相继制定或修订了安全法规,如美国的汽车安全标准FMVSS等[3]。在这些法规的制约下,以及为了提高汽车产品的竞争力,各大汽车制造商和一些研究机构开展了汽车安全性的专门研究。汽车安全性研究逐渐从汽车技术研究的其他领域分离出来形成了一个独立的分支。 1.2 汽车安全性的种类 汽车安全性可划分为主动安全性和被动安全性[4-5]。被动安全性是指汽车发生不可避免的交通事故后,能够对车内乘员或车外行人进行保护,以免发生伤害或使伤害减低到最低程度的性能。目前,汽车被动安全性研究内容包括车身结构抗撞性研究、碰撞生物力学研究以及乘员约束系统及安全驾驶室内饰组件的开发研究这三个方面。 汽车被动安全性研究方法包括试验研究和计算机仿真研究两种[6]。汽车被动安全

汽车碰撞仿真技术

汽车碰撞安全技术 学号:2009********** 班级:2009级****** 姓名:******* 球撞板建模仿真分析实验 (一)试验目的 巩固汽车仿真分析基础知识,使对仿真分析有更深的认识,学习Hyperworks、LS-DYNA 软件基础,学习仿真分析的基本思想和基本方法步骤。 (二)试验设备 计算机、Hyperworks软件和LS-DYNA软件。 (三)试验原理 仿真分析主要分为数据前处理、后处理和分析计算等几个阶段,本实验主要通过建立球和板的几何模型、画分网格、给球和板富裕材料和截面属性、加载边界条件、建立在和条件、接触处理、定义控制卡片。删除临时阶段、节点重新排号、将文件导出成KEY文件、运营LS0DYNA进行分析仿真等步骤,模拟球撞板的过程,得出响应的仿真动画和仿真计算结果。(四)仿真步骤 1)建模过程 首先建立临时节点,并以此建立球模型和板模型。球为以临时节点为球心,5mm为半径;板距离球心的距离为5.5mm,即板和球的最小距离为0.5mm。 2)画网格 利用hypermesh画出球和板的二位网格。 3)定义模型特性 给ball和plane定义材料为20号刚体材料,其杨氏模量分别为200000和100000,泊松比均为0.3。 4)定义边界条件 将plane板上最外面的四行节点分别建成4个set。 5)建立载荷条件 定义球的位移,即给定球向板方向的距离,由此模拟球撞击板的过程。 6)定义接触 先做出两个用于接触的sagment,在这两个sagment上建立接触关系。 7)定义控制卡片 即建立Analysis-control cards (1)选择Control_Enegy,将hgen设置为2,return; (2)按next找到Control_Termination,将ENDTIM设为0.0001s,return; (3) 按next找到Control_Time_step,将DTINIT设为1*10-6s,将TSSFAC设置为0.6,点击return; (4) 按next找到DATABASE_BINARY_D3PLOT,将DT设置为5*10-6,return; (5) 按next找到DATABASE_OPTION,将MATSUM设置为1*10-6,将RCFORC设置为1*10-6,return. 8)删除临时节点 进入Geom中的temp nodes面板,删除临时节点。 9)节点重新排号 在tool-renumber面板中重新排序

汽车碰撞模拟试验台设计开题报告 - 图文

汽车碰撞模拟试验台设计开题报告- 图文 毕业设计(论文)开题报告 设计(论文)题目: 汽车碰撞模拟试验台设计 2010年3月19日 开题报告填写要求 1.开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效; 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.“文献综述”应按论文的格式成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册); 4.有关年月日等日期的填写,应当按照国标GB/T 7408—2005《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2007年3月15日”或“2007-03-15”。

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 文献综述1.研究背景随着科技的进步、经济的发展、人民生活水平的不断提高,汽车己经成为人们学习、工作、生活中不可缺少的代步工具,对人们的生活、生产产生了深刻的影响。作为一种便捷的现代化交通工具,汽车在给人们带来极大便利的同时,也因其造成的交通事故给人类的生命和财产安全带来了严重威胁。随着全球汽车保有量的不断增加,交通事故也随之增加,交通事故己经成为全球范围内的一大社会问题。这是一组让人膛目结舌的数字。美国的汽车保有量为1.3亿辆,每年道路交通死亡4万人左右;日本的汽车保有量近8000万辆,每年道路交通死亡1.1万人,去年降到8000人。中国的汽车保有量是3000万辆,每年道路交通死亡近11万人,单车事故率相当于美国的近13倍,日本的近40倍。3.汽车模拟碰撞的研究(1)国外汽车碰撞模拟研究与发展状况对汽车碰撞的研究,国外起步较早。较早开展汽车碰撞研究的是美国。早期汽车碰撞研究主要是进行各种条件下的碰撞试验,包括实车试验和模拟试验,如前所述。国外汽车碰撞模拟最早出现在60年代末期,由于当时受计算机硬件水平的限制,一辆车仅包含几十个节点,单元类型也局限于梁单元,当时的碰撞模拟主要是对实车碰撞实验的预测。80年代由于Cray等巨型机的出现和显式积分理论的成熟,人们开始研究对整车的耐撞有限元分析,汽车单元数量发展到几千个,同时开发出了与汽车结构相对应的薄壁单元。进入90年代以来,由于汽车碰撞的商业化软件不断完善,单元数量也扩大到几万个甚至几十万个,汽车碰撞模拟结果越来越接近于实际。由于计算机开始广泛采用了并 行技术,使得运算时间大大减少,甚至现在普通的个人计算机也可以进行碰撞仿真分析。目前在汽车发达国家汽车碰撞模拟研究已经达到相当成熟的地步,开发出了许多成熟的用于碰撞模拟的成熟商业软件包,已经部分取代实验室的工作。(2)国外开展汽车碰撞模拟研究的方向国外开展的汽车碰撞计算机模拟研究主要包括事故再(ACCIDENTRECONSTRUCTION),碰撞受害者模拟(CRASH VICTIM SIMULATION)、汽车结构抗撞性模拟(SIMULATION OF AUTOMOBILE’S CRASHWORTHI-NESS)三个方向[9-12]。事故再现研究的内容是,在汽车事故发生后,由汽车的最终位置开始,运用按经

VPG汽车整车虚拟实验仿真

VPG汽车整车虚拟实验仿真 概述 VPG(Virtual Proving Ground)通过构制统一平台,简化建模过程,引入虚拟试验场,只需建立一个整车模型,就能够在汽车真实试验条件下,进行整车非线性虚拟样机仿真,达到动态参数设计的目的。VPG技术可用于当前汽车产品开发的前沿,涵盖NVH、疲劳寿命、道路载荷预测、整车、子系统和部件的动力学和运动学分析。并针对碰撞安全法规的要求,内置欧美碰撞安全法规和各种碰撞模型(假人、壁障、安全带等),轻松进行碰撞安全仿真。 来源于多年汽车CAE仿真应用经验的VPG技术和优秀的LSDYNA求解器,保证了VPG具有先进、专业、可靠的仿真能力,其丰富的数据库为用户提供了极大的方便,软件应用方法简单标准,以其易用性和专业性领导汽车CAE行业的最新发展趋势。 特色功能 行业性最强 ?专业用于汽车行业整车碰撞及乘员安全性分析的软件 ?具备欧美等碰撞法规、汽车模型库等 ?具备用于汽车行业分析的向导式设置方式,操作简便

?具备大量汽车行业客户 友好的专业化图形界面 ?具备专业化、向导式的操作界面,简单易用 ?具备汽车行业专用后处理器,直接获取法规分析结果 ?具备参数化建模方式,实现根据用户产品结构需求的汽车模型建模?支持LSDYNA的所有关键字功能

功能最为全面 ?可进行汽车整车碰撞、乘员安全性、操纵稳定性、NVH分析?可进行整车及子系统非线性动力学、疲劳耐久性等分析 ?可进行特种车辆的防爆及动力学分析 ?可进行全面的LSDYNA求解程序的前后处理 强大的行业模型库 ?具备多种汽车悬挂模型 ?具备多种行业路面模型 ?具备多种汽车轮胎模型 ?具备多种碰撞假人及航空航天假人模型

基于虚拟试验的轿车正面碰撞安全性分析实用版

YF-ED-J2695 可按资料类型定义编号 基于虚拟试验的轿车正面碰撞安全性分析实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

基于虚拟试验的轿车正面碰撞安 全性分析实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 一、引言 长期以来,轿车安全性能一直是汽车工业 界非常关注的课题。用实车碰撞试验可测定轿 车安全性能,但因其需在实物样机上安装各种 测试设备,进行实地试验,成本高、时间长, 所以探索新的试验方法一直是汽车工业界所追 求的目标。随着计算机技术的发展和各种应用 软件的出现,人们可以用计算机来模拟轿车碰 撞试验。利用虚拟现实技术设计的汽车虚拟试 验场可逼真地实现试验过程,通过交互改变汽

车设计参数、试验道路环境,可以验证设计方案,从而达到缩短设计周期、降低开发成本、提高产品质量的目的。与传统的实车试验相比,应用虚拟试验场具有快速、逼真、可重复性等特点,可无危险、无损坏地进行碰撞、翻倾等极限试验。这种方法虽然不能完全取代实际的轿车碰撞试验,但却使人们能够根据计算机模拟试验的结果更好地、更精确地安排实际试验,以减少试验次数和时间,降低试验成本。 正面碰撞是汽车碰撞事故中最多、对人体危害最大的碰撞形式,也是国际上许多安全法规中规定的小型客车和轿车的最主要标准试验。本文选取国产燃料电池轿车“超越二号”为虚拟试验对象,模拟其正面碰撞,从而预测

相关主题