搜档网
当前位置:搜档网 › 摄像机码流与硬盘存储时间的关系

摄像机码流与硬盘存储时间的关系

摄像机码流与硬盘存储时间的关系
摄像机码流与硬盘存储时间的关系

摄像机码流与硬盘存储时间的关系

720P 即100万网络摄像机的码流一般为2.2Mbit/s

960P 即130万网络摄像机的码流一般为2.8Mbit/s

1080P 即200万网络摄像机的码流一般为4.5Mbit/s

经过计算,

每个100万网络摄像机1天约占用24G硬盘空间。

每个130万网络摄像机1天约占用28G硬盘空间。

每个200万网络摄像机1天约占用48G硬盘空间。

假如您想了解更多的内容,请继续往下看。

根据录像要求(录像类型、录像资料保存时间)计算一台硬盘录像机所需总容量

计算方法:

(1)计算单个通道每小时所需的存储容量q,单位Mbyte。

q=d÷8×3600÷1024

其中d是码率(即录像设置中的“位率/位率上限”),单位Kbit/s

(2)确定录像时间要求后单个通道所需的存储容量m,单位Mbyte

m=q×h×D

其中h是每天录像时间(小时)

D是需要保存录像的天数

码率是512时候,正常录像每小时单通道文件大小225M;每天(24小时)大概5.3G

码率是384时候,正常录像每小时单通道文件大小168.75M;每天(24小时)大概4G

码率

码率就是数据传输时单位时间传送的数据位数,一般我们用的单位是kbps 即千位每秒。通俗一点的理解就是取样率,单位时间内取样率越大,精度就越高,处理出来的文件就越接近原始文件,但是文件体积与取样率是成正比的,

所以几乎所有的编码格式重视的都是如何用最低的码率达到最少的失真,围绕这个核心衍生出来的cbr(固定码率)与vbr(可变码率),都是在这方面做的文章,不过事情总不是绝对的,从音频方面来说,码率越高,被压缩的比例越小,音质损失越小,与音源的音质越接近。

码率计算公式基本的算法是:文件体积=时间X码率/8。这里时间单位是秒,码率除以8,就不用说了。举例,D5的碟,容量4.3G,考虑到音频的不同格式,占用一定的空间,姑且算为600M,视频文件应不大于3.7G,视频长度100分钟(6000秒),计算结果:码率应为4900K。

码率几点原则

1、码率和质量成正比,但是文件体积也和码率成正比。这是要牢记的。

2、码率超过一定数值,对图像的质量没有多大影响。

3、DVD的容量有限,无论是标准的4.3G,还是超刻,或是D9,都有极限。这也是废话,但是就有人记不住或忽略这点,漫天讨论。

视频码率

计算机中的信息都是二进制的0和1来表示,其中每一个0或1被称作一个位,用小写b表示,即bit(位);大写B表示byte,即字节,一个字节=八个位,

即1B=8b;前面的大写K表示千的意思,即千个位(Kb)或千个字节(KB)。表示文件的大小单位,一般都使用字节(KB)来表示文件的大小。

Kbps:首先要了解的是,ps指的是/s,即每秒。Kbps指的是网络速度,也就是每秒钟传送多少个千位的信息(K表示千位,Kb表示的是多少千个位),为了在直观上显得网络的传输速度较快,一般公司都使用kb(千位)来表示,如果是KBps,则表示每秒传送多少千字节。1KBps=8Kbps。ADSL上网时的网速是512Kbps,如果转换成字节,就是512/8=64KBps(即64千字节每秒)。视频监控硬盘录像一般要求保留半个月,由于采集卡和监控软件的不同,录制图像的时间也不就不同,但是120GB的硬盘至少也可以录制150小时!如果用普通质量压缩甚至可以超过200小时。

硬盘占用时间计算:以正常画面质量计算,每路每小时200M。例如16路硬盘录像机,同时录像的情况下每小时共占用硬盘3.2G。根据不同应用场所,可以采用动态录像等方式进行录像,这样保证录像资料均为有效部分。

硬盘录满后将自动对前面的录像资料循环覆盖。可用光盘刻录机将需要长期保存的录像内容刻在光盘上。有些情况下为减少硬盘投入,可按每路每

小时100M设置录像质量,但画面质量不能保证。建议只在要求不高的情况下使用。

各种DVR录像画质与占用硬盘空间对比表

CIF画质Half—D1画质D.CIF画质D1画质

一般活动25-200M/h 60-430M/h 50-400M/h 110-800M/h

复杂/剧烈活动50-250M/h 150-680M/h 150-680M/h

190-900M/h

夜间/光线较暗25-150M/h 130-380M/h 90-280M/h 190-500M/h 计算式:每小时数据量*24小时*天数=??G

首先介绍一下公式:码流÷8×3600×24×30,这是一个月录像存储容量的计算方式,其实分辨率大小和录像存储容量大小没关系,主要的参数还是码流,无论DVR、DVS对不同分辨率的图像,比如CIF、QCIF、DCIF、D1等都有对应的码流范围,那CIF来说,码流200K左右,就算你把码流设的再高也没用,图像质量都不会有明显变化。就你的问题D1分辨率码流范围在1.5~2M之间,按最大存储容量就用2M来算,码流就是

2048K,公式上码流÷8是比特和字节之间的转换,之后的你自己算吧。这个问题不是一个公式能解决的,要看你的录像方式,24小时录像还是移动侦测录像?用CIF格式还是D1格式?还有每路图像的变化程度。

每种存储格式都有相应的计算方法

数据流量.带宽匹配及存储空间计算

1、数据流量的计算及网络带宽匹配

举正达网络数字摄像机以320×240格式传输为例:在320×240工作时,网络数字摄像机码流为8-20Kbps,即每秒每帧8-20Kbit,25帧即为8×25=200Kbits,20×25=500Kbits,即网络数字摄像机每秒输出码流为200Kbit-500Kbit之间。

对于“一点看多点“来讲,如果远程巡视监看中心的局域网出口下行带宽为10M,则设计时按摄像机最大流量计算,10M出口带宽允许10000/500=20路25帧视频数据流通过,总帧数为20×25=500帧,假设远程巡视监看中心同时需要远程监看巡视40路远程摄像机,则远程巡视监看中

心可巡视监看的每路帧数降为500/40=12.5帧,即12帧,各局域网的远程多媒体网关将局域网上广域网的码流调节到12帧,即240Kbit/路。

2、局域网录像空间计算机方法

因局域网上广域网的摄像机数据流量由远程多媒体网关调节,不影响前端摄像机的工作和局域网内的视频数据流传输,因此局域网内的监看和录像仍然是按25帧进行,因此局域网的录像空间最大为500Kbits×3600s/8=225000KB=225M/小时,80G硬盘可录14.8天。

3、广域网远程巡视监看中心录像空间计算方法

上例中,远程巡视监看中心监看为12帧,每路摄像机的数据流量为240Kbit/s,因此,广域网远程巡视中心的录像空间为240Kbits×3600s/8=108000KB=108M/小时,80G硬盘可录30.9天。如果选择定码率,硬盘所需容量基本恒定,如果选择变码率,当现场图像无剧烈运动时,可节省硬盘容量。确定压缩码流的位率大小以后,根据前端录像的保存时间周期,就可以规划硬盘录像机内部需要安装的硬盘的容量:总容量(GB)=位率/8×保存时间周期×通道数/1024/1024

摄像机码流与硬盘存储时间的关系

摄像机码流与硬盘存储时间的关系 720P 即100万网络摄像机的码流一般为2.2Mbit/s 960P 即130万网络摄像机的码流一般为2.8Mbit/s 1080P 即200万网络摄像机的码流一般为4.5Mbit/s 经过计算, 每个100万网络摄像机1天约占用24G硬盘空间。 每个130万网络摄像机1天约占用28G硬盘空间。 每个200万网络摄像机1天约占用48G硬盘空间。 假如您想了解更多的内容,请继续往下看。 根据录像要求(录像类型、录像资料保存时间)计算一台硬盘录像机所需总容量 计算方法:

(1)计算单个通道每小时所需的存储容量q,单位Mbyte。 q=d÷8×3600÷1024 其中d是码率(即录像设置中的“位率/位率上限”),单位Kbit/s (2)确定录像时间要求后单个通道所需的存储容量m,单位Mbyte m=q×h×D 其中h是每天录像时间(小时) D是需要保存录像的天数 码率是512时候,正常录像每小时单通道文件大小225M;每天(24小时)大概5.3G 码率是384时候,正常录像每小时单通道文件大小168.75M;每天(24小时)大概4G 码率 码率就是数据传输时单位时间传送的数据位数,一般我们用的单位是kbps 即千位每秒。通俗一点的理解就是取样率,单位时间内取样率越大,精度就越高,处理出来的文件就越接近原始文件,但是文件体积与取样率是成正比的,

所以几乎所有的编码格式重视的都是如何用最低的码率达到最少的失真,围绕这个核心衍生出来的cbr(固定码率)与vbr(可变码率),都是在这方面做的文章,不过事情总不是绝对的,从音频方面来说,码率越高,被压缩的比例越小,音质损失越小,与音源的音质越接近。 码率计算公式基本的算法是:文件体积=时间X码率/8。这里时间单位是秒,码率除以8,就不用说了。举例,D5的碟,容量4.3G,考虑到音频的不同格式,占用一定的空间,姑且算为600M,视频文件应不大于3.7G,视频长度100分钟(6000秒),计算结果:码率应为4900K。 码率几点原则 1、码率和质量成正比,但是文件体积也和码率成正比。这是要牢记的。 2、码率超过一定数值,对图像的质量没有多大影响。 3、DVD的容量有限,无论是标准的4.3G,还是超刻,或是D9,都有极限。这也是废话,但是就有人记不住或忽略这点,漫天讨论。 视频码率 计算机中的信息都是二进制的0和1来表示,其中每一个0或1被称作一个位,用小写b表示,即bit(位);大写B表示byte,即字节,一个字节=八个位,

硬盘参数

硬盘的基础知识 什么是硬盘 问:什么是硬盘? 答:英文“hard-disk”简称HD。是一种储存量巨大的设备,作用是储存计算机运行时需要的数据。计算机的硬盘主要由碟片、磁头、磁头臂、磁头臂服务定位系统和底层电路板、数据保护系统以及接口等组成。计算机硬盘的技术指标主要围绕在盘片大小、盘片多少、单碟容量、磁盘转速、磁头技术、服务定位系统、接口、二级缓存、噪音和S.M.A.R.T. 等参数上。 什么是硬盘的平均潜伏期 问:什么是硬盘的平均潜伏期? 答:平均潜伏期(average latency),指当磁头移动到数据所在的磁道后,然后等待所要的数据块继续转动(半圈或多些、少些)到磁头下的时间,单位为毫秒(ms)。平均潜伏期是越小越好,潜伏期小代表硬盘的读取数据的等待时间短,这就等于具有更高的硬盘数据传输率。 什么是DMA和PIO 问:人们在谈论硬盘时经常提到DMA和PIO,那到底什么是DMA和PIO呢? 答:这两种模式就是目前硬盘与主机进行数据交换的方式。PIO模式是一种通过CPU执行I/O端口指令来进行数据的读写的数据交换模式;而DMA则是不经过CPU而直接从内存了存取数据的数据交换模式。 PIO的英文全称为“Programming Input/Output Model”,即“程序输入/输出”模式。这种模式使用PC I/O端口指令来传送所有的命令、状态和数据。由于驱动器中有多个缓冲区,对硬盘的读写一般采用I/O串操作指令,这种指令只需一次取指令就可以重复多次地完成I/O 操作,因此,达到高的数据传输率是可能的。 DMA的英文全称为“Direct Memory Access”,即“内存直接存取”模式。它表示数据不经过CPU,而直接在硬盘和内存之间传送。在多任务操作系统内,如OS/2、Linux、Windows NT等,当磁盘传输数据时,CPU可腾出时间来做其它事情,使服务器的数据性能大大提高。而在DOS/Windows3.X环境里,CPU不得不等待数据传输完毕,所以在这种情况下,DMA 方式的意义并不大。 但在现在的操作系统环境中,DMA的传输模式明显优于PIO的传输模式。 什么是硬盘的转速 问:什么是硬盘的转速? 答:转速是指硬盘内电机主轴的转动速度,单位是RPM(每分钟旋转次数)。其转速越高,内部传输速率就越高。目前一般的硬盘转速为5400转/分和7200转/分,最高的转速则可达

硬盘详细知识

一.硬盤常識與技術指標 1.磁頭 硬盤存取數據主要是靠磁頭.磁頭的發展先后經歷“亞鐵鹽類磁頭(MONOLITHIC HEAD HEAD)”“MIG(METAL IN GAP)磁頭”“薄膜磁頭(THIN FILM HEAD)”,這些傳統的磁頭都是讀寫合一.電磁感應式磁頭.現在流行的MR磁頭(Magnetoresistive heads),即磁阻磁頭,采用的是分離式的磁頭結構:寫入磁頭仍采用的磁感磁頭疼(MR磁頭不能進行寫操作),讀取磁頭則采用新型的MR磁頭,即所謂的感應寫.磁阻讀.這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能. 2.轉速 主軸馬達帶動盤片高速旋轉,產生浮力使磁頭飄浮在盤片上方.要將所要存取信息的扇區帶到磁頭下方,轉速越快,等待時間也就越短.換句話說,轉速在很大程度上決定了硬盤的存取速度. 3.單盤容量 單盤容量指單張盤片的容量,單盤的容量越大,實現大容量硬盤也就越容易,尋找數據所需的時間相對少一點. 4.硬盤的技術指標 容量

當然是越大越好. Rotational Speed(轉速) 現有轉速從3600rpm.4500rpm.5400rpm.7200rpm到10000rpm不等. 理論上,轉速越快越好. Cache(高速緩存) 有兩种形式,寫通式(Write-Through)和回寫式(Write-Back),現在硬盤多數用的是性能較好的回寫式Cache,它的作用就是系統在從硬盤中讀數據時,先檢查Cache中有沒有所需的數據,若有,就直接Cache中讀取,因為Cache的存取速度比硬盤要快幾百倍. Average Access Time(帄均訪問時間) Average Seek Time(帄均尋道時間)和Average Latency Time(帄均潛伏時間).帄均尋道時間指的是硬盤在盤面上移動讀/寫到指定磁道所用的時間,一般在8ms到16ms之間.帄均潛伏期是指定的磁道旋轉到磁頭下所用的時間,一般在2ms到6ms之間.帄均訪問時間為帄均尋道時間和帄均潛伏時間之和,所以硬盤的帄均訪問時間一般為11ms到18ms之間. 二.硬盘是计算机中最重要的部件之一,按不同的接口和外形尺寸, 其种类有很多,除了现在最常见的台式机中使用的3.5英寸EIDE 和SATA接口的产品外,还有其他类型的硬盘。

DAS、SAN、NAS存储协议工作原理

目前磁盘存储市场上,存储分类(如下表一)根据服务器类型分为:封闭系统的存储和开放系统的存储,封闭系统主要指大型机,AS400等服务器,开放系统指基于包括Windows、UNIX、Linux等操作系统的服务器;开放系统的存储分为:内置存储和外挂存储;开放系统的外挂存储根据连接的方式分为:直连式存储(Direct-Attached Storage,简称DAS)和网络化存储(Fabric-Attached Storage,简称FAS);开放系统的网络化存储根据传输协议又分为:网络接入存储(Network-Attached Storage,简称NAS)和存储区域网络(Storage Area Network,简称SAN)。由于目前绝大部分用户采用的是开放系统,其外挂存储占有目前磁盘存储市场的70%以上,因此本文主要针对开放系统的外挂存储进行论述说明。 第一个图有问题,把NAS和SAN一样放在FAS之下是不对的,通常也没有FAS 这种说法,DAS,NAS和SAN是平行的关系。 NAS不一定要用光纤。 NAS是文件级存储,SAN和DAS通常是数据块级存储。 表一:

今天的存储解决方案主要为:直连式存储(DAS)、存储区域网络(SAN)、网络接入存储(NAS)。 如下表二: 开放系统的直连式存储(Direct-Attached Storage,简称DAS)已经有近四十年的使用历史,随着用户数据的不断增长,尤其是数百GB以上时,其在备份、恢复、扩展、灾备等方面的问题变得日益困扰系统管理员。 主要问题和不足为: 直连式存储依赖服务器主机操作系统进行数据的IO读写和存储维护管理,数据备份和恢复要求占用服务器主机资源(包括CPU、系统IO等),数据流需要回流主机再到服务器连接着的磁带机(库),数据备份通常占用服务器主机资源20-30%,因此许多企业用户的日常数据备份常常在深夜或业务系统不繁忙时进行,以免影响正常业务系统的运行。直连式存储的数据量越大,备份和恢复的时间就越长,对服务器硬件的依赖性和影响就越大。 直连式存储与服务器主机之间的连接通道通常采用SCSI连接,带宽为 10MB/s、20MB/s、40MB/s、80MB/s等,随着服务器CPU的处理能力越来越强,存储硬盘空间越来越大,阵列的硬盘数量越来越多,SCSI通道将会成为IO瓶颈;服务器主机SCSI ID资源有限,能够建立的SCSI通道连接有限。无论直连式存储还是服务器主机的扩展,从一台服务器扩展为多台服务器组成

保护电脑 慎用六大软件伤硬盘

保护电脑慎用六大软件伤硬盘 出处:Wopti优化论坛 硬盘是计算机中最重要的存储介质,关于硬盘的维护保养,相信每个电脑用户都有所了解。不过,以前的很多文章都是针对拨号时代的单机用户,在宽带逐渐普及、大硬盘不断降价的今天,很多人一打开电脑就会让硬盘满负荷运转:看高清晰的DVDRip影片、进行不间断的BT下载、使用Windows的系统还原功能……不过,你可能并不清楚,这些新软件带来的新的应用模式,会给硬盘带来新的伤害! 新应用模式带来的隐患 1、编码错误的DVDRip 现在网上由DVD转录压缩的DVDRip格式的影片相当受欢迎。这种格式的影片清晰度和DVD相差无几,但下载一部影片只有700MB~1.3GB大小,因此很多用户喜欢将DVDRip格式的影片下载到硬盘上慢慢欣赏。不过,播放这种格式的影片对系统有较高的要求:除了CPU、显卡要求足够强劲以保证播放流畅外,硬盘负荷也非常大??因为播放DVDRip就是一个不断解码解压缩,再输送到显示系统的过程。笔者发现,在遇到有编码错误的DVDRip文件时,Windows会出现磁盘占用率非常高的现象:系统不断想要把编码转换为视频信号,但编码错误的文件索引和相应的信号段是不匹配的??此时,硬盘灯会不断地闪烁,整个系统对用户的操作响应极慢,用户点击菜单但几乎没有反应。如果编码错误较多,系统有时候甚至会死机。很多用户在此时非常不耐烦,直接按下机箱上的RESET键甚至是直接关闭计算机电源,在硬盘磁头没有正常复位的情况下,这种操作相当危险! 提示:Windows XP的用户需要特别注意,当我们在Windows XP中自动预览一些体积较大的ASF、WMV等文件时,虽然没有进行正式播放,但也会出现计算机速度突然变慢、硬盘灯不断闪烁等现象,其罪魁祸首仍然是视频文件错误编码! 2、Bittorrent下载 Bittorrent下载是宽带时代新兴的P2P交换文件模式,各用户之间共享资源,互相当种子和中继站,俗称BT下载。由于每个用户的下载和上传几乎是同时进行,因此下载的速度非常快。不过,它会将下载的数据直接写进硬盘(不像FlashGet等下载工具可以调整缓存,到指定的数据量后才写入硬盘),因此对硬盘的占用率比FTP下载要大得多! 此外,BT下载事先要申请硬盘空间,在下载较大的文件的时候,一般会有2~3分钟时间整个系统优先权全部被申请空间的任务占用,其他任务反应极慢。有些人为了充分利用带宽,还会同时进行几个BT 下载任务,此时就非常容易出现由于磁盘占用率过高而导致的死机故障。 因此,除非你的电脑硬件配置相当高(尤其是内存,至少要在256MB以上),否则在BT下载作出改进以前,如果要进行长时间、多任务的下载应用,最好还是采用传统的FTP软件。 3、PQMAGIC转换的危险 PQMAGIC是大名鼎鼎的分区魔术师,能在不破坏数据的情况下自由调整分区大小及格式。不过,PQMAGIC刚刚推出的时候,一般用户的硬盘也就2GB左右,而现在60~80GB的硬盘已是随处可见,PQMAGIC早就力不从心了:调整带数据的、5GB以上的分区,通常都需要1小时以上! 除了容量因素影响外,PQMAGIC调整硬盘分区时,大量的时间都花在校验数据和检测硬盘上,可以看出,在这种情况下“无损分区”是很难保证的:由于转换的速度很慢,耗时过长,转换调整过程中,很容易因为计算机断电、死机等因素造成数据丢失。这种损失通常是一个或数个分区丢失,或是容量变得异常,严重时甚至会导致整个硬盘的数据无法读取。 4、硬盘保护软件造成的异常 容易造成硬盘异常的,还有硬盘保护软件。比如“还原精灵”,由于很多人不注意在重装系统或是重新分区前将它正常卸载,往往会发生系统无法完全安装等情况。此时再想安装并卸载“还原精灵”,却又提示软件已经安装,无法继续,陷入死循环中。这种故障是由于“还原精灵”接管了INT13中断,在操作系统之前就控制了硬盘的引导,用FDISK/MBR指令也无法解决。本来这只是软件的故障,但很多人经验不足,出了问题会找各种分区工具“试验”,甚至轻率地低级格式化,在这样的折腾之下,硬盘很可能提前夭折!

怎样使用Everest软件查看硬盘使用时间

如何使用Everest软件查看硬盘使用时间 新手请看09那一行,Power-On Time Count (或者叫做Power-On Hours POH),Data那一列,这个数值就代表硬盘的累计运行时间。 我的硬盘当前值为8374,也就是说累计运行了8374小时(用了四年多,平均一天五小时,还是蛮准确的)。注意这个值的单位,可能是小时、分钟或者秒钟数,具体取决于制造商。 另外再提供一些别的可能有用的信息: 请看0C那一行,Power Cycle Count,Data值表示硬盘的电源开启/关闭周期次数,基本上也说明这台电脑挂着这个硬盘的开关机次数。4085(平均一天开关次) 请看C2那一行,Temperature,Data值表示硬盘的内部温度,单位一般为摄氏度。40度。

下面带大家查看几个经常要用到的功能 首先是计算机类目里的“概述”,点开来所有关于本机的大大小小的硬件软件信息全部一览无余,如果觉得还不够详细,下面还有对应的更具体的类目可供详细查看 最近电池门也挺火的,Everest也可以查看电池信息,在这里

温度信息在这里看,准确度比较高

点开“”目录,可以看到下面的子类别,主板上的东东应有尽有,下面的“显示设备”目录,显示屏和的具体信息也可以在里头查看,相信大家打开软件就会了,不用我多说。把图定格在这里,主要是告诉大家,Everest一样也可以查看slic版本,看看,我的是刷了的,显示是,很正确。

下面是GPU的详细信息,诸如此类,大家想看啥点啥。就不多说了

接下来就是每个这类软件都附带的一个囧功能,软件的测试功能。我对这类查看硬件信息的软件提供的测试功能普遍比较反感,以前还是菜鸟的时候就比较在意优化大师的评分跟现在不少朋友很在意鲁大师的评分一样,那是相当地耿耿于怀。现在告诉大家,完全不必执着于此,这类软件提供的啥评分功能,大都是个玩具,分高分低就看它自己的心情,没有丝毫的参考价值,建议大家如果一定要考察自己机器的性能,可以采用一些更专业的软件,比如考察处理器用super π,百万位计算

移动硬盘工作原理

硬盘,英文名称是Hard disk,发明于1950年。开始的时候,它的直径长达20英寸;并且只能容纳几MB(兆字节)的信息。最初的时候它并不称为Hard disk ,而是叫做“fixed disk"或者"Winchester"(IBM产品流行的代码名称);如果在某些文献里提到这些名词,我们知道它们是硬盘就可以了。随后,为了把硬盘的名称与"floppy disk"(软盘)区分开来,它的名称就演变成了"hard disk"。硬盘的内部有磁碟,作为保存信息的磁介质;而磁带和软盘里面则使用柔韧的塑料薄膜作为磁介质。 在简单的标准上,硬盘与盒式磁带并没有太大的区别。所有的硬盘和盒式磁带都使用相同的磁性技术录制信息,这点将在“磁带录音机是怎么工作的有介绍”,但这已经不是属于IT硬件的范畴了。硬盘和磁带录音机都从磁存储技术获得最大的效益--磁介质可以轻易地进行擦除和复写,并且信息将记录在磁道里,储存的信息可以永久保存。 想明白硬盘工作原理的最好途径是看清楚它的内部结构。注意:打开硬盘会损坏硬件,因此朋友们不要自己尝试,当然你有一个损坏的硬盘就另当别论了。 硬盘使用了铝片把表面给密封了起来,而另外的一边则布满了控制用的电子元件。电子控制器控制硬盘的读/写机制,还有转动盘片的马达。电子元件还把硬盘磁区域的信息汇编成byte(读),并把bytes转化为磁区域(写)。这些电子元件被装配在与硬盘盘片分开的小电路板上。 在电路板下面是连接盘片的马达,还有采用了高度过滤的通风孔,以便维持硬盘内部和外部的空气压力平衡。 移开了硬盘的顶盖之后,展现在大家眼前的是非常简单但却精密的内部结构。 盘片--当硬盘在工作的时候,它可以转动5,400或者72,00 rpm(通常的情况下,当然最快也有10,000rpm,SCSI硬盘甚至达到了15,000rpm)。这些盘片制造的时候有惊人的精确度,并且表面如镜子般光滑。(你甚至还在盘片里看到了作者的肖像) 臂--位于左上角,是用来保持磁头的读/写控制机制,能够把磁头从盘片的中心移动到硬盘的边缘。臂和它的移动机制相当的轻,并且速度飞快。普通的硬盘每秒可以在盘片中心和边缘之间来会移动50次,如果用肉眼看的话,速度真的是非常惊人。 为了增加硬盘储存的信息量,很多硬盘都使用了多盘片的设计。我们打开的硬盘有三个盘片和6个读/写的磁头。 硬盘里面保持臂的移动速度和精确度都达到了不可置信的地步,它使用了高速的线性马达。 很多硬盘使用了音圈(Voice coil)的方法来移动臂部--与你的立体声系统中扬声器使用的技术类似。 数据的储存 数据储存在盘片表面的扇区(Sector)和磁道(track)里,磁道是一系列的同心圆,而扇区则是磁道组成的圆状表面,如下: 上图黄色部分展示的就是典型的磁道,而蓝色部分则是扇区。扇区包括了固定数量的byte---例如,256或者512byte。无论是在硬盘还是在操作系统水平,扇区都通常组成群集(cluster)。 硬盘的低级格式化过程在盘片上建立了扇区和磁道,每个扇区的开始和结束部分都被写到了盘片上,这个处理使硬盘准备开始以byte的形式保持数据。高级格式化则写入文件储存的结构,例如把文件分配表写入到扇区,这个过程使硬盘

数据存储原理

说到数据恢复,我们就不能不提到硬盘的数据结构、文件的存储原理,甚至操作系统的启动流程,这些是你在恢复硬盘数据时不得不利用的基本知识。即使你不需要恢复数据,理解了这些知识(即使只是稍微多知道一些),对于你平时的电脑操作和应用也是很有帮助的。 硬盘数据结构 初买来一块硬盘,我们是没有办法使用的,你需要将它分区、格式化,然后再安装上操作系统才可以使用。就拿我们一直沿用到现在的Win9x/Me系列来说,我们一般要将硬盘分成主引导扇区、操作系统引导扇区、FAT、DIR和Data等五部分(其中只有主引导扇区是唯一的,其它的随你的分区数的增加而增加)。 主引导扇区 主引导扇区位于整个硬盘的0磁道0柱面1扇区,包括硬盘主引导记录MBR(Main Boot Record)和分区表DPT(Disk Partition Table)。其中主引导记录的作用就是检查分区表是否正确以及确定哪个分区为引导分区,并在程序结束时把该分区的启动程序(也就是操作系统引导扇区)调入内存加以执行。至于分区表,很多人都知道,以80H或00H为开始标志,以55AAH为结束标志,共64字节,位于本扇区的最末端。值得一提的是,MBR是由分区程序(例如DOS 的Fdisk.exe)产生的,不同的操作系统可能这个扇区是不尽相同。如果你有这个意向也可以自己去编写一个,只要它能完成前述的任务即可,这也是为什么能实现多系统启动的原因(说句题外话:正因为这个主引导记录容易编写,所以才出现了很多的引导区病毒)。 操作系统引导扇区 OBR(OS Boot Record)即操作系统引导扇区,通常位于硬盘的0磁道1柱面1扇区(这是对于DOS来说的,对于那些以多重引导方式启动的系统则位于相应的主分区/扩展分区的第一个扇区),是操作系统可直接访问的第一个扇区,它也包括一个引导程序和一个被称为BPB(BIOS Parameter Block)的本分区参数记录表。其实每个逻辑分区都有一个OBR,其参数视分区的大小、操作系统的类别而有所不同。引导程序的主要任务是判断本分区根目录前两个文件是否为操作系统的引导文件(例如MSDOS 或者起源于MSDOS的Win9x/Me的IO.SYS和MSDOS.SYS)。如是,就把第一个文件读入内存,并把控制权交予该文件。BPB 参数块记录着本分区的起始扇区、结束扇区、文件存储格式、硬盘介质描述符、根目录大小、FAT个数、分配单元(Allocation Unit,以前也称之为簇)的大小等重要参数。OBR由高级格式化程序产生(例如DOS 的https://www.sodocs.net/doc/0913885041.html,)。 文件分配表 FAT(File Allocation Table)即文件分配表,是DOS/Win9x系统的文件寻址系统,为了数据安全起见,FAT一般做两个,第二FAT为第一FAT的备份, FAT区紧接在OBR之后,其大小由本分区的大小及文件分配单元的大小决定。关于FAT的格式历来有很多选择,Microsoft 的DOS及Windows采用我们所熟悉的FAT12、FAT16和FAT32格式,但除此以外并非没有其它格式的FAT,像Windows NT、OS/2、UNIX/Linux、Novell等都有自己的文件管理方式。 目录区 DIR是Directory即根目录区的简写,DIR紧接在第二FAT表之后,只有FAT还不能定位文件在磁盘中的位置,FAT还必须和DIR配合才能准确定位文件的位置。DIR记录着每个文件(目录)的起始单元(这是最重要的)、文件的属性等。定位文件位置时,操作系统根据DIR中的起始单元,结合FAT表就可以知道文件在磁盘的具体位置及大小了。在DIR区之后,才是真正意义上的数据存储区,即DATA区。 数据区

各种RAID的工作原理..

各种RAID的工作原理 RAID是通过磁盘阵列与数据条块化方法相结合,以提高数据可用率的一种结构。IBM早于1970年就开始研究此项技术。RAID 可分为RAID级别1到RAID级别6, 通常称为:RAID 0, RAID 1, RAID 2, RAID 3,RAID 4, RAID 5,RAID6。每一个RAID级别都有自己的强项和弱项。"奇偶校验"定义为用户数据的冗余信息, 当硬盘失效时,可以重新产生数据。 RAID 0:RAID 0 并不是真正的RAID结构,没有数据冗余。RAID 0 连续地分割数据并并行地读/写于多个磁盘上。因此具有很高的数据传输率。但RAID 0在提高性能的同时,并没有提供数据可靠性,如果一个磁盘失效,将影响整个数据。因此RAID 0 不可应用于需要数据高可用性的关键应用。 RAID 1:RAID 1通过数据镜像实现数据冗余,在两对分离的磁盘上产生互为备份的数据。RAID 1可以提高读的性能, 当原始数据繁忙时,可直接从镜像拷贝中读取数据。RAID 1是磁盘阵列中费用最高的, 但提供了最高的数据可用率。当一个磁盘失效,系统可以自动地交换到镜像磁盘上, 而不需要重组失效的数据。 RAID 2:从概念上讲, RAID 2 同RAID 3类似, 两者都是将数据条块化分布于不同的硬盘上, 条块单位为位或字节。然而RAID 2 使用称为"加重平均纠错码"的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息, 使得RAID 2技术实施更复杂。因此,在商业环境中很少使用. RAID 3:不同于RAID 2, RAID 3使用单块磁盘存放奇偶校验信息。如果一块磁盘失效, 奇偶盘及其他数据盘可以重新产生数据。如果奇偶盘失效,则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率, 但对于随机数据, 奇偶盘会成为写操作的瓶颈。 RAID 4:同RAID 2, RAID 3一样, RAID 4, RAID 5也同样将数据条块化并分布于不同的磁盘上, 但条块单位为块或记录。RAID 4使用一块磁盘作为奇偶校验盘, 每次写操作都需要访问奇偶盘, 成为写操作的瓶颈. 在商业应用中很少使用。 RAID 5:RAID 5没有单独指定的奇偶盘, 而是交叉地存取数据及奇偶校验信息于所有磁盘上。在RAID5 上, 读/写指针可同时对阵列设备进行操作, 提供了更高的数据流量。RAID 5更适合于小数据块, 随机读写的数据.RAID 3 与RAID 5相比, 重要的区别在于RAID 3每进行一次数据传输,需涉及到所有的阵列盘。而对于RAID 5来说, 大部分数据传输只对一块磁盘操作, 可进行并行操作。在RAID 5中有"写损失", 即每一次写操作,将产生四个实际的读/写操作, 其中两次读旧的数据及奇偶信息, 两次写新的数据及奇偶信息。 RAID 6:RAID 6 与RAID 5相比,增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法, 数据的可靠性非常高。即使两块磁盘同时失效,也不会影响数据的使用。但需要分配给奇偶校验信息更大的磁盘空间, 相对于RAID 5有更大的"写损失"。RAID 6 的写性能非常差, 较差的性能和复杂的实施使得RAID 6很少使用。 在计算机发展的初期,“大容量”硬盘的价格还相当高,解决数据存储安全性问题的主要方法是使用磁带机等设备进行备份,这种方法虽然可以保证数据的安全,但查阅和备份工作都相当繁琐。1987年,Patterson、Gibson和Katz这三位工程师在加州大学伯克利分校发表了题为《A Case of Redundant Array of Inexpensive Disks(廉价磁盘冗余阵列方案)》的论文,其基本思想就是将多只容量较小的、相对廉价的硬盘驱动器进行有机组合,使其性能超过一只昂贵的大硬盘。这一设计思想很快被接受,从此RAID技术得到了广泛应用,数据存储进入了更快速、更安全、更廉价的新时代。 磁盘阵列对于个人电脑用户,还是比较陌生和神秘的。印象中的磁盘阵列似乎还停留在这样

硬盘录像机的图像存储时间和硬盘大小如何计算

硬盘录像机的图像存储时间和硬盘大小如何计算 计算式:每小时数据量* 24小时* 天数= ??G cif格式录像按照每小时占用硬盘100M计算,D1格式按照1000M计算,HD1按照500M计算,最是最大峰值,实际当中一般不会超过这个数,要知道静态图像和动态图像占用硬盘却别是非常大的。按照CIF格式计算100M*24小时*30天/1000M=?G H.264硬盘录像机硬盘空间占用计算方法 A:每小时每个通道所占硬盘空间计算公式:[视频码率(128-2048)/8*3600]/ 1024 例如:若码率设置为512K,那么每个小时每个视频通道所占硬盘空间如下: [512/8*3600]/1024=225MB B:每天每个通道所占空间[GB]:A*24

例如:若码率设置为512K,那么每个小时每个视频通道每天所占硬盘空间如下: [225MB*24]/1024=5.2734G C:16路硬盘录像机一天所占空间:B*16 例如:按16路的硬盘录像机设录像码流为固定512K时,一天所占的空间如下: 16*5.2734G=84.3744GB 若按500G一个硬盘,录像资料需要存贮30天计算,侧需要如下几个硬盘: [30*84.3744GB]/[500*0.90]=5.62个 注: 1、在以上计算中,[500*0.90]的意思是取硬盘的实际可应用到的空间容量,我们平时所说的硬盘大小实际是指它的物理大小[相当于房子的建筑面积],在应用中由于硬盘分区、数据临时交换占去一小部分空间,因此在实际应用中我们通 常取它90%作为实际可用空间比较科学。 2、在对录像画质要求不高的场所,一般设定的码流设置为固定码流256K, 那么每个小时每个视频通道所占的硬盘空间为113MB。 3、在对录像画质要求比较高的场所码流通常设置为固定码流在512K以上(D 1画质一般需要2048K左右),也可以在DVR中设置为可变码流,当设置为可变码流时,主机会根据每一个通道当时的画面运动情况自动调节码流,以达到录像的最佳效果,这时录像占用空间就比较难预算一个精确值。 4、往往我们的客户都希望保存的录像画质不能太差,又想所占的硬盘空间比较小,在这我们可以在主机中设置为可变码流,同时再设一个码流的上限值

硬盘的正确使用、维护及优化技巧

硬盘的正确使用、维护及优化技巧 文章来源:文章作者:发布时间:2006-03-24 字体: [大中小] 一、使用 硬盘是集精密机械、微电子电路、电磁转换为一体的电脑存储设备,它存储着电脑系统资源和重要 的信息及数据,这些因素使硬盘在PC机中成为最为重要的一个硬件设备。虽说名牌硬盘的无故障工作时间(MTBF)可超过2万个小时——按每天工作10小时计算其能正常使用5年以上,但如果使用不当的话,也是非常容易就会出现故障的,甚至出现物理性损坏,造成整个电脑系统不能正常工作。下面笔者就先 说一下如何正确地使用硬盘。 1、正确地开、关主机电源 当硬盘处于工作状态时(读或写盘时),尽量不要强行关闭主机电源。因为硬盘在读、写过程中如 果突然断电是很容易造成硬盘物理性损伤(仅指AT电源)或丢失各种数据的,尤其是正在进行高级格式化时更不要这么做——笔者的一位朋友在一次高格时发现速度很慢就认为是死机了,于是强行关闭了电源。再打开主机时,系统就根本发现不了这块硬盘了,后经查看发现“主引导扇区”的内容全部乱套, 最可怕的是无论使用什么办法也无法写入正确的内容了…… 另外,由于硬盘中有高速运转的机械部件,所以在关机后其高速运转的机械部件并不能马上停止运转,这时如果马上再打开电源的话,就很可能会毁坏硬盘。当然,这只是理论上的可能而已,笔者并没 有遇到过因此而损坏硬盘的事,但对于这样的事“宁可信其有,不可信其无”,还是保险至上!所以我 们尽量不要在关机后马上就开机,我们一定要等硬盘马达转动停稳后再次进行开机(关机半分钟后), 而且我们应尽量避免频繁地开、关电脑电源,因为硬盘每启动、停止一次,磁头就要在磁盘表面“起飞”和“着陆”一次,如果过于频繁地话就无疑增加了磁头和盘片磨损的机会。 2、硬盘在工作时一定要防震 虽然磁头与盘片间没有直接接触,但它们之间的距离的确是离得很近,而且磁头也是有一定重量的,所以如果出现过大的震动的话,磁头也会由于地心引力和产生的惯性而对盘片进行敲击。这种敲击无疑

硬盘内部硬件结构和工作原理详解

硬盘内部硬件结构和工作原理详解 一般硬盘正面贴有产品标签,主要包括厂家信息和产品信息,如商标、型号、序列号、生产日期、容量、参数和主从设置方法等。这些信息是正确使用硬盘的基本依据,下面将逐步介绍它们的含义。 硬盘主要由盘体、控制电路板和接口部件等组成,如图1-1所示。盘体是一个密封的腔体。硬盘的内部结构通常是指盘体的内部结构;控制电路板上主要有硬盘BIOS、硬盘缓存(即CACHE)和主控制芯片等单元,如图1-2所示;硬盘接口包括电源插座、数据接口和主、从跳线,如图1-3所示。 图1-1 硬盘的外观 图1-2 控制电路板 图1-3 硬盘接口 电源插座连接电源,为硬盘工作提供电力保证。数据接口是硬盘与主板、内存之间进行数据交换的通道,使用一根40针40线(早期)或40针80线(当前)的IDE接口电缆进行连接。新增加的40线是信号屏蔽线,用于屏蔽高速高频数据传输过程中的串扰。中间的主、从盘跳线插座,用以设置主、从硬盘,即设置硬盘驱动器的访问顺序。其设置方法一般标注在盘体外的标签上,也有一些标注在接口处,早期的硬盘还可能印在电路板上。 此外,在硬盘表面有一个透气孔(见图1-1),它的作用是使硬盘内部气压与外部大气压保持一致。由于盘体是密封的,所以,这个透气孔不直接和内部相通,而是经由一个高效过滤器和盘体相通,用以保证盘体内部的洁净无尘,使用中注意不要将它盖住。

1.2 硬盘的内部结构 硬盘的内部结构通常专指盘体的内部结构。盘体是一个密封的腔体,里面密封着磁头、盘片(磁片、碟片)等部件,如图1-4所示。 图1-4 硬盘内部结构 硬盘的盘片是硬质磁性合金盘片,片厚一般在0.5mm左右,直径主要有1.8in (1in=25.4mm)、2.5in、3.5in和5.25in 4种,其中2.5in和3.5in盘片应用最广。盘片的转速与盘片大小有关,考虑到惯性及盘片的稳定性,盘片越大转速越低。一般来讲,2.5in硬盘的转速在5 400 r/min~7 200 r/ min之间;3.5in 硬盘的转速在4 500 r/min~5 400 r/min之间;而5.25in硬盘转速则在3 600 r/min~4 500 r/min之间。随着技术的进步,现在2.5in硬盘的转速最高已达15 000 r/min,3.5in硬盘的转速最高已达12 000 r/min。 有的硬盘只装一张盘片,有的硬盘则有多张盘片。这些盘片安装在主轴电机的转轴上,在主轴电机的带动下高速旋转。每张盘片的容量称为单碟容量,而硬盘的容量就是所有盘片容量的总和。早期硬盘由于单碟容量低,所以,盘片较多,有的甚至多达10余片,现代硬盘的盘片一般只有少数几片。一块硬盘内的所有盘片都是完全一样的,不然控制部分就太复杂了。一个牌子的一个系列一般都用同一种盘片,使用不同数量的盘片,就出现了一个系列不同容量的硬盘产品。 盘体的完整构造如图1-5所示。

硬盘构造的基本原理

目前流行的硬盘储存器都具有非常完善而先进的内置式程序保障系统,它包括硬盘微处理器执行码和大量硬盘运行所需的各种各样的数据表。硬盘内置式程序总的容量大小可以达到几个Mbit。一旦硬盘的这种程序出现被损坏情况,那么,即使硬盘的整个机械装置和电子器件完好无损,硬盘还是会出现部分或完全的工作故障。 本篇文章描述了硬盘程序保障的基本原理,硬盘的结构和地址分配。 硬盘的空间结构 对一个硬盘来说,不是所有的空间都用来储存用户的数据信息。有相当一部分空间对用户来说是看不见的,它包括服务区(Service Area)和备用区(Reserve Area)(详见图1)。 图1 服务区是用来储存服务信息,即硬盘的内部程序和一些辅助表格。备用区是用来替换用户工作区内的故障扇区和磁道。这两个区域在硬盘正常工作状态下是访问不到的。用户只能访问到工作区的数据(通常情况下,这个区域被称为硬盘的逻辑空间),而硬盘的容量标签中标注的正是这一部分空间的容量,如HDD160G LBA:320173056。一个LBA(逻辑块地址)就等于一个扇区,即512bit。这样一来,知道了一个硬盘的LBA总体数量,也就知道了硬盘容量的大小。

硬盘在正常工作(用户)状态下,对工作区(连续不断的逻辑扇区)的访问是通过LBA进行,即在0到最大LBA之间进行。 要想接触到服务区,只有在一种专门的工作状态下,即技术工作状态下才可能实现。而要想进入这一工作状态,则需要一把“钥匙”指令,给出了“钥匙”指令之后,就可以打开一组补充的技术指令。借助这些技术指令就可以进行诸如读/写服务区的扇区信息、获取服务区模块和表格配置图、获取扇区分配表、进行LBA与PCHS (Physical Cylinder Head Sector)(物理磁柱-磁头-扇区)互换、进行低级格式化,以及读/写硬盘的闪存器等操作。 服务信息 服务信息对硬盘运行来说是必须要有的,它可以分为以下几类: ——微程序的管理模块(overlay); ——配置和设置表; ——缺陷表; ——工作记录表(SelfScan, Calibrator程序的工作结果)。 硬盘微处理器的工作程序属于硬盘工作所必需的一组程序。它包括初始诊断程序、伺服电机旋转控制程序、磁头定位程序、与硬盘控制器及缓冲存储器的信息交换程序等。所有这些合起来称作硬盘程序。在有些型号的硬盘中,工作程序被配置在微控制器的内部存储器或外部闪存器中(如2.5"的“TOSHIBA”硬盘)。但是,对大部分型号的硬盘来说,它的部分工作程序存储在磁盘的服务区上,而在电路板的缓冲存储器中,存储的是初始化程序、定位程序,以及从磁盘服务区向内存储器读与复制的工作程序初始加载器。由于程序是从服务区向微处理器的缓冲存储器中重新加载,而这里也是微处理器的工作地点,所以,它们的名字叫做“管理程序或overlay程序”(详见图2)。

硬盘存储的计算方法

?什么是D1 ?首先给大家介绍一下什么是D1,大家都以为D1是硬盘录像机显示、录像、回放的分辨率,实际上不是的,D1是数字电视系统显示格式的标准,共分为以下5种规格:D1:480i格式(525i):720×480(水平480线,隔行扫描),和NTSC模拟电视清晰度相同,行频为15.25kHz,相当于我们所说的4CIF(720×576) D2:480P格式(525p):720×480(水平480线,逐行扫描),较D1隔行扫描要清晰不少,和逐行扫描DVD规格相同,行频为31.5kHz D3:1080i格式(1125i):1920×1080(水平1080线,隔行扫描),高清放送采用最多的一种分辨率,分辨率为1920×1080i/60Hz,行频为33.75kHz D4:720p 格式(750p):1280×720(水平720线,逐行扫描),虽然分辨率较D3要低,但是因为逐行扫描,市面上更多人感觉相对于 1080I(实际逐次540线)视觉效果更加清晰。不过个人感觉来说,在最大分辨率达到1920×1080的情况下,D3要比D4感觉更加清晰,尤其是文字表现力上,分辨率为1280×720p/60Hz,行频为45kHz D5:1080p格式(1125p):1920×1080(水平1080线,逐行扫描),目前民用高清视频的最高标准,分辨率为1920×1080P/60Hz,行频为67.5KHZ。( D5:实为电视高清最新标准:1920×1080) 其中D1 和D2标准是我们一般模拟电视的最高标准,并不能称的上高清晰,D3的1080i 标准是高清晰电视的基本标准,它可以兼容720p格式,而D5的 1080P只是专业上的标准,并不是民用级别的,上面所给出的60HZ只是理想状态下的场频,而它的行频为67.5KHZ,目前还没有如此高行频的电视问世,实际在专业领域里1080P的场频只有24HZ,25HZ和30HZ。 需要指出的一点是,D端子是日本独有的特殊接口,国内电视几乎没有带这种接口的,最多的是色差接口,而色差接口最多支持到D4,理论上肯定没有HDMI(纯数字信号,支持到1080P)的最高清晰度高,但在1920:1080以下分辨率的电视机上,一般也没有很大差别。 国内主流的硬盘录像机(DVR,Digital Video Recording)采用什么分辨率?怎样计算硬盘容量? 国内主流的硬盘录像机采用两种分辨率:CIF和4CIF(D1),分为两种型号。 硬盘录像机常见的路数有1路、2路、4路、8路、9路、12路和16路。最大可以连接8块2000GB的硬盘,总容量可高达16T(目前市面上最大的硬盘在1000GB左右),如果采用CIF分辨率,通常每1路的硬盘容量为180MB~250MB/小时,通常情况下取值200MB/小时;如果是D1的分辨率每小时录像需要的硬盘容量为720MB~1000MB/小时,通常情况下为了减少硬盘的容量可以按照500MB/小时计算,帧率智能设置比25fps 少一些,码流也要少一些!相信大家可以计算出一台装满8块500GB的16路硬盘录像机可以录像多长时间了吧? 计算举例:8路CIF格式24小时不间断录像30天所需硬盘容量? 8路×200M×24小时×30天÷1024M = 1125G (注:1G = 1024M) 安装硬盘总容量的参考计算方法

Win7系统日常维护-(让电脑越来越好用,教你怎样整理硬盘,更改C盘User文件夹,系统瘦身)

1,Temp文件夹是什么文件夹? C盘里所有的TEMP文件夹都是临时文件夹文件夹可以删除 为节省可用空间,你可以在启动电脑的时候自动清空Temp文件夹中的文件。方法是选择“开始|运行”,键入“sysedit”,单击“确定”,启动“系统配置编辑程序”,进入“c:\autoexec.bat” 窗口,在文本末尾加入:deltree /y C:\Windows\Temp,保存并退出。此后,在你每次启动计算机后就会得到一个空白的Temp文件夹了。 Local Settings(译“本地设置”)里的Temp文件与普通的Temp文件夹有所区别。系统临时文件,即在Windows目录下的文件夹保存了一些系统运行所临时生成的文件;可以全部删除,但在Local Settings中的临时文件夹则是保存专门对某个用户的一些临时信息,如果你当前不是这个用户在使用电脑时,最好不要随便删除其他用户下面的这个文件夹中的内容,否则会导致其他用户在使用时出现问题。 2-1.如何合理安排硬盘布局 大家都有一台心爱的电脑,电脑里存储着自己宝贵的数据,这些数据可以构成你喜欢看的视频,也可以形成你喜欢听的音乐,还有可能是游戏、软件、文字或者其他的东西。网上的资源层出不穷,下载这些东西也成了每个拥有电脑的人经常做的事。资源堆积就会让自己的电脑文件变得乱七八糟,不加以整理的话就会使自己的硬盘成了“垃圾堆”,以后想找东西都很不方便,还会拖累电脑速度。 如何合理分配这些文件,使自己的电脑看起来更清爽一点呢?本人就以自己的实际检验,来告诉大家 步骤/方法 1. 假如500G的硬盘,去掉损耗还有隐藏分区共450G,分成了4个区。c盘一般用于 装系统,无需分给它过大的空间,只要给20、30G便可以了(xp系统和win7占用的空间不一样,所以根据需要可调整空间,分区用软件是分区魔术师,使用该软件会格式化硬盘,慎用)、注意,系统盘不能过满,否则将会影响电脑性能,有些人机子突然很卡,可能就是你系统盘东西太多的缘故,一般系统盘装个系统,装个杀毒软件就不要装其他的东西了。。。 还有一点就是每个分区上的卷名,这个要根据自己的实际想法去命名。我的是用英文写的,system是系统,install是安装,就是说d盘用来安装东西,recreation是娱乐,就是说e 盘主要用于放游戏什么的娱乐物,collection就是收藏了,包括珍藏的画集、各种软件什么的,当然也有隐私物啦。。。大家也可以把自己的各个盘重命名为电影、游戏什么的,不过个人建议留一个盘专门用来装东西。。。 2. 对各个分区内部进行归类。比如E盘,娱乐用的,但娱乐有分为很多种。游戏、电 影、动画、小说、音乐等。总之按照自己的想法分,可以分得比较简洁,里面再细分,比如

相关主题