搜档网
当前位置:搜档网 › 钨极惰性气体保护焊及安全操作

钨极惰性气体保护焊及安全操作

钨极惰性气体保护焊及安全操作
钨极惰性气体保护焊及安全操作

钨极惰性气体保护焊及安全操作

一、钨极惰性气体保护焊的特点

钨极惰性气体保护焊是在惰性气体的保护下,利用钨电极与工件间产生的电弧热熔化母材和填充焊丝(如果使用填充焊丝)的一种焊接方法,如图5—1所示。焊接时保护气体从焊枪的喷嘴中连续喷出,在电弧周围形成气体保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而可获得优质的焊缝。保护气体主要采用氩气。

钨极氩弧焊按操作方式分为手工焊、半自动焊和自动焊三类。手工钨极氩弧焊时,焊枪的运动和添加填充焊丝完全靠手工操作;半自动钨极氩弧焊时,焊枪运动靠手工操作,但填充焊丝则由送丝机构自动送进;自动钨极氩弧焊时,如工件固定电弧运动,则焊枪安装在焊接小车上,小车的行走和填充焊丝的送进均由机械完成。在自动钨极氩弧焊中,填充焊丝可以用冷丝或热丝的方式添加。热丝是指填充焊丝经预热后再添加到熔池中去,这样可大大提高熔敷速度。某些场合,例如薄板焊接或打底焊道,有时不必添加填充焊丝。

图5—1 钨极惰性气体保护焊示意图

1—喷嘴2—钨极3—电弧4—焊缝5—工件6—熔池7—填充焊丝8—惰性气体

上述三种焊接方法中,手工钨极氩弧焊应用最广泛,半自动钨极氩弧焊则很少应用。

钨极氩弧焊具有下列优点:

(1)氩气能有效地隔绝周围空气;它本身又不溶于金属,不和金属反应,钨极氩弧焊过程中电弧还有自动清除工件表面氧化膜的作用,因此,可成功地焊接易化学活泼性强的有色金属、不锈钢和各种合金。

(2)小电流条件下的钨极氩弧焊,适用于薄板及超薄板材料焊接。

(3)热源和填充焊丝可分别控制,因而热输入容易调节,可进行各种位置的焊接,也是实现单面焊双面成形的理想方法。

不足之处是:

(1)熔深浅,熔敷速度小,生产率较低。

(2)钨极承载电流的能力较差,过大的电流会引起钨极熔化和蒸发,其微粒有可能进入熔池,造成污染(夹钨)。

(3)惰性气体(氩气、氦气)较贵,和其它电弧焊方法(如手工电弧焊、埋弧焊、CO2气体保护焊等)比较,生产成本较高。

钨极氩弧焊可用于几乎所有金属和合金的焊接,但由于其成本较高,通常多用于焊接铝、镁、钛、铜等有色金属,以及不锈钢、耐热钢等。

钨极氩弧焊所焊接的板材厚度范围,从生产率考虑以3mm以下为宜。对于某些黑色和有色金属的厚壁重要构件(如压力容器及管道),在根部熔透焊道焊接、全位置焊接和窄间隙焊接时,为了保证高的焊接质量,有时也采用钨极氩弧焊。

二、钨极氩弧焊设备

钨极氩弧焊设备由焊接电源、引弧及稳弧装置、焊枪、供气系统、水冷系统和焊接程序控制装置等部分组成。对于自动钨极氩弧焊还应包括小车行走机构及送丝装置。

(一)各种电流钨极氩弧焊的特点

钨极氩弧焊要求采用具有陡降或恒流外特性的电源,以减小或排除因弧长变化而引起的电流波动。钨极气体保护焊使用的电流种类可分为直流正接,直流反接及交流三种,它们的特点如表5—2所示。

1.直流钨极氩弧焊

直流钨极氩弧焊时,阳极的发热量远大于阴极。所以,用直流正接焊接时,钨极因发热量小,不易过热,同样大小直径的钨极可以采用较大的电流,工件发热量大,熔深大,生产率高。而且,由于钨极为阴极,热电子发射能力强,电弧稳定而集中。因此,大多数金属宜采用直流正接焊接。反之,直流反接时,钨极容易过热熔化,同样大小直径的钨极许用电流要小得多,且熔深浅而宽,一般不推荐使用。

铝、镁及其合金和易氧化的铜合金(铝青铜、铍铜等)焊接时,可形成一层致密的高熔点氧化膜覆盖在熔池表面和焊口边缘。该氧化膜如不及时清除,就会妨碍焊接正常进行。当工件为负极时,其表面氧化膜在电弧的作用下可以被清除掉而获得表面光亮美观、成形良好的焊缝。这是因为金属氧化膜逸出功小,易发射电子,阴极斑点总是优先在氧化膜处形成,在质量很大的氩正离子的高速撞击下,表面氧化膜破坏、分解,而被清除掉,这就是“阴极清理作用”。

为了同时兼顾阴极清理作用和两极发热量的合理分配,对于铝、镁、铝青铜等金属和合金,一般都采用同时具有正接和反接特点的交流钨极氩弧焊。

2.交流钨极氩弧焊

交流电源主要用于焊接铝、镁及其合金和铝青铜,其特点是负半波(工件为负)时,有阴极清理作用,正半波(工件为正)时,钨极因发热量低,不易熔化,同样大小的钨极可比直流反接的许用电流大得多。

交流钨极氩弧焊的主要问题是直流分量和电弧稳定性问题。

(二)引弧及稳弧装置

TIG焊接开始时,可采用下列方法引燃电弧:

(1)短路引弧依靠钨极和引弧板或碳块接触引弧。其缺点是引弧时钨极损耗较大,端部形状容易被破坏,应尽量少用。

(2)高频引弧利用高频振荡器产生的高频高压击穿钨极与工件之间的间隙(3mm左右)而引燃电弧。高频振荡器一般用于焊接开始时的引弧。交流钨极氩弧焊时,引弧后继续接通也可在焊接过程中起稳弧作用。高频振荡器主要由电容与电感组成振荡回路,振荡是衰减的,每次仅能维持2~6ms。电源为正弦波时,每半周振荡一次。

(3)高压脉冲引弧在钨极与工件之间加一高压脉冲,使两极间气体介质电离而引弧。利用高压脉冲引弧是一种较好的引弧方法。在交流钨极氩弧焊时,往往是既用高压脉冲引弧,又用高压脉冲稳弧。引弧和稳弧脉冲由共用的主电路产生,但有各自的触发电路。该电路的设计能保证空载时,只有引弧脉冲,而不产生稳弧脉冲;电弧一旦引燃,即产生稳弧脉冲,而引弧脉冲自动消失。

(三)焊枪

焊枪的作用是夹持钨极,传导焊接电流和输送保护气,它应满足下列要求:

(1)保护气流具有良好的流动状态和一定的挺度,以获得可靠的保护。

(2)有良好的导电性能。

(3)充分的冷却,以保证持久工作。

(4)喷嘴与钨极间绝缘良好,以免喷嘴和焊件接触时产生短路,打弧。

(5)重量轻,结构紧凑,可达性好;装拆维修方便。

焊枪分气冷式和水冷式两种,前者用于小电流(≤100A)焊接。喷嘴的材料有陶瓷、紫铜和石英三种。高温陶瓷喷嘴既绝缘又耐热,应用广泛,但通常焊接电流不能超过350A。紫铜喷嘴使用电流可达500A,需用绝缘套将喷嘴和导电部分隔离。石英喷嘴较贵,但焊接时可见度好。

(四)供气系统和水冷系统

(1)供气系统由高压气瓶、减压阀、浮子流量计和电磁气阀组成。减压阀将高压气瓶中的气体压力降至焊接所要求的压力,流量计用来调节和测量气体的流量,电磁阀以电信号控制气流的通断。有时将流量计和减压阀做成一体,成为组合式。

(2)水冷系统许用电流大于100A的焊枪一般为水冷式,用水冷却焊枪和钨极。对于手工水冷式焊枪,通常将焊接电缆装入通水软管中做成水冷电缆,这样可大大提高电流密度,减轻电缆重量,使焊枪更轻便。有时水路中还接入水压开关,保证冷却水接通并有一定压力后才能起动焊机。

(五)焊接程序控制装置

焊接程序控制装置应满足如下要求:

(1)焊前提前1.5~4s输送保护气,以驱赶管内空气;

(2)焊后延迟5~15s停气,以保护尚未冷却的钨极和熔池;

(3)自动接通和切断引弧和稳弧电路;

(4)控制电源的通断;

(5)焊接结束前电流自动衰减,以消除火口和防止弧坑开裂,

对于环缝焊接及热裂纹敏感材料,尤其重要。

三、钨极和保护气体

钨的熔点(3410℃)及沸点(5900℃)都很高,适合作为不熔化电极,常用的有纯钨极、钍钨极和铈钨极三种。纯钨极熔点和沸点都很高,缺点是要求空载电压较高,承载电流能力较小;钍钨极加入了氧化钍,可降低空载电压,改善引弧稳弧性能,增大许用电流范围,但有微量放射性;铈钨极比钍钨极更易引弧,更小的钨极损耗,放射剂量也低得多,推荐使用。不同直径钨极的焊接电流范围如表5—3所示。

工业中用于TIG焊的保护气体主要是氩。特殊情况下也有采用氦、氩一氦混合气体和氩一氢混合气体。

与其它气体相比较,氩气有如下的特点:

(1)在氩气中较易引弧,电弧稳定而柔和。

(2)氧气的密度大,易形成良好的保护罩,获得较好的保护效果。

(3)氩气的原子质量大,具有很好的阴极清理效果。

(4)氧气相对便宜,广泛应用于工业生产中。

四、钨极氩弧焊焊接工艺

(一)接头及坡口形式

钨极氩孤焊的接头形式有对接、搭接、角接、T形接和端接五种基本类型。端接接头仅在薄板焊接时采用。

(二)工件和填充焊丝的焊前清理

氩弧焊时,对材料的表面质量要求很高,焊前必须经过严格清理,清除填充焊丝及工件坡口和坡口两侧表面至少20mm范围内的油污、水分、灰尘、氧化膜等,否则在焊接过程中将影响电弧稳定性,恶化焊缝成形,并可能导致气孔、夹杂、未熔合等缺陷。常用清理方法如下:

1.去除油污、灰尘

可以用有机溶剂(汽油、丙酮、三氯乙烯、四氯化碳等)擦洗,也可配制专用化学溶液清洗。

2.除氧化膜

(1)机械清理此法只适用于工件,对于焊丝不适用。通常是用不锈钢丝或铜丝轮(刷),将坡口及其两侧氧化膜清除。对于不锈钢及其它钢材也可用砂布打磨。铝及铝合金材质较软,用刮刀清理也较有效。但机械清理效率低,去除氧化膜不彻底,一般只用于尺寸大、生产周期长或化学清洗后又局部沾污的工件。

(2)化学清理依靠化学反应的方法去除焊丝或工件表面的氧化膜,清洗溶液和方法因材料而异。

(三)工艺参数的选择

钨极氩弧焊的工艺参数主要有焊接电流种类及极性、焊接电流、钨极直径及端部形状、保护气体流量等,对于自动焊还包括焊接速度和送丝速度。

1.焊接电流种类及大小

一般根据工件材料选择电流种类,焊接电流大小是决定焊缝熔深的最主要参数,它主要根据工件材料、厚度、接头型式、焊接位置、有时还考虑焊工技术水平(手工焊时)等因素选择。

2.钨极直径及端部形状

钨极端部形状是一个重要工艺参数。根据所用焊接电流种类,选用不同的端部形状。尖端角度的大小会影响钨极的许用电流、引弧及稳弧性能。小电流焊接时,选用小直径钨极和小的锥角,可使电弧容易引燃和稳定;在大电流焊接时,增大锥角可避免尖端过热熔化,减少损耗,并防止电弧往上扩展而影响阴极斑点的稳定性。钨极尖端角度对焊缝熔深和熔宽也有一定影响。减小锥角,焊缝熔深减小、熔宽增大。反之则熔深增大、熔宽减小。

3.气体流量和喷嘴直径

在一定条件下,气体流量和喷嘴直径有一个最佳范围,此时,气体保护效果最佳,有效保护区最大。如气体流量过低,气流挺度差,排除周围空气的能力弱,保护效果不佳;流量太大,容易变成紊流,使空气卷入,也会降低保护效果。同样,在流量一定时,喷嘴直径过小,保护范围小,且因气流速度过高而形成紊流;喷嘴过大,不仅妨碍焊工观察,而且气流流速过低,挺度小,保护效果也不好。所以,气体流量和喷嘴直径要有一定配合。一般手工氩弧焊喷嘴内径范围为5~20mm,流量范围为5~25L/min范围。

4.焊接速度

焊接速度的选择主要根据工件厚度决定并和焊接电流、预热温度等配合以保证获得所需的熔深和熔宽。在高速自动焊时,还要考虑焊接速度对气体保护效果的影响。焊接速度过大,保护气流严重偏后,可能使钨极端部、弧柱、熔池暴露在空气中。因此必须采用相应措施如

加大保护气体流量或将焊炬前倾一定角度,以保持良好的保护作用。

5.喷嘴与工件的距离

距离越大,气体保护效果越差,但距离太近会影响焊工视线,且容易使钨极与熔池接触,产生夹钨。一般喷嘴端部与工件的距离在8~14mm之间。

(四)操作技术

焊接时,焊枪、焊丝和工件之间必须保持正确的相对位置,焊直缝时通常采用左向焊法。焊丝与工件间的角度不宜过大,否则会扰乱电弧和气流的稳定。手工钨极氩弧焊时,送丝可以采用断续送进和连续送进两种方法,要绝对防止焊丝与高温的钨极接触,以免钨极被污染、烧损,电弧稳定性被损坏,断续送丝时要防止焊丝端部移出气体保护区而氧化。环缝自动焊时,焊枪应逆旋转方向偏离工件中心线一定距离,以便于送丝和保证焊缝的良好成形。

(五)加强气体保护作用的措施

对于对氧化、氮化非常敏感的金属和合金(如钛及其合金)或散热慢、高温停留时间长的材料(如不锈钢),要求有更强的保护作用。加强气体保护作用的具体措施有:

(1)在焊枪后面附加通有氩气的拖罩,使在400℃以上的焊缝和热影响区仍处于保护之中。

(2)在焊缝背面采用可通氩气保护的垫板、反面保护罩或在被焊管子内部局部密闭气腔内充满氩气,以加强反面的保护。在焊缝两侧和背面设置紫铜冷却板、铜垫板、铜压块(水冷或空冷),都有加速焊缝和热影响区冷却、缩短高温停留时间的作用。

五、钨极氩弧焊安全技术

(一)氩弧焊的有害因素

氩弧焊影响人体的有害因素有三方面:

(1)放射性钍钨极中的钍是放射性元素,但钨极氩弧焊时钍钨极的放射剂量很小,在允许范围之内,危害不大。如果放射性气体或微粒进入人体做为内放射源,则会严重影响身体健康。

(2)高频电磁场采用高频引弧时,产生的高频电磁场强度在60~110V/m之间,超过参考卫生标准(20V/m)数倍。但由于时间很短,对人体影响不大。如果频繁起弧,或者把高频振荡器做为稳弧装置在焊接过程中持续使用,则高频电磁场可成为有害因素之一。

(3)有害气体——臭氧和氮氧化物氩弧焊时,弧柱温度高。紫外线辐射强度远大于一般电弧焊,因此在焊接过程中会产生大量的臭氧和氧氮化物;尤其臭氧其浓度远远超出参考卫生标准。如不采取有效通风措施,这些气体对人体健康影响很大,是氩弧焊最主要的有害因素。

(二)安全防护措施

(1)通风措施氩弧焊工作现场要有良好的通风装置,以排出有害气体及烟尘。除厂房通风外,可在焊接工作量大,焊机集中的地方,安装几台轴流风机向外排风。

此外,还可采用局部通风的措施将电弧周围的有害气体抽走,例如采用明弧排烟罩、排烟焊枪、轻便小风机等。

(2)防护射线措施尽可能采用放射剂量极低的铈钨极。钍钨极和铈钨极加工时,应采用密封式或抽风式砂轮磨削,操作者应配戴口罩、手套等个人防护用品,加工后要洗净手脸。钍钨极和铈钨极应放在铝盒内保存。

(3)防护高频的措施为了防备和削弱高频电磁场的影响,采取的措施有:

1)工件良好接地,焊枪电缆和地线要用金属编织线屏蔽;

2)适当降低频率;

3)尽量不要使用高频振荡器做为稳弧装置,减小高频电作用时间。

(4)其它个人防护措施氩弧焊时,由于臭氧和紫外线作用强烈,宜穿戴非棉布工作服(如耐酸呢、柞丝绸等)。在容器内焊接又不能采用局部通风的情况下,可以采用送风式头盔、送风口罩或防毒口罩等个人防护措施。

钨极惰性气体保护焊及安全操作

钨极惰性气体保护焊及安全操作 一、钨极惰性气体保护焊的特点 钨极惰性气体保护焊是在惰性气体的保护下,利用钨电极与工件间产生的电弧热熔化母材和填充焊丝(如果使用填充焊丝)的一种焊接方法,如图5—1所示。焊接时保护气体从焊枪的喷嘴中连续喷出,在电弧周围形成气体保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而可获得优质的焊缝。保护气体主要采用氩气。 钨极氩弧焊按操作方式分为手工焊、半自动焊和自动焊三类。手工钨极氩弧焊时,焊枪的运动和添加填充焊丝完全靠手工操作;半自动钨极氩弧焊时,焊枪运动靠手工操作,但填充焊丝则由送丝机构自动送进;自动钨极氩弧焊时,如工件固定电弧运动,则焊枪安装在焊接小车上,小车的行走和填充焊丝的送进均由机械完成。在自动钨极氩弧焊中,填充焊丝可以用冷丝或热丝的方式添加。热丝是指填充焊丝经预热后再添加到熔池中去,这样可大大提高熔敷速度。某些场合,例如薄板焊接或打底焊道,有时不必添加填充焊丝。 图5—1 钨极惰性气体保护焊示意图 1—喷嘴2—钨极3—电弧4—焊缝5—工件6—熔池7—填充焊丝8—惰性气体 上述三种焊接方法中,手工钨极氩弧焊应用最广泛,半自动钨极氩弧焊则很少应用。 钨极氩弧焊具有下列优点: (1)氩气能有效地隔绝周围空气;它本身又不溶于金属,不和金属反应,钨极氩弧焊过程中电弧还有自动清除工件表面氧化膜的作用,因此,可成功地焊接易化学活泼性强的有色金属、不锈钢和各种合金。 (2)小电流条件下的钨极氩弧焊,适用于薄板及超薄板材料焊接。 (3)热源和填充焊丝可分别控制,因而热输入容易调节,可进行各种位置的焊接,也是实现单面焊双面成形的理想方法。 不足之处是: (1)熔深浅,熔敷速度小,生产率较低。 (2)钨极承载电流的能力较差,过大的电流会引起钨极熔化和蒸发,其微粒有可能进入熔池,造成污染(夹钨)。 (3)惰性气体(氩气、氦气)较贵,和其它电弧焊方法(如手工电弧焊、埋弧焊、CO2气体保护焊等)比较,生产成本较高。 钨极氩弧焊可用于几乎所有金属和合金的焊接,但由于其成本较高,通常多用于焊接铝、镁、钛、铜等有色金属,以及不锈钢、耐热钢等。 钨极氩弧焊所焊接的板材厚度范围,从生产率考虑以3mm以下为宜。对于某些黑色和有色金属的厚壁重要构件(如压力容器及管道),在根部熔透焊道焊接、全位置焊接和窄间隙焊接时,为了保证高的焊接质量,有时也采用钨极氩弧焊。 二、钨极氩弧焊设备 钨极氩弧焊设备由焊接电源、引弧及稳弧装置、焊枪、供气系统、水冷系统和焊接程序控制装置等部分组成。对于自动钨极氩弧焊还应包括小车行走机构及送丝装置。

IWE工艺复习试题及答案.

1.下列关于焊接方法标记错误的是: A.焊条电弧焊111 B. 熔化极活性气体保护焊135 C.氧乙炔气焊311 D. 钨极惰性气体保护焊131 2.以下哪些焊接方法是以电阻热作为焊接热源的: A.焊条电弧焊 B. 电阻点焊 C.钨极氩弧焊 D. 电渣焊 3.正确选择焊接方法的根据是: A.焊接位置 B. 经济性 C. 设备条件 D. 自动化、机械化程度 4. 下列说法正确的是: A. 焊接属于不可拆连接,而螺纹连接和铆接属于可拆连接 B. 与熔焊相比较,钎焊是母材不熔化,钎料熔化 C. 根据ISO857标准规定,通常将焊接分为熔化焊、压力焊和电阻焊 D.氧乙炔火焰可用于熔化焊、气割,也可用于钎焊 5.下列哪种电源输出的是交流电: A.弧焊整流器 B. 脉冲电源 C. 弧焊变压器 D. 焊接变流器 6. 在用气焊焊接黄铜时通常使用哪种火焰类型? A.碳化焰 B. 氧化焰 C. 中性焰 D. 所有类型火焰均可 7.电弧中带电粒子的产生可依靠下列哪些方式: A.热发射 B. 阳极发射离子 C. 粒子碰撞发射 D. 热电离 8.与实芯焊丝相比,使用药芯焊丝的优势在于: A.熔敷速度快,生产效率高 B. 工艺性能好,焊缝成形美观 C.容易保管 D. 形成的烟雾更少

9.焊条电弧焊时,产生咬边的原因是: A.焊接电流太大 B. 电弧太长 C. 焊接电压太低 D. 焊条角度太陡 10.焊条电弧焊焊条为酸性药皮时它含有下列哪些化合物? A. 石英SiO2 B. 金红石TiO2 C. 铁磁矿Fe3O4 D. 纤维素 11.下列可以作为TIG 焊用保护气体的组别是: A. ISO14175 M2 B. ISO14175 C C. ISO14175 M1 D. ISO14175 I 12. 在什么条件下采用碱性药皮焊条焊接最合适? A. 要求焊缝表面成形较光滑时 B. 对焊缝质量及韧性有较高要求时 C. 要求焊缝熔深较大时 D. 要求具有特别高的熔敷率时 13. TIG焊时,下列哪些说法是正确的? A. Ar中加入He时,可使焊接速度得到提高 B. Ar中加入He时,起弧更容易 C. Ar中加入He时,可使焊缝熔深加大 D. Ar中加入He时,由于熔池粘度增加,使得抗气孔性能下降 14. 关于埋弧焊焊剂的说法错误的是: A.焊剂可以起保护作用 B. 使用锰硅型焊剂能提高焊缝韧性 C.使用氟化物碱性焊剂能提高焊缝韧性 D.烧结型焊剂不易吸潮,可以不用烘干 15.符号标记为ISO14341-A G 46 3 M213Sil,对此下列哪种标记的说明是正确的? A.46表示熔敷金属最低屈服强度为460N/mm2和延伸率22% B.G表示惰性气体保护焊 C. M21表示保护气体 D. 3Sil表示焊丝化学成份

钨极气体保护焊

气体保护焊是利用外加气体作为保护介质的一种电弧焊方法,其优点是电弧和熔池可见性好,操作方便:没有熔渣或很少熔渣,勿需焊后清渣,适应于各种位置的焊接。但在室外作业时需采取专门的防风措施。 根据保护气体的活性程度,气体保护焊可以分为惰性气体保护焊和活性气体保护焊。钨极氩气保护焊是典型的惰性气体保护焊,它是在氩气(Ar)的保护下,利用钨电极与工件间产生的电弧热熔化母材和填充焊丝(如果使用填充焊丝)的一种焊接方法,通常我们一般用英文简称TIG(Tungsten Inert Gas Welding)焊表示。 钨极氩弧焊原理、分类及特点 1、原理 钨极氩弧焊是用钨棒作为电极加上氩气进行保护的焊接方法,其方法构成如图1所示。焊接时氩气从焊枪的喷咀中连续喷出,在电弧周围形成气体保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而获得优质的焊缝。焊接过程根据工件的具体要求可以加或者不加填充焊丝。 图1 钨极惰性气体保护焊示意图 1-喷嘴 2-钨极 3-电弧 4-焊缝 5-工件 6-熔池 7-填充焊丝 8-惰性气体 2、分类 这种焊接方法根据不同的分类方式大致有如下几种:

上述几组钨极氩弧焊方法中手工操作应用最为广泛。 3、特点 这种焊接方法由于电弧是在氩气中进行燃烧,因此具有如下优缺点: 1)氩气具有极好的保护作用,能有效地隔绝周围空气;它本身既不与金属起化学反应,也不溶于金属,使得焊接过程中熔池的治金反应简单易控制,因此为获得高质量的焊缝提供了良好的条件。 2)钨极电弧非常稳定,即使在很小的电流情况下(<10A)仍可稳定燃烧,特别适合于薄板材料焊接。 3)热源和填充焊丝可分别控制,因而热输入容易调整,所以这种焊接方法可进行全位置焊接,也是实现单面焊双面成形的理想方法。 4)由于填充焊丝不通过电流,故不会产生飞溅,焊缝成形美观。 5)交流氩弧在焊接过程中能够自动清除工件表面的氧化碳作用,因此,可成功地焊接一些化学活泼性强的有色金属,如铝、镁及其合金。 6)钨极承载电流能力较差,过大的电流会引起钨极的熔化和蒸发,其微粒有可能进入熔池而引起夹钨。因此,熔敷速度小、熔深浅、生产率低。 7)采用的氩气较贵,熔敷率低,且氩弧焊机又较复杂,和其他焊接方法(如焊条电弧焊、埋弧焊、CO2气体保护焊)比较,生产成本较高。 8)氩弧受周围气流影响较大,不适宜室外工作。 综上所述,钨极氩弧料可用于几乎所有金属和合金的焊接,但由于其成本较高,通常多用于焊接铝、镁、钛、铜等有色金属,以

焊接课后习题

绪论 1.与铆接相比,焊接可以节省金属材料,与粘结相比,焊接具有较高的强度。 2.根据焊接方法的焊接过程特点,可将其分为熔焊、压焊和钎焊三大类。 第一单元电弧焊基础知识 综合知识模块一 1.复合:电弧空间的正负带点粒子(正离子、负离子、电子)在一定条件下相遇而结合 成中性粒子的过程。 2.电磁收缩力:当电流流过液体或气态导体时,电流可看成是由许多相距很近的平行同 向电流线组成的,这些电流线之间将产生的相互吸引力。 3.最小电压原理:当电弧长度也为定值时,电场强度的大小即代表了电弧产热量的大小, 因此,能量消耗最小时的电场强度最低,即固定弧长上的电压降最小。 4.电弧是一种气体放电现象,它是带电粒子通过两电极之间气体空间的一种导电 过程。 5.要使两电极之间的气体导电,必须具备两个条件是:1. 两电极之间有带电粒子;2. 两 电极之间有电场。 6.斑点力的方向与熔滴过渡方向相反,因而斑点力总是阻碍熔滴过渡的作用力。 7.电弧不稳定的原因除操作人员技术熟练程度不足外,还与焊接电源、焊条药皮或 焊剂、焊接电流、磁偏吹等因素有关。 综合知识模块二 1.熔滴过渡过程十分复杂,主要过渡形式有自由过渡、接触过渡和渣壁过渡三种。 2.立焊和仰焊时,促使熔滴过渡的力有表面张力、气体吹力和熔滴爆破力。 综合知识模块三 1.焊缝成形缺陷包括焊缝外形尺寸不符合要求、咬边、未焊透和未熔合、焊瘤和 焊穿及塌陷。 2.正确选择焊接参数和熟练掌握焊接操作技术是防止咬边的有效措施。 第二单元焊条电弧焊 综合知识模块一 1.焊条电弧焊是用手工操纵焊条进行焊接的电弧焊方法。 2.焊条药皮不断地分解、熔化而生成气体及熔渣,保护焊条端部,电弧、熔池及附 近区域,防止大气对熔化金属的有害污染。 3.焊条电弧焊可以适时调整电弧位置和运条姿势,修正焊接参数。因此,对焊接接 头的装配精度要求相对降低。 综合知识模块二 1.焊接极性:用直流电弧焊电源焊接时,工件和焊条与电源输出端正、负极的接法 2.额定焊接电流:在额定负载持续率条件下允许使用的最大焊接电流。 3.焊条保温筒:盛装已烘干的焊条,且能保持一定温度及防止焊条受潮的一种筒形容器。 4.焊条电弧焊的焊接设备主要由弧焊电源、焊钳和焊接电缆组成。 5.工件接直流电源正极,焊条接负极时,称正接或正极性。 6.护目镜起减弱弧光强度、过滤红外线和紫外线以保护焊工眼睛的作用。

钨极惰性气体保护焊

第六章钨极惰性气体保护焊 一、教学目的: 掌握TIG焊的原理、特点及应用 掌握直流TIG焊、交流TIG焊的特点及应用 了解TIG焊的组成及设备 理解TIG焊焊接工艺参数的选择 掌握TIG焊的操作技术 了解其他的TIG方法 二、教学重点: TIG焊的原理、特点及应用 直流TIG焊、交流TIG焊的特点及应用 TIG焊的操作技术 三、教学难点: 直流TIG焊、交流TIG焊时的优缺点及应用 TIG焊焊接工艺参数的选择 四、参考学时数: 12学时,其中实训6课时 五、主要教学内容: 第一节 TIG焊的特点及应用 一、TIG焊的原理 TIG焊是在惰性气体的保护下,利用钨极与焊件间产生的电弧热熔化母材和填充焊丝,形成焊缝的焊接方法。 TIG焊一般采用氩气作保护气体,称为钨极氩弧焊。 二、TIG焊的特点 TIG焊与其他焊接方法相比有如下特点: (1)可焊金属多 几乎可以焊接所有的金属。 (2)适应能力强 钨极电弧稳定,飞溅小,热输入容易调节,可进行各种位置的焊接。 (3)焊接生产率低 钨极承载电流能力较差,为了避免发生夹钨现象,一般TIG焊使用的电流比较小。 (4)生产成本较高 惰性气体价格比较昂贵,因此生产成本高。 三、TIG焊的应用 TIG焊几乎可以焊接所有的金属,特别适合焊接化学性质活泼的金属及其合金。 表6-1 TIG焊的应用范围

第二节TIG焊的电流种类和极性 一、直流TIG焊 1、直流正极性法 直流正极性法焊接时,焊件接电源正极,钨极接电源负极。 直流正极性有如下特点: 1)熔池深而窄,焊接生产率高,焊件的收缩应力和变形都小。 2)钨极许用电流大,寿命长。 3)电弧引燃容易,燃烧稳定。 直流正极性可以焊接除铝、镁及其合金以外的其他金属。 2、直流反极性法 直流反极性时焊件接电源负极,钨极接正极。 直流反极性TIG焊具有很好的阴极破碎作用,对铝、镁等易氧化形成致密氧化膜的金属来说,使焊缝表面光亮美观,成形良好。单钨极处在阴极时容易造成阴极过热,钨极损耗严重,而且容易给焊缝带来夹钨,焊件上得到的能量较少,因此焊缝熔深浅。 所以这种方法一般适合焊接铝、镁及其合金的薄件焊接。 、

焊接标准大全

焊接标准大全 【焊接基础通用标准】13 1、GB/T3375--94 焊接术语 2、Gb324--88 焊缝符号表示法 3、GB5185--2005T 金属焊接及钎焊方法在图样上的表示代号 4、GB12212--2012 技术制图焊缝符号的尺寸、比例及简化表示法 5、GB4656--2008 技术制图棒料、型材及其断面的简化表示法 6、GB/T 985.1-2008 气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口 8、GB/T 985.2-2008 埋弧焊的推荐坡口 9、GB/T 985.3-2008 铝及铝合金气体保护焊的推荐坡口 10、GB/T 985.4-2008 复合钢的推荐坡口 11、GB/T12467金属焊接质量等级标准 12、GBl0854--89 钢结构焊缝外形尺寸 13、GB/T16672—1996 焊缝----工作位置----倾角和转角的定义 【焊接材料标准】 ——焊条16 1、GB/T5117--2012 非合金钢及细晶粒钢焊条 2、GB/T 5118-2012 热强钢焊条 3、GB/T 983-2012 不锈钢焊条 4、GB984--2001 堆焊焊条 5、GB/T3670--1995 铜及铜合金焊条 GB/T13147-2009 铜及铜合金复合钢板焊接技术要求 6、GBT 3669-2001 铝及铝合金焊条 7、GBl0044--2006 铸铁焊条及焊丝 8、GB/T13814—2008 镍及镍合金焊条 9、GB895--86 船用395焊条技术条件 10、JB/T6964—93 特细碳钢焊条 11、JB/T8423—96 电焊条焊接工艺性能评定方法 12、GB3429--2002 碳素焊条钢盘条 13、JBT 56100-1999 堆焊焊条产品质量分等 14、JBT 56101-1999铸铁焊条产品质量分等 15、JBT 56102-1999碳钢、低合金钢、不锈钢焊条产品质量分等 16、JB/T3223--96 焊接材料质量管理规程 ——焊丝9 1、GB/T14957—94 熔化焊用钢丝 2、GB/T14958--94 气体保护焊用钢丝 3、GB/T8110--2008 气体保护电弧焊用碳钢、低合金钢焊丝 4、GB/Tl0045--2001 碳钢药芯焊丝 5、GB9460--2008 铜及铜合金焊丝 6、GBl0858--2008 铝及铝合金焊丝 7、YB-T5092-2005焊接用不锈钢丝 8、GB/T15620--2008 镍及镍合金焊丝 9、JB/T56099--1999 铜及铜合金焊丝产品质量分等 ——焊剂2 1、GB5293--1999 碳素钢埋弧焊用焊剂 2、GBl2470--2003 低合金钢埋弧焊焊剂 ——钎料、钎剂9 1、GB/T6208--1995 钎料型号表示方法(已废) 2、GBl0859---2008 镍基钎料 1

焊接种类说明

TIG 钨极氩弧焊,MIG 熔化极惰性气体保护焊,MAG 熔化极活性气体保护 焊,SMAW焊条手工电弧焊 MIG焊(熔化极气体保护电弧焊) 这种焊接方法是利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬嘴喷出的气体来保护电弧进行焊接的。熔化极气体保护电弧焊通常用的保护气体有氩气,氦气,二氧化碳气或这些的混合气体。以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上称为MIG焊)。 熔化极气体保护电弧焊的主要优点是可以方便的进行各种位置的焊接,同时也具有焊接速度较快,熔敷率较高的优点。熔化极活性气体保护电弧焊可适用于大部分主要金属的焊接,包括碳钢,合金钢。熔化极惰性气体保护电弧焊适用于不锈钢,铝,镁,铜,钛,镐及镍合金。利用这种焊接方法还可以进行电弧点焊。 TIG Tungsten Inert Gas,缩写TIG。直译就是钨极惰性气体焊。钨极氩弧焊按操作方式分为手工焊、半自动焊和自动焊三类。手工钨极氩弧焊时,焊枪的运动和添加填充焊丝完全靠手工操作;半自动钨极氩弧焊时,焊枪运动靠手工操作,但填充焊丝则由送丝机构自动送进;自动钨极氩弧焊时,如工件固定电弧运动,则焊枪安装在焊接小车上,小车的行走和填充焊丝可以用冷丝或热丝的方式添加。热丝是指提高熔敷速度。某些场合,例如薄板焊接或打底焊道,有时不必添加填充焊丝。TIG为今日各主要焊接方法中的一种,其特点为焊接品质佳,及具焊接薄板的能力,由于没有使用焊剂,故可减少夹渣机会,如此可提升焊道的品质,TIG已被需高品质焊接的航天工业所引用。 MAG(metal active-gas welding)是熔化极活性气体保护焊的简称,熔化极活性气体保护焊是焊接工艺的一种,其通常用的保护气体有:氩气、氦气、CO2气或这些气体的混合气。MAG的主要优点是可以方便地进行各种位置的焊接,同时也具有焊接速度较快、熔敷率高等优点。 熔化极气体保护电弧焊以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上简称为MIG焊);以惰性气体与氧化性气体(O2,CO2)混合气为保护气体时,或以CO2气体或CO2+O2混合气为保护气时,统称为熔化极活性气体保护电弧焊(在国际上简称为MAG焊)。熔化极活性气体保护电弧焊可适用于大部分主要金属,包括碳钢、合金钢。熔化极惰性气体保护焊适用于不锈钢、铝、镁、铜、钛、锆及镍合金。利用这种焊接方法还可以进行电弧点焊。特点 显著提高电弧稳定性,熔滴细化,过渡频率增加,飞溅大大减少(飞溅率为1%-3%,采用射流过渡时几乎无飞溅),焊缝成形美观。此外,采用混合气体保护还可以改善熔深形状,未焊透和裂纹等缺陷大大减少,并能提高焊缝金属的性,减少焊后清理工作量,节能降耗,改善操作环境。 SMAW 手工电弧焊的焊接技术使用不同的方法保护焊接熔池,防止和大气接触。热能也是由电弧提供。和MIG焊一样,电极为自耗电极。金属电极外由矿物质熔剂包覆,熔剂熔化时形成焊渣手工电弧焊

焊接代号

GTAW(Gas Tungsten Arc Weld的缩写)又叫钨极惰性气体保护焊(TIG),有点类似熔化极气体保护焊,不同的是它的电极是用钨制成的,有非常高的熔点(是非熔化极气体保护焊的一种)。 由于它的不熔化,所以在焊接过程中没有损耗,保护气体作为焊剂使用,如果需要的话,填充棒料可被用来给焊缝提供金属。几乎所有的金属都能由钨极氩弧焊来焊接,包括大多数的钢、铝合金、镁合金、铜、某些黄铜和青铜、钛、金和银,该工艺能够给薄板提供高质量焊接。[1] TIG是指非熔化极气体保护焊,是利用外加气体作为保护介质的一种电弧焊方法,其优点是电弧和熔池可见性好,操作方便;没有熔渣或很少熔渣,无需焊后清渣。但在室外作业时需采取专门的防风措施。 非熔化极气体保护焊(简称TIG或GTAW)又称钨极氩弧焊或钨极惰性气体保护焊,它是使用纯钨或活化钨电极,以惰性气体—氩气作为保护气体的气体保护焊方法,钨棒电极只起导电作用不熔化,通电后在钨极和工件间产生电弧。在焊接过程中可以填丝也可以不填丝。填丝时,焊丝应从钨极前方填加。钨极氩弧焊又可分为手工焊和自动焊两种,以手工钨极氩弧焊应用较为广泛。 MIG焊(熔化极惰性气体保护焊)英文:metal inert-gas welding使用熔化电极,以外加气体作为电弧介质,并保护金属熔滴、焊接熔池和焊接区高温金属的电弧焊方法,称为熔化极气体保护电弧焊。用实芯焊丝的惰性气体(Ar或He)保护电弧焊法称为熔化极惰性气体保护焊,简称MIG焊 TIG非熔化极极惰性气体保护电弧焊 这是一种非熔化极惰性气体保护焊,是利用钨极和工件之间的电弧使金属熔化而形成焊缝的。焊接过程中钨极不熔化,只起电极的作用。同时由焊炬的喷嘴送进氩气作保护。还可根据需要另外添加金属。在国际上通称为TIG焊。 非熔化极极惰性气体保护电弧焊由于能很好地控制热输入,所以它是连接薄板金属和打底焊的一种极好方法。这种方法几乎可以用于所有金属的连接,尤其适用于焊接铝、镁这些能形成难熔氧化物的金属以及象钛和锆这些活泼金属。这种焊接方法的焊缝质量高,但与其它电弧焊相比,其焊接速度较慢。 MIG熔化极惰性气体保护电弧焊 这种焊接方法是利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬喷嘴喷出的惰性气体保护电弧来进行焊接的。 熔化极气体保护电弧焊通常用的保护气体有:氩气、氦气或这些气体的混合气。以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上简称为MIG焊)。 熔化极气体保护电弧焊的主要优点是可以方便地进行各种位置的焊接,同时也具有焊接速度较快、熔敷率高等优点。熔化极惰性气体保护焊适用于不锈钢、铝、镁、铜、钛、锆及镍合金。利用这种焊接方法还可以进行电弧点焊。

第六章 钨极惰性气体保护弧焊

第六章钨极惰性气体保护弧焊 第一节TIG焊的原理及特点 目的与要求:简要了解钨极氩弧焊的特点及应用。 几个概念: 钨极惰性气体保护电弧焊(tungsten inert-gas arc welding)使用纯钨或活化钨(钍钨、铈钨等)作为电极的惰性气体保护电弧焊,简称TIG焊,标注代号141。 钨极气体保护电弧焊GTAW(gas tungsten arc welding) 钨极氩弧焊argon tungsten arc welding 氩弧焊 argon arc welding 一、TIG焊的原理(结合图讲解) (在此适当介绍产生背景) 二、 TIG焊的分类及特点 分类(从电流、操作两方面) 优点缺点 三、 TIG焊的应用(从材料、厚度、位置等多个方面介绍) 第二节TIG焊的电流种类与极性 目的与要求:了解钨极氩弧焊对电极的要求、电流种类及极性对焊接的影响。 TIG焊可用不同的电流种类和极性进行焊接,各有不同的特点和适用场合。 (从优点、缺点、应用方面,结合图示对比讲授。) 直流正接(DCEN)(重点)许用电流大、熔深大,电极烧损少 直流反接(DCEP) 许用电流小、熔深小,电极烧损大(实际一般不用) 交流(重点)(难点:交流焊接导致的问题,不作深入讲解,直接给出解决措施) 有“阴极破碎作用”——可用于焊铝等有致密氧化膜的金属 电弧稳定性差,需要采取特殊稳弧措施 产生直流分量——需要消除 第三节钨极惰性气体保护焊设备 目的与要求:了解并掌握TIG焊设备的组成、性能特点与应用。 ·组成: 电源控制系统引/稳弧装置焊枪供气系统、(水冷系统)

·编号方法 如WSJ-400、WSM-400、WSE-400等各项字母的意义参见GB/T10249-1988《电焊机型号编制方法》 一、焊接电源(难点) 直流电源、交流电源、交直流电源均采用陡降或垂直下降外特性并可加脉冲。 多特性电源 逆变电源(发展方向) 二、引/稳弧装置 1、高频震荡引弧(常用)高压脉冲引弧 ·引弧装置已成为TIG焊机的标准配置。 2、稳弧装置(仅交流焊机需要) 一般用高压脉冲稳弧 三、控制装置 控制的功能越来越复杂,正向数字化方向发展 四、焊枪(编号规则见P140) 水冷焊枪QS(大电流焊接用) 气冷焊枪QQ(小电流焊接用I≤100A) 五、供气及水冷系统 1、供气系统 气瓶(灰色)-减压/流量计-电磁气阀→焊枪2、水冷系统(用于焊接电流150A时)开放式(国产机多见,浪费水) 循环式(进口机多见,节约水) 补充:钨极、气体及焊材(详细讲授) 一、钨极(重点) 纯钨----应用最早,适用交流焊接,综合性能欠佳 钍钨----传统电极,综合性能较好,国外多用,有放射性。 铈钨----在低电流下有优良的起弧性能,维弧电流较小,常用于管道、不锈钢制品和细小精致部件的焊接。在直流小电流时,是钍钨电极的首选替代品。 镧钨----焊接性能优良,耐用电流高而烧损率低;导电性能接近于2%钍钨(无论交直流,对习惯了钍钨的焊工,无需改变任何焊接操作程序就能方便地使用这种钨极,以免受放射性危害)。

TIG焊

TIG焊tungsten inert gas (TIG) arc welding TLG焊示意图 TIG焊(惰性气体钨极保护焊) 无论是手工焊接还是自动焊接0.5~4.0mm厚的不锈钢时,最常用的就是TIG焊。TIG焊还用于较厚断面根部焊道的焊接,主焊缝采用堆焊。 TIG焊的热源为直流电弧,工作电压为10~15伏,但电流可达300安,把工件作为正极,焊炬中的钨极作为负极。 惰性气体一般为氩气。 惰性气体通过焊炬送入,在电弧四周和焊接熔池上形成屏蔽。为增加热输入,一般向氩内添加5%的氢。但是,在焊接铁素体不锈钢时,不能在氩气内加氢。气体耗量每分钟约8~10升。在焊接过程中除从焊炬吹入惰性气体外,最好还从焊缝下吹入保护焊缝背面用的气体。 如果需要,可以向焊缝熔池内填充与被焊奥氏体材料成分相同的焊丝,在焊接铁素体不锈钢时,通常使用316型填料。 TIG焊 气体保护焊是利用外加气体作为保护介质的一种电弧焊方法,其优点是电弧和熔池可见性好,操作方便;没有熔渣或很少熔渣,无需焊后清渣。但在室外作业时需采取专门的防风措施。 根据焊接过程中电极是否熔化,气体保护焊可分为不熔化极(钨极)气体保护焊和熔化极气体保护焊。前者包括钨极惰性气体保护焊、等离子弧焊和原子氢焊。原子氢焊目前在生产中已很少应用;等离子弧焊将在下一章介绍;本章内容史限于钨极惰性气体保护焊。 钨极惰性气体保护焊英文简称TIG(Tungsten Inert Gas Weiding)焊。它是在惰性气体的保护下,利用钨电极与工件间产生的电弧热熔化母材和填充焊丝(如果使用填充焊丝)的一种焊接方法。焊接时保护气体从焊枪的喷嘴中连续喷出,在电弧周围形成气体保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而可获得优质的焊缝。保护气体可采用氩气、氦气或氩氦混合气体。在特殊应用场合,可添加小量的氢。用氩气作为保护气体的称钨极氩弧焊,用氦气的称钨极氦弧焊,由于氦气

2015年IWE工艺模拟题

工艺模块姓名: :以下为不定项选择题。 U答题前请认真阅读U 1. 下列关于焊接方法标记错误的是: A. 焊条电弧焊111 B. 熔化极活性气体保护焊135 C. 氧乙炔气焊311 D. 钨极惰性气体保护焊131 2. 以下哪些焊接方法是以电阻热作为焊接热源的: A. 焊条电弧焊 B. 电阻点焊 C. 钨极氩弧焊 D. 电渣焊 3. 正确选择焊接方法的根据是: A. 焊接位置 B. 经济性 C. 设备条件 D. 自动化、机械化程度 4. 下列说法正确的是: A. 焊接属于不可拆连接,而螺纹连接和铆接属于可拆连接 B. 与熔焊相比较,钎焊是母材不熔化,钎料熔化 C. 根据ISO857标准规定,通常将焊接分为熔化焊、压力焊和电阻焊 D. 氧乙炔火焰可用于熔化焊、气割,也可用于钎焊 5. 下列哪种电源输出的是交流电: A. 弧焊整流器 B. 脉冲电源 C. 弧焊变压器 D. 焊接变流器 6. 在用气焊焊接黄铜时候通常使用哪种火焰类型? A. 碳化焰 B. 氧化焰 C. 中性焰 D. 所有类型火焰均可 7. 电弧中带电粒子的产生可依靠下列哪些方式: A. 热发射 B. 阳极发射离子 C. 粒子碰撞发射 D. 热电离 8. 与实芯焊丝相比,使用药芯焊丝的优势在于: A. 熔敷速度快,生产效率高 B. 工艺性能好,焊缝成形美观 C. 容易保管 D. 形成的烟雾更少 9. 焊条电弧焊时,产生咬边的原因是: A. 焊接电流太大 B. 电弧太长 C. 焊接电压太低 D. 焊条角度太陡 10. 焊条电弧焊焊条为酸性药皮时它含有下列哪些化合物? A. 石英SiO2 B. 金红石TiO2 C. 铁磁矿Fe3O4 D. 纤维素 11. 下列可以作为TIG 焊用保护气体的组别是: A. ISO14175 M2 B. ISO14175 C C. ISO14175 M1 D. ISO14175 I 12. 在什么条件下采用碱性药皮焊条焊接最合适? A. 要求焊缝表面成形较光滑时 B. 对焊缝质量及韧性有较高要求时 C. 要求焊缝熔深较大时 D. 要求具有特别高的熔敷率时 13. TIG焊时,下列哪些说法是正确的? A. Ar中加入He时,可使焊接速度得到提高 B. Ar中加入He时,起弧更容易 C. Ar中加入He时,可使焊缝熔深加大 D. Ar中加入He时,由于熔池粘度增加,使得抗气孔性能下降 14. 关于埋弧焊焊剂的说法错误的是: A. 焊剂可以起保护作用 B. 使用锰硅型焊剂能提高焊缝韧性 C. 使用氟化物碱性焊剂能提高焊缝韧性 D. 烧结型焊剂不易吸潮,可以不用烘干 15. 符号标记为ISO14341-A G 46 3 M21 3Sil,对此下列哪种标记的说明是正确的?

焊接的三种焊接方法解释

焊接的三种焊接方法解释 按照焊接过程中金属所处的状态及工艺的特点,可以将焊接方法分为熔化焊、压力焊和钎焊三大类。 一、熔化焊 1、气焊 气焊主要应用于薄钢板、低熔点材料(有色金属及其合金)、铸铁件和硬质合金刀具等材料的焊接,以及磨损、报废车件的补焊、构件变形的火焰矫正等。 2、电弧焊 手工电弧焊可以进行平焊、立焊、横焊和仰焊等多位置焊接。另外由于电弧焊设备轻便,搬运灵活,可以在任何有电源的地方进行焊接作业。适用于各种金属材料、各种厚度和各种结构形状的焊接。 埋弧焊一般只适用于平焊位置,不适于焊接厚度小于1mm的薄板。由于埋弧焊熔深大,生产率高,机械化操作的程度高,因而适于焊接中厚板结构的长焊缝。埋弧焊能焊的材料已从碳素结构钢发展到低合金结构钢、不锈钢、耐热钢等以及某些有色金属,如镍基合金、钛合金和铜合金等。 3、气电焊 用外加气体作为电弧介质并保护电弧和焊接区的电弧焊称为气体保护电弧焊,简称气电焊。

气电焊通常按照电极是否熔化和保护气体不同,分为不熔化极(钨极)惰性气体保护焊和熔化极气体保护焊,氧化混合气体保护焊、CO2气体保护焊和管状焊丝气体保护焊。 从被焊件材质上看,CO2气体保护焊可以焊接碳钢和低合金钢;从焊接位置上看,可以进行全位置焊接,也可以进行平焊、横角焊及其他空间位置的焊接。 钨极惰性气体保护焊可用于几乎所有金属和合金的焊接,但由于其成本较高,通常多用于焊接铝、镁、钛和铜等有色金属,以及不锈钢和耐热钢等。 钨极惰性气体保护焊GTAW所焊接的板材厚度范围,从生产率考虑以3mm以下为宜。对于某些黑色和有色金属的厚壁重要构件(如压力容器及管道),为了保证高的焊接质量,也采用钨极惰性气体保护焊。 熔化极气体保护除具备不熔化极气体保护焊的主要优点(可进行各种位置的焊接;适用于有色金属、不锈钢、耐热钢、碳钢、合金钢绝大多数金属的焊接)外,同时也具有焊接速度较快,熔敷效率较高等优点。 4、等离子弧焊 等离子弧广泛应用于焊接、喷涂和堆焊。能够焊接更细、更薄(如1mm以下极薄金属的焊接)的工件。 5、电渣焊

TIG焊 示意图很好

TIG焊 TLG焊示意图 TIG焊(惰性气体钨极保护焊) 无论是手工焊接还是自动焊接0.5~4.0mm厚的不锈钢时,最常用的就是TIG焊。TIG焊还用于较厚断面根部焊道的焊接,主焊缝采用堆焊。 TIG焊的热源为直流电弧,工作电压为10~15伏,但电流可达300安,把工件作为正极,焊炬中的钨极作为负极。 惰性气体一般为氩气。 惰性气体通过焊炬送入,在电弧四周和焊接熔池上形成屏蔽。为增加热输入,一般向氩内添加5%的氢。但是,在焊接铁素体不锈钢时,不能在氩气内加氢。气体耗量每分钟约8~10升。在焊接过程中除从焊炬吹入惰性气体外,最好还从焊缝下吹入保护焊缝背面用的气体。 如果需要,可以向焊缝熔池内填充与被焊奥氏体材料成分相同的焊丝,在焊接铁素体不锈钢时,通常使用316型填料。 TIG焊 气体保护焊是利用外加气体作为保护介质的一种电弧焊方法,其优点是电弧和熔池可见性好,操作方便;没有熔渣或很少熔渣,无需焊后清渣。但在室外作业时需采取专门的防风措施。 根据焊接过程中电极是否熔化,气体保护焊可分为不熔化极(钨极)气体保护焊和熔化极气体保护焊。前者包括钨极惰性气体保护焊、等离子

弧焊和原子氢焊。原子氢焊目前在生产中已很少应用;等离子弧焊将在下一章介绍;本章内容史限于钨极惰性气体保护焊。 钨极惰性气体保护焊英文简称TIG(Tungsten Inert Gas Weiding)焊。它是在惰性气体的保护下,利用钨电极与工件间产生的电弧热熔化母材和填充焊丝(如果使用填充焊丝)的一种焊接方法。焊接时保护气体从焊枪的喷嘴中连续喷出,在电弧周围形成气体保护层隔绝空气,以防止其对钨极、熔池及邻近热影响区的有害影响,从而可获得优质的焊缝。保护气体可采用氩气、氦气或氩氦混合气体。在特殊应用场合,可添加小量的氢。用氩气作为保护气体的称钨极氩弧焊,用氦气的称钨极氦弧焊,由于氦气价格昂贵,在工业上钨极氩弧焊的应用要比氦弧焊广泛午得多。本章以钨极氩弧焊为典型,介绍钨极惰性气体保护焊,某些地方也对氦气和钨极氦弧焊特有的性能做了说明。 钨极氩弧焊按操作方式分为手工焊、半自动焊和自动焊三类。手工钨极氩弧焊时,焊枪的运动和添加填充焊丝完全靠手工操作;半自动钨极氩弧焊时,焊枪运动靠手工操作,但填充焊丝则由送丝机构自动送进;自动钨极氩弧焊时,如工件固定电弧运动,则焊枪安装在焊接小车上,小车的行走和填充焊丝可以用冷丝或热丝的方式添加。热丝是指提高熔敷速度。某些场合,例如薄板焊接或打底焊道,有时不必添加填充焊丝。 上述三种焊接方法中,手工钨极氩弧焊应用最广泛,半自动钨极氩氩弧焊则很少应用。 钨极氩弧焊具有下列优点: 1)氩气能有效地隔绝周围空气;它本身又不溶于金属,不和金属反应;钨极氩弧焊过程中电弧还有自动清除工件表面氧化膜的作用。因此,可成功地焊接易氧化,氮化、化学活泼性强的有色金属、不锈钢和各种合金。 2)钨极电弧稳定,即使在很小的焊接电流(<10A)下仍可稳定燃烧,特别适用于薄板,超薄板材料焊接。 3)热源和填充焊丝可分别控制,因而热输入容易调节,可进行各种位置的焊接,也是实现单面焊双面成形的理想方法。 4)由于填充焊丝不通过电弧,故不会产生飞溅,焊缝成形美观。 不足之处是: 1)熔深浅,熔敷速度小,生产率较低。 2)钨极承载电流的能力较差,过大的电流会引起钨极熔化和蒸发,其微粒有可能进入熔池,渣成污染(夹钨)。

钨极氩弧焊钨极惰性气体保护电弧焊

钨极氩弧焊钨极惰性气体保护电弧焊(tungsten inert-gas arc welding)使用纯钨或活化钨(钍钨、铈钨等)作为电极的惰性气体保护电弧焊,简称TIG焊 优点(1)几乎可以焊接所有的金属或合金(2)焊接质量好(焊缝纯净、成形好、热影响区小)(3)适于薄板及打底/全位置焊(4)无飞溅 缺点焊接效率低、成本高;对焊前清理要求严格;需要特殊的引弧措施;紫外线强烈、臭氧浓度高;抗风能力差。 材料:多用于有色金属及其合金 厚度:多用于薄件(从生产效率考虑,以3mm以下为宜) 位置:多用于打底(单面焊双面成形),薄件及管-管、管-板,也用于填充和盖面 焊接材料(1)钢类焊丝可用的焊丝包括:实芯焊丝药芯焊丝(2)有色金属焊丝 工艺参数焊丝直径、钨极直径、焊接电流、焊接电压、气体流量、(填丝速度)、(焊接速度)等。 电源直流电源、交流电源、交直流电源均采用陡降或垂直下降外特性。陡降外特性的电源与普通电弧焊的并无多大差别,原则上可以通用。 直流正接优点电极载流能力强、熔深大、钨极烧损少、引弧容易 反接没有阴极清理作用应用用于大多数的焊接场合(除Al、Mg外) 交流正弦波交流:设备简单,但电弧稳定性差(要有特别稳弧措施)、有直流分量(要有特别措施消除)。 变脉宽方波交流:设备复杂,但电流参数灵活、电弧稳定、钨极烧损少,比正弦波交流有优势。 变极性方波交流:特点与变脉宽方波交流相同,但更好(因负半周电流大小对阴极清理作用影响更大) 应用:用于焊接铝、镁、铝青铜等合金(表面易氧化、氧化膜致密) 焊接设备电源控制系统引/稳弧装置焊枪供气系统(水冷系统)(自动焊设备还应包括焊接小车和送丝装置) 焊接技术:1、选材:对结构钢,按等强原则选择焊接材料,对不锈钢、铝及铝合金等则主要考虑化学成分。①焊丝的化学成分应与母材的性能相匹配,严格控制其化学成分、纯度和质量。主要化学成分应比母材稍高,以弥补高温的烧损。②TIG焊使用钢焊丝时应尽量选专用焊丝,以减少主要化学成分的变化,保证焊缝一定的力学性能和熔池液态金属的流动性,获得良好的焊缝成型,避免产生裂纹等缺陷。③TIG焊使用有色金属焊丝焊接铜、铝、镁、钛及其合金时应注意成分相符。有时可将与母材成分相同的薄板剪成小条当焊丝。 2、不锈钢、铝及铝合金等打底时必须进行反面保护(常用的办法是通氩保护,对不锈钢也可用药芯焊丝打底)。 3、如焊机无高频引弧装置,不能直接在工件上引弧,要在垫板上引弧 等离子弧焊指的是一种经压缩了的电弧。它的特征是弧柱截面小、能量密度大、弧柱中心温度高达24000~50000K、焰流速度超过300m/s 优点1)等离子弧弧柱温度高,能量密度大,因而对焊件加热集中,熔透能力强,一次可焊透厚度大,在同样熔深下其焊接速度比TIG焊高,故可提高焊接生产率。此外,等离子弧对焊件的热输入量少,焊缝截面形状较窄,深宽比大,热影响区窄,其焊接变形也小。2)等离子弧的形态近似圆柱形,挺度好,因此当弧长发生波动时熔池表面的加热面积不大,对焊缝成形的影响较小,容易得到均匀的焊缝成形。3)等离子弧的稳定性好,使用小的焊接电流也能保证等离子弧的稳定,故可焊超薄件。4)钨极内缩在喷嘴里面,焊接时钨极与工件不接触,因此可减少钨极烧损和防止焊缝金属夹钨。 缺点设备和工艺较复杂 板厚等离子弧焊很适合焊接薄板,最薄的可焊0.01mm金属薄片。 结构形式 焊接材料一般TIG能焊接的大多数金属,均可用等离子弧焊接,如碳钢、低合金钢、不锈钢、铜合金、镍及其合金、钛及其合金等。低熔点和沸点的金属如铅、锌等,不适于等离子弧焊。 工艺参数(1)喷嘴孔径;(2)焊接电流;(3)离子气流量;(4)焊接速度;(5)喷嘴距离;(6)保护气流量。 电源等离子弧一般采用直流正接,下降或垂直下降特性电源,焊接有色 金属及合金时,可采用方波交流电源。为保证收弧处的焊缝质量,不会留 下弧坑,等离子弧焊接一般采用电流衰减法熄弧,应具有电流衰减装置 焊接设备按操作方式不同,等离子弧焊设备可分为手工焊设备和自动焊 设备。1)手工焊设备主要由焊接电源、焊枪、控制系统、气路系统和水路 系统等部分组成;2)自动焊设备除上述之外,还有焊接小车和送丝机构(焊 接时需要添加填充金属)。 等离子弧焊有下列三种基本方法: 1. 穿透型等离子弧焊穿透型等离子弧焊(穿孔型焊接法),即大电流焊 接法。该方法是利用等离子弧直径小、温度高、能量密度大、穿透力强的 特点,在适当的参数条件下实现的。焊接时,等离子弧把工件完全穿透并 在等离子流力作用下形成一个穿透工件的小孔(在小孔背面露出等离子 弧),熔化金属被排挤在小孔周围。随着焊枪向前移动,熔池中的液态金 属在电弧吹力、表面张力作用下沿熔池壁向熔池后方移动,于是小孔也跟 着焊枪向前移动,形成完全熔透的正反面都有波纹的焊缝。 2. 熔入型等离子弧焊它是采用较小的焊接电流(15~100A)和较小的离 子气流量,等离子弧在焊接过程中只熔化焊件而不产生小孔效应。基本焊 法与钨极氩弧焊相似。焊接时可添加填充金属,也可不加填充金属。主要 用于薄板(0.5~2.5mm以下)的焊接、多层焊时第二层及以后各层的焊 接。 3. 微束等离子弧焊焊接电流在30A以下的熔入型等离子弧焊。为保证 小电流时等离子弧的稳定性,一般采用混合型等离子弧。此时维弧电流始 终存在,因此小电流时等离子弧也十分稳定。主要用于超薄件的焊接。 埋弧焊 钨极氩弧焊 电阻焊点焊: 凸焊: 对焊 缝焊 熔化极气体保护焊 等离子弧焊 过 渡 区 过渡区

各种焊接方法介绍

各种焊接方法介绍 焊接方法是制定焊接结构制造工艺方案时首先考虑的工艺要素。焊接方法的选择取决于焊件材料、对接头质量的要求、焊接工作量、焊件结构外形和壁厚、焊接生产的经济性以及本企业的焊接设备和工艺装备条件等因素。其选择原则应该是在确保焊件质量符合相应标准和产品技术条件要求的前提下,尽可能提高焊接效率,降低生产成本,以获得最大的经济效益。 8.1手工电弧焊 8.1.1 特点 手工电弧焊是利用手工操纵焊条进行焊接的一种焊接方法。特点:设备简单,易于操作、灵活,工艺适应性强;电弧弧柱温度高于5000℃,热量集中,热效率较高。缺点:焊材利用率不高,熔敷率较低,难以实现机械化和自动化,焊工劳动强度大,特别是焊工职业病发病率高。 目前,我国焊条制造行业已能大批量生产不同强度等级和不同质量等级的结构钢焊条、低合金钢强度焊条、钼和铬钼耐热钢焊条、低温焊条、不锈钢焊条、镍和镍合金焊条、铜及铜合金焊条、铝和铝合金焊条、堆焊焊条、铸铁焊条以及特殊用途焊条。因此,手工电弧焊可以用于除活性金属、难熔金属和低熔点金属以外的各种金属材料的焊接。 8.1.2 焊接材料 焊条电弧焊焊条药皮基本上有两种类型:一种是药皮组分以酸性氧化物为主,称为酸性药皮焊条;另一种药皮是以碱性氧化物和氟化钙为主,称碱性药皮焊条。酸性药皮焊条的优点是电弧稳定性高,可以采用交流电焊接,焊条的工艺性好,可以完成向下立焊、单面焊双面成形工艺,焊缝外表美观等。其缺点是焊缝金属内氧、氮含量较高,氧化物夹杂较多,焊缝金属的塑性和冲击韧度较低,只能满足普通焊接结构的要求,不能用于对低温冲击韧度要求较高的焊接结构。碱性药皮焊条则相反,其电弧稳定性和工艺不如酸性药皮焊条,必须采用直流反接电源,短弧操作,抗气孔能力较弱等,但焊缝金属的氧、氮含量较低,金属氧化物夹杂少,焊缝金属的塑性和冲击韧度较高,完全能够满足低温焊接结构对焊缝韧性的要求。碱性药皮焊还具有低氢、抗冷裂性高的优点。因此,在锅炉、压力容器和高压管道的焊接中,都规定必须采用碱性药皮焊条。 为克服碱性药皮焊条固有的缺点,近来研制成功了铁粉低氢型焊条,不仅改

相关主题