搜档网
当前位置:搜档网 › 液态金属成型原理作业

液态金属成型原理作业

液态金属成型原理作业
液态金属成型原理作业

液态金属成型原理

一、简述普通金属材料特点及熔配工艺

1 普通金属材料的特点

1.1铸铁材料

铸铁是含碳量大于2.11%或者组织中具有共晶组织的铁碳合金,其成分范围为:2.4%~ 4.0%C,0.6%~3.0%Si,0.2%~1.2%Mn,0.1%~1.2%P,0.08%~0.15%S。依据碳在铸铁中的形态可将铸铁分为白口铸铁、灰口铸铁及麻口铸铁,其中灰口铸铁依据石墨形态的不同分为普通灰铸铁、蠕虫状石墨铸铁、球墨铸铁和可锻铸铁。

(1)白口铸铁

白口铸铁中的碳少量溶于铁素体,大部分以碳化物的形式存在于铸铁中,断口呈银白色。白口铸铁硬而脆,很难加工。我们可以利用它的硬度高和抗磨性好的特点制造一些高耐磨的零件和工具。

(2)灰铸铁

碳主要结晶成片状石墨存在于铸铁中,断口为暗灰色。灰口铸铁不能承受加工变形,但是却具有特别优良的铸造性能,同时切削加工性能也很好,低熔点、良好的流动性和填充性以及小的凝固收缩。

(3)麻口铸铁

麻口铸铁具有灰口和白口的混合组织,断口呈灰白交错。麻口铸铁不利于机械加工,也无特殊优异的使用性能。

(4)可锻铸铁

可锻铸铁是由白口铸铁经过石墨化退火后制成的。具有较高的强度、塑性和韧性,与球墨铸铁相比具有质量稳定、处理铁水简便以及易于组织流水线生产等优点,适用于形状复杂薄壁小件的大批量生产。

(5)球墨铸铁

球墨铸铁中的碳主要以球状石墨形态存在于铸铁中。球墨铸铁具有比灰口铸铁高得多的强度、塑性和韧性,同时仍保持着灰口铸铁所具有的耐磨、消震、易切削加工、容易铸造等一系列优异性能。

1.2 铸钢材料

铸钢具有良好的综合机械性能和物理化学性能,比铸铁具有更高的强度、塑性和良好的焊接性。按化学成分可以分为碳素钢和合金钢,其中碳素钢又分为低碳钢、中碳钢和高碳钢。(1)低碳钢

低碳钢的含碳量小于0.20%,它的塑性和韧性较高,但是强度较低,通常要经过渗碳后进行淬火、回火处理来提高强度和耐磨性。低碳钢的铸造性能差,熔点高,钢液流动性差,

易产生浇注不足和形成缩孔缩松、非金属夹杂等缺陷,并且容易氧化。

(2)中碳钢

中碳钢的铸造性能较好,熔点较低,流动性较好,气孔和非金属夹杂物较少,抗热裂倾向的能力较强,易于获得成型铸件。具有良好的强度、塑性和韧性。

(3)高碳钢

高碳钢具有较高的强度、硬度和耐磨性,但塑性较低。高碳钢的铸造性能良好,但由于热导性能差和较大的脆性,容易产生巨大应力而形成冷裂。所以一般需要进行退火处理。(4)合金钢

合金钢中的合金元素总量少于5%,是在碳素结构钢的基础上加入合金元素。其组织与含碳量相同的碳素结构钢类似。随着加入合金元素的不同,可以具有高强度、耐高温、传导性好等特殊性能。

1.3 铸造铝合金

铸造铝合金具有优异的导电性和导热性,表面有一薄层几何透明而致密的氧化膜保护,表面有光泽,在大气、淡水及氧化性酸类介质中有良好的腐蚀性。常用铸造铝合金有四类,分别是Al-Si系合金、Al-Cu系合金、Al-Mg系合金、Al-Zn系合金。

(1)Al-Si系合金

Si含量一般为4%~22%,具有流动性好、气密性好、收缩率小、热烈倾向小等良好的铸造性能,耐磨性、耐热性、耐蚀性也较好,热胀系数小,在铸造铝合金中品种最多,用量最大。

(2)Al-Cu系合金

Cu含量一般为3%~11%。其最大特点是具有较高的室温和高温力学性能。但比重较大,耐蚀性和铸造性较差。

(3)Al-Mg系合金

Mg含量为4%~11%。Al-Mg系合金是密度最小、耐蚀性最好、强度最高的铸造铝合金,但高温强度较低,一般工作温度不超过200℃,铸造性能较差,熔炼铸造工艺也较复杂。(4)Al-Zn系合金

锌在铝中的溶解度非常大,当Al中加入的Zn大于10%时能显著提高合金的强度。它是铸造铝合金中最便宜的一种,力学性能较高且不经热处理可直接使用,但密度较大,耐蚀性较差、铸造时容易产生热裂。

1.4 铸造镁合金

镁的密度小,在合金中加入镁可以大大减轻质量。镁合金的比弹性模量与高强度铝合金、合金钢大致相同。在受外力作用时容易产生较大的变形,有利于避免过高的应力集中,可使受力构件的应力分布更为均匀。镁合金具有优良的切削加工性能,在受冲击及摩擦时不会起火花。铸造镁合金按合金系可分为三类:Mg-Al系合金、Mg-Zn-Zr系合金、Mg-RE-Zr系合金。

(1)Mg-Al系合金

Mg-Al系合金具有优良的性能,不含稀贵元素,熔炼工艺较易掌握,生产成本较低,应用普遍。它的屈服极限较低,机械性能的壁厚效应较大,缩松比较严重。

(2)Mg-Zn-Zr系合金

Mg-Zn-Zr系合金具有较高的屈服强度和组织致密性。它可以加入锆改善合金铸造性能,降低缩松倾向,细化晶粒,提高力学性能,加锆也能在表面生成致密氧化膜,提高合金抗腐蚀性能。Mg-Zn-Zr系合金还可以加入其它稀土元素、银、钍等元素以进一步改善它的性能。(3)Mg-RE-Zr系合金

Mg-RE-Zr系合金为耐热合金,可在200~260℃工作,具有良好的力学性能。

1.5 铸造铜合金

铸造铜合金是广泛应用的结构材料之一,具有较好的力学性能,强度高,韧性好,并有良好的导电、导热性。由于铜的电极电位很高,因为具有优异的耐蚀性,在大气、海水、氢氟酸、盐酸等介质中有很高的化学稳定性。但是铸造铜合金的熔铸比较困难,其吸气性大,易形成气孔。吸氢造成氢脆,吸氧致使其它合金元素氧化,形成夹杂物。铸造铜合金主要分为青铜和黄铜,其中青铜又分为锡青铜和特殊青铜。

(1)锡青铜

锡青铜是最古老的一种铸造合金,其主要特点是具有优良的耐磨性能,其次,它在蒸汽、海水及碱溶液中具有很高的耐蚀性。锡青铜具有足够的抗拉强度和一定的塑性,可以制造一般条件下工作的各种耐磨、耐蚀的机器零件。但是锡青铜结晶容易产生疏松、偏析、致密性等缺陷。

(2)特殊青铜

特殊青铜包括铝青铜(加有铁、锰、镍等元素)、铅青铜和其它青铜。铝青铜有很高的强度,其耐蚀性、耐磨性和气密性也都较好,可用于高强度零件,并可部分代替锡青铜。铅青铜抗磨性很好,主要用作高速滑动和受力大的轴承、衬套等抗磨零件。

(3)黄铜

黄铜的主要成分是Cu-Zn合金。与青铜相比,黄铜的力学性能较高,黄铜的熔点随Zn 含量的增加而降低,流动性好,组织较为致密,铸造工艺相对青铜比较简单,因此,黄铜广泛应用于要求较高力学性能和耐压性能的工作场合。

2 熔配工艺

2.1 铸铁材料的熔配

铸铁主要用冲天炉熔炼,冲天炉熔炼的基本过程包括炉料的预热、熔化、过热及储存,这些均在冲天炉的炉身内完成。将空气用鼓风机升压后送入风箱,然后均匀的由各风口进入炉内,与底焦层中的焦炭进行燃烧,产生大量的热量和气体产物(炉气:CO2、CO、N2等)。这些热量通过炉气和炙热的焦炭传给金属和炉料,达到熔炼的目的,另外还有60%左右的热量传给炉衬、炉渣或由炉气带入大气。炉柱中的炉料被上升的热炉气加热,温度由室温逐

渐升高到1200摄氏度左右,完成了炉料的预热。金属炉料在此时被炉气继续加热,有固体块料熔化成为同温度的液滴,即熔化阶段。1200℃左右的液滴在下落过程中继续从炉气和炙热的焦炭表面吸收热量,是温度上升到1500摄氏度以上,称为过热阶段。高温的液滴在炉底汇集然后分离,炉渣和铁水分别由出渣口和出铁口放出,完成金属炉料有固体到一定温度铁水的熔化过程。

一般铁液的最终含碳量主要与炉料含碳量及炉内燃烧状况有关。生产上控制铁液含碳量主要是通过配料进行的。在金属炉料中,生铁的含碳量较高,一般在4.0%(质量分数)以上;回炉废铸铁件的含碳量低于生铁,其含量依照铸铁牌号不同,大致在3.2%~3.8%之间;废钢的含碳量最低,一般在0.2%~0.6%之间。

2.2 铸钢材料的熔配

一般三相电弧炉炼钢应用比较普遍。其中,氧化法炼钢的主要过程:

1、补炉:每炼完一炉钢在装入下一炉的炉料之前要进行补炉,其目的是修补炉底和炉壁被浸浊和被碰坏的部位。补炉操作要点是:炉温高、操作快,补层薄。

2、装料:每炼完一炉钢在装入下一炉的炉料之前要进行补炉,其目的是修补炉底和炉壁被浸浊和被碰坏的部位。用原来打结的炉衬材料(如卤水镁砂或焦油镁砂)进行修补。补炉操作要点是:炉温高、操作快,补层薄。

3、熔化期:熔化期的任务是将固体炉料熔化成钢液并进行脱磷。主要原理为:2Fe + O2→ 2FeO,Si + O2→ SiO2,2Mn +O2→ 2MnO,4P +5O2→ 2P2O5。

4、氧化期:氧化期进行脱磷、去除钢液中的气体和夹杂物并提高钢液温度。氧化期的前一阶段钢液温度较低,主要是造渣脱磷。当钢液温度提高(一般热电偶温度1530℃以上)后进入第二阶段,进行氧化脱碳沸腾精炼,以去除钢液中的夹杂物和气体。经过氧化脱碳后,钢液中含有大量的氧化亚铁。为减少残留的氧化亚铁量,可在停止供氧(不再加矿石)条件下使钢液继续沸腾一段时间,这一阶段的沸腾称为净沸腾。当钢液含磷量和含碳量都已符合工艺要求,钢液温度足够高时,可以扒出氧化渣进入还原期。

5、还原期:还原期的任务是脱氧、脱硫和调整钢液温度及化学成分。扒除氧化渣后,首先往熔池中加入锰铁进行“预脱氧”。通过预脱氧可快速去除钢液中部分氧化亚铁,以减轻后来通过炉渣进行脱氧的任务,加速整个还原期的过程。

6、出钢:出钢时要求钢液流要粗,而且要使钢液与炉渣一起出到盛钢桶中。

2.3 铝合金材料的熔配

中间合金熔制要求,熔点尽量接近所熔制的合金;含合金元素尽量高;成分均匀;

含气、夹杂物少;容易破碎。以Al-Ti 和Al-Si为例:

Al-Ti合金的熔制:将石墨坩埚预热至暗红色,加入预热的铝锭;待铝锭全熔,用石墨钟罩压入预热海绵钛。快速升温至1050~1100℃,用石墨棒充分搅拌,使其尽快熔化。全熔后用质量分数约为0.6%的C2Cl6精炼。搅拌均匀,于900℃浇铸成锭,快速凝固可防止钛偏析。加入海绵钛的量为4%,可熔制w Ti=4%的Al-Ti合金。

Al-Si 合金的熔制:将20~40mm 块度的结晶硅加在铝锭上和炉盖上。待铝熔化后,将炉盖上的硅推入坩埚内。快速升温至800℃,硅全部熔化后用石墨棒充分搅拌。加入ZnCl 2(w ZnCl2 =0.2%~0.4%)或C 2Cl 6(w C2Cl6 =0.3%~0.6%)精炼。清渣、搅匀、铸锭。

每一炉的各种炉料的加入量,包括新料、回炉料、中间合金,保证设计的化学成分。须知:a) 熔制合金设计的化学成分、杂质限度及其他技术要求;b) 拟用炉料的化学成分;c) 熔炼过程中各元素的烧损率;d) 每一炉的投料量等等。铸造铝合金的熔炼工艺主要包括:熔化前的准备与投料、加热融化、精炼处理、调节温度和浇注。

2.4 铜合金材料的熔配

对铜合金的炉料、熔剂以及预热(炉料和坩埚)等的要求与铝合金相同。对熔炉的要求,除普通电阻丝加热炉外,铝合金使用的熔炉均适于铜合金,只是温度要求不同。根据氢氧平衡原理,铜合金熔炼可采用弱的氧化性气氛。使用液体和气体燃料时,要有适当的过剩空气,烧嘴的火焰呈透明白亮色。也可加入氧化熔剂来实现。

2.5 镁合金材料的熔配

镁合金在熔炼过程中始终要有覆盖剂保护。为去除镁液中的氧化物夹杂,要撒入足够数量的精炼剂进行精炼,精炼过程中使镁液产生平稳的循环流动,保证精炼剂能充分吸附夹杂物,而后沉淀在坩埚底部。为提高性能,采取细化晶粒处理。所用覆盖剂以氯、氟盐为主。最好在细化晶粒前后进行两次精炼。

参考文献:

[1] 宋维锡. 金属学. 冶金工业出版社, 1980.

[2] 徐州, 姚寿山. 材料加工原理. 科学出版社.

[3] 范金辉, 华勤. 铸造工程基础. 北京大学出版社, 2009.

[4] 蔡启舟, 吴树森. 铸造合金原理及熔炼. 化学工业出版社, 2010.

二、金属结晶(凝固)形核热力学条件及形核机理

1、金属结晶的热力学条件

液态金属结晶的过程是一种相变,它是一个系统自由能降低的自发过程,系统自由能G 、熵S 、温度T 、体积V 及环境压力P 满足式子:

V C

G S T G Vdp SdT dG T p =??-=??+-=)(,)(, 结晶过程可以认为是在恒压下进行的,则p 为常数,dp=0,即dT T G SdT dG p )(

??=-=,由于熵值为正数,故自由能随温度上升而下降。又因为液态熵值大于固态,所以液相自由能G L 随温度上升而下降的斜率大于固相G S 的斜率,两者相交处的温度为T 0,即为纯金属的平衡结晶温度。

当T=T 0,G S =G L ,固、液相处于平衡状态;当T>T 0,G L G S ,结晶才可能自发进行。此时两相自由能之差△G 为相变驱动力。△G=G L -G S =(H L -H S )-T(S L -S S )。

假设晗与熵在结晶时不随温度的变化而变化,则可认为结晶潜热L= H L -H S ,熔化熵△S= S L -S S ,则△G=L-T △S ,当T=T 0时,△G=0,得△S=L/T 0。即△G= L △T/T 0。由此可见,对于特定的金属,L 、T 0为定值,所以过冷度△T 决定了液态金属结晶的相变驱动力的大小。△T 越大,相变驱动力也越大。

在相变驱动力的作用下,高能量状态的液态结构转变为低自由能的固态结构,必须越过一个自由能更高的中间过渡态(由固液界面所致)。

液态金属的结晶过程从形核开始,然后晶核逐渐生长,使得系统逐步由液体转变为固体。在存在相变驱动力的前提下,液态金属还需要通过其起伏作用来克服界面自由能和激活能。液态金属存在着结构起伏、成分起伏和能量起伏作用,正是由于这种起伏作用,是部分原子具有较高的能量状态,得以克服界面自由能和激活能,凝固过程才能继续进行。

2、形核机理

亚稳态的液态金属通过起伏作用在某些微观区域内形成稳定的静态小质点的过程称为形核。形核的首要条件就是体系必须处于亚稳定态,即存在一定的过冷度,以提供相变驱动力;其次,需要克服界面自由能才能形成稳定存在的晶核,并保证其进一步生长。一般形核方式包括均匀形核和非均匀形核。

(1)均匀形核

均匀形核是在没有任何外来界面的均匀熔体中的形核过程。 在一定的过冷度条件下,固相的自由能低于液相的自由能,当次过冷液体中出现晶胚时,一方面原子从液态转变为固态使系统的自由能降低,另一方面,由于晶胚构成新的表面,从而使系统的自由能升高。假设晶胚为球体(半径为r ),则系统自由能△G 的表达式为

LC V r G r G σππ23434+?-

=? 当某一晶胚长大,半径r 增大,其体积自由能减少绝对值大于表面积自由能的增加值时,该长大过程才能自发进行。由金属学可知,只有大于临界半径的晶胚才可以作为晶核稳定存在,此时的晶胚称为临近晶核,其大小成为临界形核半径。

对上式进行微分,并令其等于零,即-4πr 2△G V +8πσLC =0,则临界形核半径为:

V LC G r ?=σ2*均或T

L T r LC ?=0*均2σ 由此可知,临界形核半径与过冷度成反比,过冷度越

大则临界形核半径越小。在σLC 、L 一定时,达到临界形核

半径所需的过冷度为临界过冷度。

由图可知,当晶核尺寸大于r 0时,系统的自由能小于

零,晶核是稳定的;但在r*均-r 0范围时,系统的自由能仍然大于零,即晶核表面自由能大于体积自由能,阻力大于

驱动力。因此,在此区间晶核要稳定存在,必须要求外界对系统做功,使晶核能补偿自由能增加的绝对值。这一外部补偿的能量称为形核功△G K ,其极大值即为对应临界形核半径r*均处的临界形核功△G*均。通过代入可得:

LC LC LC S T L T r G

σπσσπ*222032*均*均3131634=?=-=? 可见,临界形核功的大小恰好等于临界晶核表面自由能的1/3。这表明形成临界晶核时,体积自由能的下降仅补偿了表面自由能增量的2/3,还有1/3表面自由能部分必须依靠外部对晶核做功。

从式子可知,临界形核功的大小与过冷度的平方成反比。因此,增大过冷度能显著降低临界形核功,从而使形核更容易进行。

(2)非均匀形核

非均匀形核是指在不均匀的熔体中依靠外来杂质或型壁界面提供的衬底进行形核的过程。

液体中存在的大量固体质点可以作为形核的衬底。假设在亚稳定的液态金属L 中存在着固相物质S ,在S 的平面衬底上形成了一个球冠状晶核C 。当界面能之间处于平衡时,有:

θσσσcos LC CS LS +=

又因为晶核的体积V 冠为)cos cos 32(333冠θθπ+-=r V ,

晶核与液相的接触面积为)cos 1(22θπ-=r S LC ,

晶核与衬底的接触面积为θπ22sin r S CS =,

因此,形成球冠状晶核的总自由能变化为 △G 非=△G 均f (θ)。

用同样的方法可得:

V

LC G r ?=σ2*非,)(*均*非θf G G ?=?。

参考文献:

[1] 徐州, 姚寿山. 材料加工原理. 科学出版社.

[2] 贾志宏.金属液态成型原理.北京大学出版社,2011.

三、如何控制铸锭的铸态组织

稳定凝固壳层的产生决定着表面细晶粒区向柱状晶区的过渡,而阻止柱状晶区进一步发展的关键则是中心等轴晶区的形成。因此,从本质上说,晶区的形成和转变乃是过冷熔体独立形核的能力和各种形式晶粒游离、漂移与沉积的程度这两个基本条件综合作用的结果,

种晶粒游离的产生就要受到金属性质、铸型特点、浇铸工艺、及铸件结构等方面的影响。

1 金属性质方面

首先,强形核剂在过冷熔体中存在,宽结晶温度范围的合金和小的温度梯度G L,这既

能保证熔体有较宽的形核区域也能促使较长的脆弱枝晶的形成;并且,合金中溶质元素含量较高、平衡分配系数k0值偏离1较远。因此凝固过程中树枝晶比较发达,缩颈现象也就比

较严重。

2 熔体处理方面

熔体在凝固过程中存在时间长、对流激烈等因素,都能促进晶粒游离,获得等轴晶组织;合适的溶体处理可以强化形核。

3 浇铸条件方面

首先,低的浇注温度。其次,要有合适的浇铸工艺。凡是能强化流液对型壁冲刷作用的浇注工艺均能扩大并且细化等轴晶区。

4 铸型性质和组件结构方面

对于薄壁铸件而言,激冷可以使整个断面同时产生较大的过冷。铸型蓄热系数越大,整个熔体的形核能力就越强。因此金属型铸造比砂型铸造更容易获得较细的等轴晶的断面组织。

对于型壁较厚或导热性较差的铸件而言,铸型的激冷作用只产生于铸件的表面层,等轴晶区的形成主要依靠各种形式的晶粒游离。这时铸型冷却能力的影响是矛盾的。一方面,低蓄热系数的铸型能延缓稳定凝固壳层的形成,有助于凝固初期激冷晶的游离,同时也使内部温度梯度变小,凝固区域加宽,对增加等轴晶有利;另一方面,它减慢熔体过热热量的散失,不利于已游离晶粒的残存,减少等轴晶的数量。通常前者是主导因素,因而在一般生产中,除薄壁铸件外,采用金属型铸造比砂型铸造更易获得柱状晶,特别是高温浇注更是如此。但砂型铸造所形成的等轴晶粒比较粗大。如果促使非均匀形核与晶粒游离的其他因素(如强形核剂的存在、低的浇注温度、严重的晶粒缩颈以及强烈的熔体对流和搅拌等)足以抵消其不利影响,则无论是金属型铸造还是砂型铸造皆可获得细的等轴晶粒。当然,在相同情况下,金属型铸造获得的等轴晶粒更为细小。

所以,为了获得和细化等轴晶组织,可以通过合理控制热学条件、通过孕育处理、即动态晶粒细化法来获得。

1、合理控制热力学条件

(1)低温浇注和采用合理的浇注工艺

当浇注温度低时,熔体的过热度较小,它与浇道内壁接触就能产生大量的游离晶粒。此外,低过热度的熔体也有助于已形成的游离晶粒的残存,这对等轴晶的形成和细化有利。凡是能强化流液对型壁冲刷作用的浇注工艺均能扩大并且细化等轴晶区。

(2)合理控制冷却条件

控制冷却条件的目的是形成宽的凝固区域和获得大的过冷从而促进熔体形核和晶粒游离,因此要求小的温度梯度G L和高的冷却速度v。由于高的散热速度不仅使凝固过程中G L

变大,而且在凝固开始时还促使稳定凝固壳层的过早形成。因此对厚壁铸件,一般总是采用冷却能力小的铸型以确保等轴晶的形成,再辅以其他晶粒细化措施以得到满意的效果。悬浮铸造法是一个比较理想的方案,它既不使铸型有较大的冷却作用以便降低G L的数值,又能使熔体能够快速冷却。悬浮铸造法就是在浇注过程中向液态金属中加入一定数量的金属粉末,这些金属粉末像极多的小冷铁均匀地分布于液态金属中,起着显微激冷作用,加速液态金属的冷却,促进等轴晶的形成和细化。

2、孕育处理

孕育处理是向液态金属中添加少量物质以达到细化晶粒、改善组织之目的的一种方法。在铸铁中称为孕育,在有色合金中称为变质,在钢中则两种混用。从本质上说,孕育主要是影响形核过程和促进晶粒游离以细化晶粒;而变质则是改变晶体的生长机理,从而影响晶体形貌。虽然它们之间存在着密切的联系和影响,然而作用各不相同。变质在改变共晶合金的非金属相的结晶形貌上有着重要的作用,而在等轴晶组织的获得和细化中采用的则是孕育方法。

3、动态晶粒细化

在铸件凝固过程中,采用振动(机械振动、电磁振动、音频或超声波振动)、搅拌(机械、电磁搅拌或利用气泡搅拌)或旋转等各种方法均能有效地缩小或消除柱状晶区,细化等轴晶组织。

1)振动:利用振动方法可细化晶粒并改善铸件质量。此外,还有利于加强补缩,减少偏析和排除气体与夹杂,从而使金属性能提高。

2)搅拌:在凝固初期,对凝固壳尚不稳定的部位,即型壁附近的液面以强烈的机械搅拌,可以获得良好的细等轴晶组织。

3)旋转振荡:当铸型恒速旋转时,浇入铸型的液态金属在铸型的带动下不断加

速,最后以与铸型相近的速度转动。由于液体与铸型间的相对运动和液体内部的对流已

被大大抑制,故凝固时反易形成柱状晶。

参考文献:

[1] 徐州, 姚寿山. 材料加工原理. 科学出版社.

[2] 贾志宏.金属液态成型原理.北京大学出版社,2011.

液态金属成型原理作业

液态金属成型原理 一、简述普通金属材料特点及熔配工艺 1 普通金属材料的特点 1.1铸铁材料 铸铁是含碳量大于2.11%或者组织中具有共晶组织的铁碳合金,其成分范围为:2.4%~ 4.0%C,0.6%~3.0%Si,0.2%~1.2%Mn,0.1%~1.2%P,0.08%~0.15%S。依据碳在铸铁中的形态可将铸铁分为白口铸铁、灰口铸铁及麻口铸铁,其中灰口铸铁依据石墨形态的不同分为普通灰铸铁、蠕虫状石墨铸铁、球墨铸铁和可锻铸铁。 (1)白口铸铁 白口铸铁中的碳少量溶于铁素体,大部分以碳化物的形式存在于铸铁中,断口呈银白色。白口铸铁硬而脆,很难加工。我们可以利用它的硬度高和抗磨性好的特点制造一些高耐磨的零件和工具。 (2)灰铸铁 碳主要结晶成片状石墨存在于铸铁中,断口为暗灰色。灰口铸铁不能承受加工变形,但是却具有特别优良的铸造性能,同时切削加工性能也很好,低熔点、良好的流动性和填充性以及小的凝固收缩。 (3)麻口铸铁 麻口铸铁具有灰口和白口的混合组织,断口呈灰白交错。麻口铸铁不利于机械加工,也无特殊优异的使用性能。 (4)可锻铸铁 可锻铸铁是由白口铸铁经过石墨化退火后制成的。具有较高的强度、塑性和韧性,与球墨铸铁相比具有质量稳定、处理铁水简便以及易于组织流水线生产等优点,适用于形状复杂薄壁小件的大批量生产。 (5)球墨铸铁 球墨铸铁中的碳主要以球状石墨形态存在于铸铁中。球墨铸铁具有比灰口铸铁高得多的强度、塑性和韧性,同时仍保持着灰口铸铁所具有的耐磨、消震、易切削加工、容易铸造等一系列优异性能。 1.2 铸钢材料 铸钢具有良好的综合机械性能和物理化学性能,比铸铁具有更高的强度、塑性和良好的焊接性。按化学成分可以分为碳素钢和合金钢,其中碳素钢又分为低碳钢、中碳钢和高碳钢。(1)低碳钢 低碳钢的含碳量小于0.20%,它的塑性和韧性较高,但是强度较低,通常要经过渗碳后进行淬火、回火处理来提高强度和耐磨性。低碳钢的铸造性能差,熔点高,钢液流动性差,

液态金属

液态金属行业研究报告 第一节液态金属材料简述 1.1液态金属的定义 液态金属即非晶材料,是一种长程无序(短程有序)、亚稳态(一定温度晶化)、一定程度上的物理特性各向同性的金属材料,具有固态、金属、玻璃的特性,又称金属玻璃,具有高强度、高硬度、塑性、热传导和耐磨性等。 图1-1 液态金属具有长程无序结构

1.2 液态金属的特点 液态金属兼有玻璃、金属、固体和液体的特性,是一类全新性的 高性能金属材料,具备很多不同于传统玻璃材料的独特的性质。 非晶材料具有高强度、高比强度、高硬度和高弹性形变等优点

Liquidmetal在表面光洁度上远远高于镁、铝、钛、钢等金属。1)是迄今为止最强的金属材料(屈服强度和断裂韧性最高)和最软的(屈服强度最低)金属材料之一; 2) 具有接近陶瓷的硬度,却又能在一定温度下能像橡皮泥一样的柔软,像液体那样流动(超塑性),所以它又是最理想的微、纳米加工材料之一; 3) 液态金属的强度(1900Mpa)是不锈钢或钛的两倍,易塑形堪比塑料,兼具了钢铁和塑料的优势,可以塑性加工。

工艺余成本优势 优势 劣势 加工工艺 1.相对于一般的高强度合金制备,它具有净成形(Net-ShapeCasting )的特点,可以避免繁琐的后期机加工。 复合材料熔点较低,不适合用于高温环境,比如蒸汽 机引擎部件等。 2.目前的制备的液态金属通常很薄,一般的锆-钛非晶合 金只有 2.5cm 厚度,暂时不适用于大型的结构部件 热敏塑性,可以用模具塑型,既简单又经济,而且精度高 非晶合金的复合材料熔点低,避免了高温对复合成分中的金属性质造成损害 无氧环境下成型,具有钝面的表面光洁度 成本 基本上是一次净成型,且表面光洁度高,省却大量的后加工;效率非常高,以宜安 科技自制的压铸设备为例,每台机可以实 现压铸600次/天,相比于CNC 加工数个小 时加工一件的效率相比,成本优势相当显 著,大约能降低一半的成本。 1.3 液态发展历程 第二节 液态金属的制备方法

液态成型作业答案 完结版

第二讲 1、哪些现象说明金属的熔化并不是原子间结合力的全部破坏? 答:以下现象说明金属的熔化并不是原子间结合力的全部破坏:(1)物质熔化时体积变化、熵变(及焓变)一般均不大。[注意:简答题此部分可略:如金属熔化时典型的体积变化△Vm/V(多为增大)为3~5%左右,表明液体原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。](2)金属熔化潜热比其汽化潜热小得多(1/15~1/30),表明熔化时其内部原子结合键只有部分被破坏。 2、实际液态金属的结构是怎样的? 实际液态金属和合金由大量时聚时散、此起彼伏游动着的原子集团、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构十分复杂。 3、名词解释:能量起伏、结构起伏、浓度起伏、粘度、运动粘度、雷诺数、层流、紊流、表面张力和表面能。 答:能量起伏:液态金属中的原子热运动强烈,原子所具有的能量各不相同,且瞬息万变,这种原子间能量的不均匀性,称为能量起伏 结构起伏: 由于液态原子处于能量起伏之中,原子团是时聚时散,时大时小,此起彼伏的,称为结构起伏 浓度起伏: 对于多元素液态金属而言,同一种元素在不同原子团中的分布量不同,也随着原子的热运动瞬息万变,这种现象称为成分起伏 粘度: 流体在层流流动状态下,流体中的所有液层按平行方向运动。在层界面上的质点相对另一层界面上的质点作相对运动时,会产生摩擦阻力。当相距1cm的两个平行液层间产生1cm/s的相对速度时,在界面1cm2面积上产生的摩擦力,称为粘滞系数或粘度运动粘度:液体在重力作用下流动时内摩擦力的量度,数值等于γ=η/ρ。 表面张力:产生新的单位面积表面时系统自由能的增量。与表面能大小、单位一致,从不同角度描述同一现象。 表面能:表面自由能(简称表面能)为产生新的单位面积表面时系统自由能的增量。 雷诺数: 流体流动时的惯性力Fg和粘性力(内摩擦力)Fm之比称为雷诺数。用符号Re 表示。Re是一个无因次量。 层流:流体流动时,如果流体质点的轨迹(一般说随初始空间坐标x、y、z和时间t而变)是有规则的光滑曲线(最简单的情形是直线),这种流动叫层流。 紊流:在一定雷诺数下,流体表现在时间和空间上的随机脉动运动,流体中含有大量不同尺度的涡旋(eddy)。 4、分析粘度的影响因素及其对粘度的影响规律。 ①温度一般情况下温度提高,液体金属的粘度减小。 ②化学成分 杂质的数量、状态和分布情况都能在不同程度上影响到液态金属的粘度。在液态金属中呈固态杂质常使其粘度增加。但有些熔点低的杂质在液态属中呈熔融状态,反而会使该液态金属的粘度降低。酸性钢较碱性钢的粘度小就是因为酸性钢的杂质多是液态的,而碱性钢的杂质常呈粒状固体;共晶成分的合金粘度小;液体金属和合金的粘度与其过热度有关,过热度越大,粘度越小。 5、分析表面张力的影响因素及其对表面张力的影响规律。 (1)表面张力与熔点的关系 熔点越高,或摩尔表面积越大,表面张力越大。因为熔点越高说明金属原子之间的作用

液态成型

液态成形原理 第一章液态金属的结构和性质 1.液态成形:是液态金属充满型腔并凝固后获得符合要求的 毛坯或零件的工艺技术。 2.晶界粘滞流动:把金属加热到熔点附近时,离位原子数大 为增加。在外力的作用下,这些原子作定向运动,造成 晶粒间的相对流动。(金属的熔化是从晶界开始的) 3.熔化潜热:在熔点温度的金属转变为同温度的液态金属 时,金属要吸收大量的热量(金属由固态变为液态,体积 膨胀约为3~5%)。 4.在熔点和过热度不大时,液态金属的结构是接近固态金属而远离气态金属的。 5.液态金属:是由各种成分的原子集团、游离原子、空穴、裂纹、杂质及气泡 所组成的“混浊”液体。 6.粘度(粘滞性):在作相对运动的两流体层的接触面上,存在 一对等值而反向的作用力来阻碍两相邻流体层作相对运动的 性质。 7.粘滞性的本质:原子间结合力的大小。 8.粘度在材料成形过程中的影响。 A.对液态金属净化的影响-粘度↑杂质和气泡上升的速度↓ B.对液态合金流动阻力的影响-粘度↑流动阻力↑ C.对液态过程中液态合金对流的影响-粘度↑对流强度↓ 9.表面张力:液态金属表面有一个平行于表面且各向大小相等的张力。 10.影响表面张力的因素: A.熔点。熔点↑原子间结合力↑表面张力↑ B.温度。温度↑表面张力↓(但对铁碳合金、铜合金,温度↑表面张力↑)C.溶质原子表面活性元素,使表面张力↓非表面活性元素,使表面张力↑11.充型能力mold-filling capacity:液态金属充满铸型型腔,获得形状完整、轮廓 清晰的铸件的能力(充型能力是外因(铸型)和内因(流动性)的共同结果) 12.液态金属的流动性:液态金属本身的流动能力。

金属材料的液态成型

第一章金属材料的液态成形 1.1概述 金属的液态成型常称为铸造,铸造成形技术的历史悠久。早在5000多年前,我们的祖先就能铸造红铜和青铜制品。铸造是应用最广泛的金属液态成型工艺。它是将液态金属浇注到铸型型腔中,待其冷却凝固后,获得一定形状的毛坯或零件的方法。在机器设备中液态成型件所占比例很大,在机床、燃机、矿山机械、重型机械中液态成型件占总重量的70%~90%;在汽车、拖拉机中占50%~70%;在农业机械中占40%~70%。液态成型工艺能得到如此广泛的应用,是因为它具有如下的优点: (1)可制造出腔、外形很复杂的毛坯。如各种箱体、机床床身、汽缸体、缸盖等。 (2)工艺灵活性大,适应性广。液态成型件的大小几乎不限,其重量可由几克到几百吨,其壁厚可由0.5mm到1m左右。工业上凡能溶化成液态的金属材料均可用于液态成型。对于塑性很差的铸铁,液态成型是生产其毛坯或零件的唯一的方法。 (3)液态成型件成本较低。液态成型可直接利用废机件和切屑,设备费用较低。同时,液态成型件加工余量小,节约金属。 但是,金属液态成型的工序多,且难以精确控制,使得铸件质量不够稳定。与同种材料的锻件相比,因液态成型组织疏松、晶粒粗大,部易产生缩孔、缩松、气孔等缺陷。其机械性能较低。另外,劳动强度大,条件差。 近年来,随着液态成型新技术、新工艺、新设备、新材料的不断采用,使液态成型件的质量、尺寸精度、机械性能有了很大提高,劳动条件到底改善,使液态成型工艺的应用围更加广阔。 液态材料铸造成形技术的优点: (1)适应性强,几乎适用于所有金属材料。 (2)铸件形状复杂,特别是具有复杂腔的铸件,成形非常方便。 (3)铸件的大小不受限制,可以由几克重到上百吨。 (4)铸件的形状尺寸,组织性能稳定。 (5)铸造投资小、成本低,生产周期短。 液态材料铸造成形技术也存在着某些缺点: 如铸件部组织疏松,晶粒粗大,易产生缩孔、缩松、气孔等缺陷;而外部易产生粘砂、夹砂、砂眼等缺陷。另外铸件的力学性能低,特别是冲击韧性较低。铸造成形工艺较为复杂,且难以精确控制,使得铸件品质不够稳定。 铸造成形技术的发展: (1)提高尺寸精度和表面质量; (2)先进的造型技术及自动化生产线; (3)高效、节能,减少污染; (4)降低成本,改善劳动条件。 1.2 钢铁的生产过程 钢铁的生产过程是一个由铁矿石炼成生铁、再由生铁炼成钢液并浇注成钢锭的过 1.2.1 炼铁 炼铁在高炉中进行,其过程为:将铁矿石、焦碳和石灰石等按一定比例配成炉料,由加料车送入炉,形成料柱,加料完毕,将炉顶关闭。被热风炉加热到900~1200℃的热风,由炉壁上的风口吹入高炉下部,使焦碳燃烧,产生大量的炉气。炙热的炉气在炉上升,加热炉料,并

材料成形原理 吴树森 答案.docx1

第一章(第二章的内容) 第一部分:液态金属凝固学 1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂 纹组成。原子集团的空穴或裂纹内分布着排列无规则的游离的 原子,这样的结构处于瞬息万变的状态,液体内部存在着能量 起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空 穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。 1.2答:液态金属的表面张力是界面张力的一个特例。表面张力对应 于液-气的交界面,而界面张力对应于固-液、液-气、固- 固、固-气、液-液、气-气的交界面。 表面张力?和界面张力ρ的关系如(1)ρ=2?/r,因表面张力而 长生的曲面为球面时,r为球面的半径;(2)ρ=?(1/r1+1/r2), 式中r1、r2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因 素;不同点:流动性是确定条件下的冲型能力,它是液态金属 本身的流动能力,由液态合金的成分、温度、杂质含量决定, 与外界因素无关。而冲型能力首先取决于流动性,同时又与铸 件结构、浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比

热、密度、导热系大;④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③ 提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚 度; ②降低结构复杂程度。 1.4 解: 浇注模型如下: 则产生机械粘砂的临界压力 ρ=2?/r 显然 r =2 1 ×0.1cm =0.05cm 则 ρ=4 10*5.05.1*2-=6000Pa 不产生机械粘砂所允许的压头为

液态金属成型原理

2. 金属结晶(凝固)的形核热力学条件及形核机理。 答:金属结晶的热力学条件: 金属结晶必须要过冷,过冷是金属结晶的必要条件。 金属结晶一般是在等压条件下进行的。固、液两相都有各自的自由能,它们的自由能在等压条件下随温度的升高同样是降低的,如图2.1所示。因为液相原子排列混乱程度高于固相,因而有: 上式表示液相熵的负值比固相熵大,因此液相自由能随温度下降的速率大于固相。而在绝对零度时,因液相原子排列混乱程度大于固相而具有更高的自由能。这一关系可用图2.1来表示。图中G L和G S分别代表液相和固相的自由能随温度变化的曲线,两曲线交于温度T m。在T m温度,固、液两相自由能相等。T m就是理论结晶温度。所以理论结晶温度定义为固液两相自由能相等所对应的温度,也称平衡熔点。 图2.1 自由能随温度的变化示意图 根据自由能最小原理,要发生液相向固相的自发转变,实现结晶,固相自由能必须小于液相,从图中可见:这只有在温度小于理论结晶温度时才能实现,这就是液体金属必须具有一定的过冷度,结晶才能自动进行的原因。四、金属结晶的驱动力金属结晶的驱动力从宏观上看是过冷度,从热力学上看是固、液两相自由能之差。实际上,可以证明单位体积固、液两相自由能之差ΔG v和过冷度ΔT之间存在如下关系: 式中L m—结晶潜热。从上可以看出:要实现结晶,根据自由能最小原理,G L-G S>0,而要保证必须保证G L-G S>0,即实际结晶温度必须低于理论结晶温度。并且,过冷度越大,固、液两相自由能之差越大,金属结晶的驱动力也越大。 晶核的形成机理: 形核有两种方式:均匀形核和非均匀形核。均匀形核是指晶核不依附任何外来物形成,形核在液相各处的形核几率是相同的;非均匀形核是指晶核依附于外来物(如容器壁和固态杂质)上形成。

材料成型工艺基础习题答案

材料成型工艺基础(第三版)部分课后习题答案第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝固原则和定向凝固原则?试对下图所示铸件设计浇注系统和冒口及冷铁,使其实现定向凝固。 答:①同时凝固原则:将内浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝固原则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴ .试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白

口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否 相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果不如球墨铸铁好?普通灰铸铁常用的热处理方法有哪 些?其目的是什么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除内应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。

液态成形原理名词解释及简答题

一、名词解释。 过冷度:金属的理论结晶温度和实际结晶温度的差值 均质形核:在没有任何外来的均匀熔体中的形核过程 异质形核:在不均匀的熔体中依靠外来杂质或者型壁面提供的衬底进行形核的过程 异质形核速率的大小和两方面有关,一方面是过冷度的大小,过冷度越大形核速率越快。二是和界面有关界面和夹杂物的特性形态和数量来决定,如果夹杂物的基底和晶核润湿,那么形核速率大。 形核速率:在单位时间单位体积内生成固相核心的数目 液态成型:将液态金属浇入铸型之,凝固后获得具有一定形状和性能的铸件或者铸锭的方法 复合材料:有两种或者两种以上物理和化学性质不同的物质复合组成一种多相固体 定向凝固:使金属或者合金在熔体中定向生长晶体的方法 溶质再分配系数:凝固过程当中,固相侧溶质质量分数和液相侧溶质质量分数的比值 流动性是确定条件下的充型能力,液态金属本身的流动能力叫做流动性 液态金属的充型能力是指液态金属充满铸型型腔获得完整轮廓清晰的铸件能力 影响充型能力的因素:(1)金属本身的因素包括金属的密度、金属的比热容、金属的结晶潜热、金属的粘度、金属的表面张力、金属的热

导率金属的结晶特点。(2)铸型方面的因素包括铸型的蓄热系数、铸型的温度、铸型的密度、铸型的比热容、铸型的涂料层、铸型的透气性和发气性、铸件的折算厚度(3)浇注方面的因素包括液态金属的浇注温度、液态金属的静压头、浇注系统中的压头总损失和 影响液态金属凝固过程的因素:主要因素是化学成分冷却速度是影响凝固过程的主要工艺因素液态合金的结构和性质以及冶金处理(孕育处理、变质处理、微合金化)等对液态金属的凝固也有重要影响 液态金属凝固过程当中的液体流动主要包括自然对流和强迫对流,自然对流是由于密度差和凝固收缩引起的流动,由密度差引起的对流成为浮力流。凝固过程中由传热。传质和溶质再分配引起液态合金密度的不均匀,密度小的液相上浮,密度大的下沉,称为双扩散对流,凝固以及收缩引起的对流主要主要产生在枝晶之间,强迫对流是由液体受到各种方式的驱动力产生的对流,例如压力头。机械搅动、铸型震动、外加磁场。 铸件的凝固方式:层状凝固方式(动态凝固曲线之间的距离很小的时候)、体积凝固方式(动态凝固曲线之间的距离很大的时候)、中间凝固方式(介于中间情况的时候)、 影响铸件凝固方式的因素有二:一是合金的化学成分,二是铸件断面上的温度梯度。 热力学能障动力学能障:热力学能障是右被迫处于高自由能过度状态下的界面原子产生的他能直接影响系统自由能的大小,动力学能障是由于金属原子穿越界面过程引起的,他与驱动力的大小无关,而仅仅

成型技术基础·成型技术基础平时作业

《成型技术基础》作业 班级__2017秋____ 姓名__尹佩仪_____ 一、判断题 1.缩松是铸件的气孔。(×) 2.自由锻是一种不用任何辅助工具的可以锻造任何形状的零件的锻造方法。 (×) 3.铸造是指将液态合金浇注到具有与零件形状、尺寸相适应的铸型型腔中,待 冷却凝固后获得毛坯或零件的生产方法。(√)4.铸件在冷却凝固过程中由于体积收缩得不到补充而在最后凝固部位形成的 倒圆锥形孔洞称为缩孔。(√) 5.低碳钢的强度、硬度低,但具有良好的塑性、韧性及焊接性能。(√) 6.塑性是金属材料产生塑性变形而不被破坏的能力。(√) 7.可锻铸铁比灰铸铁的塑性好,因此可以进行锻压加工。(√) 8.随塑性变形程度的增大,金属强度和硬度上升而塑性和韧性下降的现象称为 加工硬化。(√) 9.板料冲压是利用冲模使液态金属成型的加工方法。(×) 10.“同时凝固”这种工艺措施可以有效的防止应力、变形和缩孔缺陷。(×) 11.普通钢和优质钢是按其强度等级来区分的。(×) 12.金属的塑性变形主要通过位错的滑移进行。(√) 13.金属的晶粒越细小,其强度越高,但韧性变差。(×) 14.弹簧钢的最终热处理应是淬火+低温回火。(×) 15.奥氏体的塑性比铁素体的高。(√)

16.钢的含碳量越高,其焊接性能越好。(×) 17.锻造加热时过烧的锻件可用热处理来改正。(×) 18.给铸件设置冒口的目的是为了排出多余的铁水。(×) 19.薄板件的波浪形变形主要是焊缝局部应力较大而引起的。(√) 20.一般把金属的焊接分为熔化焊、压力焊和钎焊三大类。(√) 二、问答题和分析题 1.在金属结晶过程中采用哪些措施可以使其晶粒细化? 答:增加过冷度、变质处理、附加震动。 2.最常见的晶体结构有哪几种?下列金属各具有哪些晶体结构。 α-Feδ-Feγ-Fe 答:常见的晶体结构有,体心立方晶格、面心立方晶格、密排六防晶格。其中,α-Fe为体心立方晶格,δ-Fe为体心立方晶格,γ-Fe为面心立方晶格。 3.什么叫金属的同素异晶转变?室温下和1200°C的铁分别是什么晶格? 答:金属在固态下由一种晶格类型转变为另一种晶格类型的变化称为金属的同素异晶转变;室温下和1200°C的铁分别是面心立方晶格的γ-Fe和体心立方晶格的α-Fe。 4.什么是液态合金的充型能力?影响充型能力的因素有哪些 答:液态合金的充型能力是指液态合金充满铸型型腔,获得尺寸正确、形状完整、轮廓清晰的铸件的能力。影响充型能力的因素主要有合金的流动性、浇注温度、充型压力、铸型条件。 5.铸件缩孔形成的原因是什么?什么是顺序凝固原则?什么是同时凝固原 则?各采取什么措施来实现?上述两种凝固原则各适用于哪种场合? 答: (1)铸件缩孔形成的原因是液态金属填满铸型后,合金液逐渐冷却,铸件表面先冷却形成硬壳,里面的液态金属冷却收缩而形成凹陷,最后凝固成倒锥形缩孔。 (2)顺序凝固原则就是使铸件按递增的温度梯度方向从一个部分到另一部分依次凝固。在铸件可能出现缩孔的热节处,通过增设冒口或冷铁等一系列工艺措

材料成型原理课后题答案

第三章: 8:实际金属液态合金结构与理想纯金属液态结构有何不同 答:纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成的,是近程有序的。液态中存在着很大的能量起伏。而实际金属中存在大量的杂质原子,形成夹杂物,除了存在结构起伏和能量起伏外还存在浓度起伏。 12:简述液态金属的表面张力的实质及其影响因数。 答:实质:表面张力是表面能的物理表现,是是由原子间的作用力及其在表面和内部间排列状态的差别引起的。 影响因数:熔点、温度和溶质元素。 13:简述界面现象对液态成形过程的影响。 答:表面张力会产生一个附加压力,当固液相互润湿时,附加压力有助于液体的充填。液态成形所用的铸型或涂料材料与液态合金应是不润湿的,使铸件的表面得以光洁。凝固后期,表面张力对铸件凝固过程的补索状况,及是否出现热裂缺陷有重大影响。 15:简述过冷度与液态金属凝固的关系。 答:过冷度就是凝固的驱动力,过冷度越大,凝固的驱动力也越大;过冷度为零时,驱动力不存在。液态金属不会在没有过冷度的情况下凝固。 16:用动力学理论阐述液态金属完成凝固的过程。 答:高能态的液态原子变成低能态的固态原子,必须越过高能态的界面,界面具有界面能。生核或晶粒的长大是液态原子不断地向固体晶粒堆积的过程,是固液界面不断向前推进的过程。只有液态金属中那些具有高能态的原子才能越过更高能态的界面成为固体中的原子,从而完成凝固过程。 17:简述异质形核与均质形核的区别。 答:均质形核是依靠液态金属内部自身的结构自发形核,异质形核是依靠外来夹杂物所提供的异质界面非自发的形核。 异质形核与固体杂质接触,减少了表面自由能的增加。 异质形核形核功小,形核所需的结构起伏和能量起伏就小,形核容易,所需过冷度小。 18:什么条件下晶体以平面的方式生长什么条件下晶体以树枝晶方式生长 答:①平面方式长大:固液界面前方的液体正温度梯度分布,固液界面前方的过冷区域及过冷度极小,晶体生长时凝固潜热析出的方向与晶体的生长方向相反。 ②树枝晶方式生长:固液界面前方的液体负温度梯度分布,固液界面前方的过冷区域较大,且距离固液界面越远过冷度越大,晶体生长时凝固潜热析出的方向与晶体生长的方向相同。 19:简述晶体的微观长大方式及长大速率。 答:①连续生长机理--粗糙界面的生长:动力学过冷度小,生长速率快。②二维生长机理--光滑界面生长:过冷度影响大,生长速度慢。③从缺陷处生长机理--非完整界面生长:所需过冷度较大,生长速度位于以上二者之间。 20:为生么要研究液态金属凝固过程中的溶质再分配它受那些因素的影响 答:液态金属在凝固过程中的各组元会按一定的规律分配,它决定着凝固组织的成分分布和组织结构,液态合金凝固过程中溶质的传输,使溶质在固液界面两侧的固相和液相中进行再分配。掌握凝固过程中的溶质再分配的规律,是控制晶体生长行为的重要因素,也是在生产实践中控制各种凝固偏析的基础。 凝固过程中溶质的再分配是合金热力和动力学共同作用的结果,不同的凝固

《金属精密液态成形技术》习题参考答案-(1)

一、简答题 1.常用金属精密液态成形方法有哪些? 答:常用的金属精密液态成形方法有:熔模精密铸造、石膏型精密铸造、陶瓷型精密铸造、消失模铸造、金属型铸造、压 力铸造、低压铸造、差压铸造、真空吸铸、调压铸造、挤压铸造、离心铸造、壳型铸造、连续铸造、半固态铸造、喷射成形技术、石墨型铸造、电渣熔铸和电磁铸造等。 2.金属精密液态成形技术的特点是什么?对铸件生产有哪些影响? 特点:(1)特殊的铸型制造工艺与材料。(2)特殊的液态金属充填方式与铸件冷凝条件。 对铸件生产的影响:由于铸型材料与铸型制作工艺的改变,对铸件表面粗糙度产生很大影响,不但尺寸精度很高,还可使铸 件表面粗糙度降低,从而可实现近净成形。 在某些精密液态成形过程中,金属液是在外力(如离心力、电磁力、压力等)作用下完成充型和凝固的,因此提高了金属液 的充型能力,有利于薄壁铸件的成形;液态金属在压力下凝固,有利于获得细晶组织,减少缩松缺陷,提高力学性能。 熔模:一、名词解释 1.硅溶胶:硅溶胶是由无定形二氧化硅的微小颗粒分散在水中而形成的稳定胶体。硅溶胶是熔模铸造常用的一种优质黏结剂。 2.硅酸乙酯水解: 3.水玻璃模数:水玻璃中的SiO2与Na2O摩尔数之比。 4.树脂模料:是以树脂及改性树脂为主要组分的模料。 5.压型温度: 6.涂料的粉液比:涂料中耐火材料与黏结剂的比例。 7析晶:石英玻璃在熔点以下处于介稳定状态,在热力学上是不稳定的,当加热到一定温度,开始转变为方石英,此转变过程称“析晶”。 二、填空题1.熔模铸造的模料强度通常以抗弯强度来衡量。 2.硅溶胶型壳的干燥过程实质上就是硅溶胶的胶凝过程。 3.一般说来说:硅溶胶中SiO2含量越高、密度越大,则型壳强度越高。 4.涂料中最基本的两个组成耐火材料和黏结剂之间的比例,即为涂料的粉液比。 5.通常按模料熔点的高低将其分为高温、中温和低温模料。 6.硅溶胶中Na20含量和PH值反映了硅溶胶及其涂料的稳定性。 7.模料的耐热性是指温度升高时模料的抗软化变形的能力。 8.熔模的制备方法有自由浇注和压注两种。 9.常用石蜡-硬脂酸模料的配比为白石蜡和一级硬脂酸各50%。 三、判断题 1.压蜡温度愈高,熔模的表面粗糙度越小,表面越光滑;但压蜡温度越高,熔模的收缩率越大。(√) 2.压注压力和保压时间对熔模尺寸有影响,随压力和保压时间增加,熔模的线收缩率减小。(√) 3.为提高水玻璃模数,可在水玻璃中加入氢氧化钠。(×) 4.熔模铸造使用最广泛的浇注方法是热壳重力浇注法。(√) 5.使用树脂基模料时,脱蜡后所得的模料可以直接用来制造新的熔模。(×) 四、简答题1.什么是熔模铸造?试用方框图表示其大致工艺过程。 熔模铸造是用易熔材料制成精确的可熔性模样,在其上涂覆若干层耐火涂料,熔去模样,经过焙烧而得到型壳,浇入金属而 得到铸件的方法。 其工艺过程如下:制作蜡模或蜡模组→涂挂耐火涂料→撒砂→结壳硬化→脱蜡→烘干焙烧型壳→浇注铸件→出箱清理打磨。 2.影响熔模质量的因素有哪些?答:(1)压型尺寸精度及表秒粗糙度(2)模料质量(3)制模工艺:压射压力保压时间 注蜡温度压型温度 3.常用模料有哪两类,其基本组成、特点和应用范围如何?答:①蜡基模料蜡基模料是以矿物蜡、动植物蜡为主要成分的模料。此类模料一般成分比较简单,成本较低,便于脱蜡和回收,但强度和热稳定性较低,收缩大。多用于要求较低的铸件。 ②树脂基模料树脂基模料是以树脂及改性树脂为主要组分的模料。此类模料一般成分比较复杂,强度较高,热稳定性较好,收缩较小,制成的熔模的质量和尺寸稳定性较高,但模料易老化、寿命短,成本较高,多用于质量要求较高的熔模铸件。 从模料中去除水分、粉尘、砂粒和皂化物的工艺过程称为模料回收。采用蒸汽或热水脱蜡后所回收的模料中会不可避免地混有

材料成型基本原理作业及答案

第二章凝固温度场 4. 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。 解:一般在体积相同的情况下上述物体的表面积大小依次为:A 球t 块>t 板>t 杆。 5. 在砂型中浇铸尺寸为300?300?20 mm 的纯铝板。设铸型的初始温度为20℃,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点660℃,且在铸件凝固期间保持不变。浇铸温度为670℃,金属与铸型材料的热物性参数见下表: 热物性 材料 导热系数λ W/(m ·K) 比热容C J/(kg ·K) 密度ρ kg/m 3 热扩散率a m 2/s 结晶潜热 J/kg 纯铝 212 1200 2700 6.5?10-5 3.9?105 砂型 0.739 1840 1600 2.5?10-7 试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度s,并作出τ-s 曲线; (2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间,并分析差别。 解:(1) 代入相关已知数解得: 2222ρλc b =,=1475 , ()()[] S i T T c L T T b K -+ρπ-= 10112022 = 0.9433 (m s m /) 根据公式K ξ τ= 计算出不同时刻铸件凝固层厚度s 见下表,τξ-曲线见图3。 τ (s) 0 20 40 60 80 100 120 ξ (mm) 4.22 6.00 7.31 8.44 9.43 10.3 (2) 利用“平方根定律”计算出铸件的完全凝固时间: 图3 τξ-关系曲线

材料成型基础复习题

材控08-1,2《材料成型基础》复习题 成型—利用局部变形使坯料或半成品改变形状的工序 一、金属液态成型 1. 何谓铸造**?铸造有哪些特点?试从铸造的特点分析说明铸造是生产毛坯的主要方法? 答:熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成形方法,称为铸造 1)可以生产出形状复杂,特别是具有复杂内腔的零件毛坯,如各种箱体、床身、机架等。 2)铸造生产的适应性广,工艺灵活性大。工业上常用的金属材料均可用来进行铸造,铸件的重量可由几克到几百吨,壁厚可由0.5mm到1m左右。 3)铸造用原材料大都来源广泛,价格低廉,并可直接利用废机件,故铸件成本较低。 缺点1)铸造组织疏松、晶粒粗大,内部易产生缩孔、缩松、气孔等缺陷,因此,铸件的力学性能,特别是冲击韧度低于同种材料的锻件。2)铸件质量不够稳定。 2. 何谓合金的铸造性能**?它可以用哪些性能指标来衡量**?铸造性能不好,会引起哪些缺陷? 铸造性能——合金易于液态成型而获得优质铸件的能力。 合金的铸造性能包括金属的流动性、凝固温度范围和凝固特性、收缩性、吸气性等。 3. 什么是合金的流动性**?影响合金流动性的因素有哪些?(P2) 流动性流动性是指熔融金属的流动能力;合金流动性的好坏,通常以“螺旋形流动性试样”的长度来衡量 流动性的影响因素1)合金的种类及化学成分{1、越接近共晶成分,流动性就越好。2、选用结晶温度范围窄的合金,以便获得足够的流动性。}2)铸型的特点3)浇注条件 4. 从Fe-Fe3C相图分析,什么样的合金成分具有较好的流动性**?为什么? 越接近共晶合金流动性越好。 凝固温度范围越窄,则枝状晶越不发达,对金属流动的阻力越小,金属的流动性就越强 5. 试比较灰铸铁、碳钢和铝合金的铸造性能特点。 6. 铸件的凝固方式依照什么来划分?哪些合金倾向于逐层凝固? 1. 合金的凝固方式(1)逐层凝固方式(图1-5a)合金在凝固过程中其断面上固相和液相由一条界线清楚地分开,这种凝固方式称为逐层凝固。常见合金如灰铸铁、低碳钢、工业纯铜、工业纯铝、共晶铝硅合金及某些黄铜都属于逐层凝固的合金。 2)糊状凝固方式(图1-5c)合金在凝固过程中先呈糊状而后凝固,这种凝固方式称为糊状凝固。球墨铸铁、高碳钢、锡青铜和某些黄铜等都是糊状凝固的合金。 (3)中间凝固方式(图1-5b)大多数合金的凝固介于逐层凝固和糊状凝固之间,称为中间凝固方式。中碳钢、高锰钢、白口铸铁等具有中间凝固方式。 7. 缩孔和缩松是怎样形成的?可采用什么措施防止? 形成缩孔和缩松的主要原因都是液态收缩和凝固收缩所致;防止措施:a)采用定向凝固的原则b)合理确定铸件的浇注位置、内浇道位置及浇注工艺c)合理应用冒口、冷铁和补贴 8. 合金收缩由哪三个阶段组成**?各会产生哪些缺陷?影响因素有哪些?如何防止? 1.液态收缩金属在液态时由于温度降低而发生的体积收缩。 2. 凝固收缩熔融金属在凝固阶段的体积收缩。液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因。 3. 固态收缩金属在固态时由于温度降低而发生的体积收缩。固态收缩对铸件的形状和尺寸精度影响很大,是铸造应力、变形和裂纹等缺陷产生的基本原因。 二)影响收缩的因素1. 化学成分不同成分的合金其收缩率一般也不相同。在常用铸造合金中铸钢的收缩最大,灰铸铁最小。 2. 浇注温度合金浇注温度越高,过热度越大,液体收缩越大。 3. 铸件结构与铸型条件铸件冷却收缩时,因其形状、尺寸的不同,各部分的冷却速度不同,导致收缩不一致,且互相阻碍,又加之铸型和型芯对铸件收缩的阻力,故铸件的实际收缩率总是小于其自由收缩率。这种阻力越大,铸件的实际收缩率就越小。 缩孔、缩松的防止措施 9. 何谓同时凝固原则和定向(顺序)凝固原则**?对图1所示阶梯型铸件设计浇注系统和冒口及冷铁,使其实现定向凝固。

材料成形原理1、2、3章

绪论 材料成形: 将材料加工成具有一定形状、尺寸和性能要求的零部件或毛坯的工艺方法。 材料成形主要方法: 除去加工法、连接加工法、变形加工法、液态及粉末成形加工法。 液态金属的结构和性质 在熔点附近,空穴数目可以达到原子总数的1% 金属由固态变为液态,体积膨胀为3%·5% 熔化潜热: 在熔点温度的固态,变为同温度下的液态,金属要吸收大量的热量 原子在固态的规则排列熔化后紊乱程度不大,液态金属原子间结合键只破坏了一部分,液态金属的结构应接近固态金属而远离气态金属(熔点和过热度不大时)。 纯金属的液态结构是由原子集团、游离原子和空穴组成的。 结构起伏: 原子集团和空穴的变化现象。 实际合金熔体的结构是极其复杂的,包含各种化学成分的原子集团、游离原子、空穴、夹杂物及气泡等,是一种混浊的液体。液态金属中存在温度起伏、相起伏和浓度起伏。 液态金属的粘度: 粘度的本质是原子间的结合力。

影响粘度的因素: 化学成分、温度和夹杂物。 化学成分: 难溶化合物的液体粘度较高,而熔点低的共晶成分的合金粘度低,对于共晶成分的合金,异类原子之间不发生结合,而同类原子聚合时,由于异类原子的存在而使它的聚合缓慢,晶坯的形成拖后,故粘度较非共晶成分低。 非金属夹杂物: 夹杂物的存在使液态金属成为不均匀的多相体系,液相流动时的内摩擦力增加,粘度增加。 粘度意义: 对液态金属净化的影响;对液态合金流动阻力的影响;对凝固过程中液态合金对流的影响。 液体以层流方式流动时,流动阻力大,金属液在浇注系统和型腔中的流动一般为紊流,有利于顺利充填型腔。但在充型后期或狭窄的枝晶间的补缩和细薄铸件中呈现为层流。 温度差和浓度差产生的浮力,是液态合金对流的驱动力,粘度越大,对流强度越小。 表面张力: 一小部分的液体在大气中单独存在时,力图保持球形状态,说明总有一个力使其趋向球状 表面张力的实质是质点间的作用力,是由质点间的作用力不平衡引起的,指向液体内部的合力是表面张力产生的根源。 表面自由能即单位面积自由能,表面能或表面张力是界面能或界面张力的一个特例,对于液体来说,表面张力和表面能大小相等,只是单位不同,体现为从不同角度来描述同一现象。

金属液态成型原理

金属液态成型原理 内容简介 《金属液态成型原理》共10章,书中系统阐述了材料热加工过程中金属液态成形的基本原理。第1章是液态金属的结构和性质,第2章是金属凝固过程的传热,第3章是液态金属凝固热力学及动力学,第4章是单相及多相合金的结晶,第5章是金属凝固组织的控制,第6章是凝固新技术,第7章是合金中的成分偏析,第8章是气孔与夹杂,第9章是缩孔与缩松,第10章是铸造应力、变形及裂纹。《金属液态成型原理》是普通高等学校“材料成形与控制工程专业”液态成形(铸造)方向本科生用的教材,同时也可作为材料加工液态成形方向研究生的参考书,还可作为金属材料工程、热加工以及机械等工程专业师生和工程技术人员的参考用书。 〃查看全部>> 目录 0 绪论1 0.1 金属的液态成形与凝固的关系1 0.2 凝固过程研究的对象1 0.3 凝固理论的研究进展2 第1章液态金属的结构和性质4 1.1 固体金属的加热、熔化4 1.1.1 晶体的定义与结构4 1.1.2 金属的加热膨胀4 1.1.3 金属的熔化6 1.2 液态金属的结构6 1.2.1 液态金属的热物理性质7 1.2.1.1 体积和熵值的变化7

1.2.1.2 熔化潜热与汽化潜热7 1.2.2 X射线结构分析7 1.2.3 液态金属的结构8 1.2.3.1 纯金属液态结构8 1.2.3.2 实际金属液态结构9 1.2.4 液态金属理论结构模型 钢球模型与P Y理论10 1.3 液态金属的性质12 1.3.1 液态金属的黏滞性12 1.3.1.1 液态金属黏滞性的基本概念13 1.3.1.2 黏滞性(黏度)在材料成形过程中的意义14 1.3.2 液态金属的表面张力15 1.3. 2.1 表面张力的基本概念和实质15 1.3. 2.2 影响表面张力的因素17 1.3. 2.3 毛细现象及表面张力引起的附加压力19 1.3. 2.4 表面张力在材料成形中的意义20 1.4 液态金属的充型能力21 1.4.1 液态金属充型能力的基本概念21 1.4.1.1 充型能力的定义及其他相关名词21 1.4.1.2 液态金属流动性测试方法22 1.4.2 液态金属停止流动的机理与充型能力22 1.4. 2.1 液态金属停止流动的机理22 1.4. 2.2 液态金属的充型能力24 1.4.3 影响充型能力的因素27 1.4.3.1 金属性质方面的因素27 1.4.3.2 铸型性质方面的因素29 1.4.3.3 浇注条件方面的因素30 1.4.3.4 铸件结构方面的因素31 1.5 液体金属中的流动31 1.5.1 自然对流和强迫对流31

材料成型工艺基础复习题

一、名词解释 1、铸造:将液态金属浇注到与零件的形状相适应的铸型型腔中冷却后获得铸件的方法。 2、热应力:在凝固冷却过程中,不同部位由于不均衡的收缩而引起的应力。 3、收缩:铸件在液态、凝固态和固态的冷却过程中所发生的体积缩小的现象,合金的收缩 一般用体收缩率和线收缩率表示。 4、金属型铸造:用重力浇注将熔融金属注入金属铸型而获得铸件的方法。 5、流动性:熔融金属的流动能力,近于金属本身的化学成分、温度、杂质含量及物理性质 有关,是熔融金属本身固有的性质。 二、填空题 1、手工造型的主要特点是(适应性强)(设备简单)(生产准备时间短)和(成本低),在 (成批)和(大量)生产中采用机械造型。 2、常用的特种铸造方法有(熔模铸造)(金属型铸造)(压力铸造)(低压铸造)和(离心 铸造)。 3、铸件的凝固方式是按(凝固区域宽度大小)来划分的,有(逐层凝固)(中间凝固)和 (糊状凝固)三种凝固方式。纯金属和共晶成分的合金是按(逐层)方式凝固。 4、铸造合金在凝固过程中的收缩分三个阶段,其中(液态收缩和凝固收缩)是铸件产生缩 孔和缩松的根本原因,而(固态)收缩是铸件产生变形、裂纹的根本原因。 5、铸钢铸造性能差的原因主要是(熔点高,流动性差)和(收缩大)。 6、影响合金流动性的内因有(液态合金的化学成分),外因包括(液态合金的导热系数) 和(黏度和液态合金的温度)。 7、铸造生产的优点是(成形方便)(适应性强)和(成本低),缺点是(铸件力学性能较低) (铸件质量不够稳定)和(废品率高)。 三、是非题 1、铸造热应力最终的结论是薄壁或表层受拉。错 2、铸件的主要加工面和重要的工作面浇注时应朝上。错 3、冒口的作用是保证铸件的同时冷却。错 4、铸件上宽大的水平面浇注时应朝下。对 5、铸造生产特别适合于制造受力较大或受力复杂零件的毛坯。错 6、收缩较小的灰铸铁可以采用定向(顺序)凝固原则来减少或消除铸造内应力。错 7、相同的铸件在金属型铸造时,合金的浇注温度应比砂型浇注时低。错 8、压铸由于熔融金属是在高压下快速充型,合金的流动性很强。对 9、铸件的分型面应尽量使重要的加工面和加工基准面在同一砂箱内,以保证铸件精度。对 10、采用震击紧实法紧实砂型时,砂型下层的紧实度小于上层的紧实度。错 11、由于压力铸造具有质量好、效率高、效益好等优点,目前大量应用于黑色金属的 铸造。错 12、熔模铸造所得铸件的尺寸精度高,而表面光洁度较低。错 13、金属型铸造主要用于形状复杂的高熔点难切削加工合金铸件的生产。错 四、选择题 1、形状复杂的高熔点难切削合金精密铸件的铸造应采用(B) A 金属型铸造 B 熔模铸造 C 压力铸造 2、铸造时冒口的主要作用是(B) A 增加局部冷却速度 B 补偿热态金属,排气及集渣 C 提高流动性 3、下列易产生集中缩孔的合金成分是(C) A 0.77%C B 球墨铸铁 C 4.3%C

相关主题