搜档网
当前位置:搜档网 › 第06讲 解析几何综合3大考点-培优辅导冲刺高考讲义

第06讲 解析几何综合3大考点-培优辅导冲刺高考讲义

第06讲 解析几何综合3大考点-培优辅导冲刺高考讲义
第06讲 解析几何综合3大考点-培优辅导冲刺高考讲义

第03讲导数压轴专项突破

第一课时分类讨论的“界点”确定

考点一根据二次项系数确定分类“界点”

[典例]已知函数x x x g x x x f 2)(,1ln )(2

+=++=.(1)求函数)()()(x g x f x -=?的极值;

(2)若m 为整数,对任意的0>m 都有0)()(≤-x mg x f 成立,求实数m 的最小值.

[关键点拨]

导函数中含有二次三项式,需对最高项的系数分类讨论:

(1)根据二次项系数是否为0,判断函数是否为二次函数;

(2)由二次项系数的正负,判断二次函数图象的开口方向,从而寻找导数的变号零点.

考点二根据判别式确定分类“界点”

[典例]已知函数1)1()(2-+=x e ax x f ,当0≥a 时,讨论函数)(x f 的单调性.

[关键点拨]

求导后,要判断导函数是否有零点(或导函数分子能否分解因式),若导函数是二次函数或与二次函数有关,此时涉及二次方程问题,Δ与0的大小关系往往不确定,所以必须寻找分界点,进行分类讨论.

考点三根据导函数零点的大小确定分类“界点”

[典例]已知ax x x ax x x f 22

3ln )()(22+--=,求)(x f 的单调递减区间.[关键点拨]

(1)根据导函数的“零点”划分定义域时,既要考虑导函数“零点”是否在定义域内,还要考虑多个“零点”的大小问题,如果多个“零点”的大小关系不确定,也需要分类讨论.

(2)导函数“零点”可求,可根据“零点”之间及“零点”与区间端点之间的大小关系进行分类讨论.本题根据零点2

a ,e 之间的大小关系进行分类讨论,再利用导数研究其函数的单调性.考点四根据导函数零点与定义域的关系确定分类“界点”

[典例]已知函数R a ax x

e x a x

f x

∈+--=,ln )(.(1)当0

(2)设)()()(x f x x f x g '+=,若关于x 的不等式x a x e x g x

)1(2)(2

-++-≤在[1,2]上有解,求a 的取值范围.

[关键点拨]

导函数零点是否分布在定义域内,零点将定义域划分为哪几个区间,若不能确定,则需要分类讨论.本题根据函数)(x h '的零点a 是否在定义域[1,2]内进行讨论,利用导数的工具性得到函数在给定区间内的单调性,从而可得最值,判断所求最值与已知条件是否相符,从而得到参数的取值范围.

第二课时有关x 与x e x

ln ,的组合函数问题

考点一x 与x ln 的组合函数问题

(1)熟悉函数))0,()((ln )()(2不能同时为b a c bx ax x h x x h x f ++==的图象特征,做到对图(1)(2)中两个特殊函数的图象“有形可寻”.

(2)熟悉函数))(()

(ln )(2c bx ax x h x h x x f ++==,0)(≠x h 的图象特征,做到对图(3)(4)中两个特殊函数的图象“有形可寻”.

[典例]设函数)(2

ln )(2

R a x a ax x x x f ∈-+-=.(1)若函数)(x f 有两个不同的极值点,求实数a 的取值范围;

(2)若2

22)(,,2x x x g N k a --=∈=,且当2>x 时不等式)()()2(x f x g x k <+-恒成立,试求k 的最大值.

[关键点拨]

对于有关x 与x ln 的组合函数为背景的试题,要求学生理解导数公式和导数的运算法则等基础知识,能够灵活利用导数研究函数的单调性,能够恰当地构造函数,并根据区间的不同进行分析、讨论,寻求合理的证明和解不等式的策略.

考点二x 与x e 的组合函数问题(1)熟悉函数))0,()(()()(2)(不能同时为b a c bx ax x h e x h x f x g ++==的图象特征,做到对图(1)(2)中两个特殊函数的图象“有形可寻”.

(2)熟悉函数))(()

()(2c bx ax x h x h e x f x

++==,0)(≠x h 的图象特征,做到对图(3)(4)中两个特殊函数的图象“有形可寻”.

[典例]已知函数R a e ax x g x a x f x

∈-=-=,)1()(),1()(.(1)求证:存在唯一实数a ,使得直线)(x f y =和曲线)(x g y =相切;

(2)若不等式)()(x g x f >有且只有两个整数解,求a 的取值范围.

[关键点拨]

在求解有关x 与x

e 的组合函数综合题时要把握三点:

(1)灵活运用复合函数的求导法则,由外向内,层层求导;

(2)把相关问题转化为熟悉易解的函数模型来处理;

(3)函数最值不易求解时,可重新拆分、组合,构建新函数,通过分类讨论新函数的单调性求最值.

考点三x 与x e ,x ln 的组合函数问题(1)熟悉函数))0,()((ln )()(2

不能同时为b a c bx ax x h e x x h x f x ++=±=的图象特征,做到对图

(1)(2)(3)(4)所示的特殊函数的图象“有形可寻”.

(1)熟悉函数))((ln )

()(2c bx ax x h x x h e x f x ++=±=,0)(≠x h 的图象特征,做到对图(5)(6)所示的两个特殊函数的图象“有形可寻”

方法一:分离参数,设而不求

[典例]已知函数71828.2()(,ln )(==+=e x e x g x m x x f x

……为自然对数的底数),是否存在整数m ,使得对任意的),2

1(+∞∈x ,都有)(x f y =的图象在)(x g y =的图象下方?若存在,请求出整数m 的最大值;若不存在,请说明理由.

[关键点拨]

若分离参数后导数零点不可求,且不能通过观察得到,此时可以采用设而不求的方法.在本题中,通过虚

设零点0x ,得到00ln x x -=,将1ln 00--x e x 转化为普通代数式1100

-+x x ,然后使用基本不等式求出最值,同时消掉0x ,即借助0)(0='x ?作整体代换,采取设而不求的方法,达到化简并求解的目的.方法二:分离x ln 与x

e [典例]设函数x x x

f 1ln )(+=,求证:当1>x 时,不等式)

1)(1(21)(1

++>+-x x xe x e e x f .[关键点拨]

若不分离x e 与x ln ,则难以求导,因此,对于形式复杂的函数,往往需要合理拆分与变形.高考为体现选拔功能,在解答题中不会单一考查某一初等函数,而是将不同增长速度的函数综合在一起考查,这就需要我们把已经糅合在一起的不同增长速度的函数进行分离,转化为我们熟悉的容易用导数工具求解的函数模型.

考点四借助1+≥x e x 和1ln -≤x x 进行放缩

[典例]已知函数)0(ln )(2>-+=m x x nx mx x f ,且0)(≥x f .(1)求m n 的最小值;(2)当m

n 取得最小值时,若方程0)()21(1=--+-x af x a e x 无实根,求实数a 的取值范围.[关键点拨]

借助放缩,巧妙求出)(x H 的最小值,同时利用放缩说明)(x H 没有最大值,从而求出实数a 的取值范围.

第三课时

极值点偏移问题图说极值点偏移

1.已知函数)(x f 的图象的顶点的横坐标就是极值点0x ,若c x f =)(的两根的中点刚好满足0212

x x x =+,即

极值点在两根的正中间,也就是说极值点没有偏移.此时函数)(x f 在0x x =两侧,函数值变化快慢相同,如图(1).2.若0212

x x x ≠+,则极值点偏移,此时函数)(x f 在0x x =两侧,函数值变化快慢不同,如图(2)(3).

考点一对称变换

对称变换,主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:

(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点0x .

(2)构造函数,即根据极值点构造对称函数)2()()(0x x f x f x F --=,若证2

021x x x >,则令()()(20x

x f x f x F -=.(3)判断单调性,即利用导数讨论)(x F 的单调性.

(4)比较大小,即判断函数)(x F 在某段区间上的正负,并得出)(x f 与)2(0x x f -的大小关系.

(5)转化,即利用函数)(x f 的单调性,将)(x f 与)2(0x x f -的大小关系转化为x 与x x -02之间的关系,进而得到所证或所求.

[提醒]若要证明)2

(21x x f +'的符号问题,还需进一步讨论221x x +与0x 的大小,得出221x x +所在的单调区间,从而得出该处导数值的正负.[典例]已知函数)(x h 与函数)()(R x xe x f x ∈=的图象关于原点对称,如果21x x ≠,且)()(21x h x h =,

求证:221>+x x .

[关键点拨]

本题证明的不等式中含有两个变量,对于此类问题一般的求解思路是将两个变量分到不等式的两侧,然后根据函数的单调性,通过两个变量之间的关系“减元”,建立新函数,最终将问题转化为函数的最值问题来求解.考查了逻辑推理、数学建模及数学运算等核心素养.在求解此类问题时,需要注意变量取值范围的限定,如本题中利用122,x x -,其取值范围都为)1,(-∞,若将所证不等式化为212x x ->,则212,x x -的取值范围都为),1(+∞,此时就必须利用函数)(x h 在),1(+∞上的单调性来求解.

考点二消参减元

消参减元的主要目的就是减元,进而建立与所求解问题相关的函数.主要是利用函数极值点乘积所满足的条件进行消参减元.其解题要点如下:建方程求函数的导函数,令0)(='x f ,建立极值点所满足的方程,抓住导函

数中的关键式子,即导函数解析式中变号的部分(一般为一个二次整式)

定关系

根据极值点所满足的方程,利用方程解的理论,建立极值点与方程系数之间的关系,确定两个极值点之积消参减元

根据两个极值点之积的关系,化简或转化所求解问题,进行消参减元构造函数

根据消参减元后的式子结构特征,构建相应的函数求解问题利用导数研究所构造函数的单调性、极值、最值等,从而解决相关问题

[典例]已知函数)(ln )(R a ax x x f ∈-=.

(1)求函数)(x f 的单调区间;

(2)当1=a 时,方程)2()(-<=m m x f 有两个相异实根21,x x ,且21x x <,求证:221

[关键点拨]

本题第(2)问要证明的方程根之间的不等式关系比较复杂,此类问题可通过不等式的等价变形,将两个根分布在不等式两侧,然后利用函数的单调性转化为对应函数值之间的大小关系即可.显然构造函数的关键仍

然是消掉参数,另外根据函数性质确定“22>x ”是解题的一个关键点,确定其范围之后才能将1x 与2

2x 化归到函数的同一个单调区间上,这也是此类问题的一个难点——精确定位.

考点三比(差)值换元

比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t 表示)表示两个极值点,继而将所求解问题转化为关于t 的函数问题求解.

[典例]已知R m x mx x x x f ∈--=,2

1ln )(2.若)(x f 有两个极值点21,x x ,且21x x <,求证:221e x x >(e 为自然对数的底数).

[关键点拨]

求解本题的关键点有两个.一个是消参,把极值点转化为导函数零点之后,需要利用两个变量把参数表示

出来,这是解决问题的基础,若只用一个极值点表示参数,如得到1

1ln x x m =之后,代入第二个方程,则无法建立两个极值点的关系,本题中利用两个方程相加(减)之后再消参,巧妙地把两个极值点与参数之间的关系建立起来;二是消“变”,即减少变量的个数,只有把方程转化为一个“变量”的式子后,才能建立与之相应的函数,转化为函数问题求解.本题利用参数m 的值相等建立方程,进而利用对数运算的性质,将方程转化为关于1

2x x 的方程,通过建立函数模型求解该问题,这体现了对数学建模等核心素养的考查.第四课时导数零点不可求

导数是研究函数的有力工具,其核心又是由导数值的正、负确定函数的单调性.用导数研究函数)(x f 的单调性,往往需要解方程0)(='x f .若该方程不易求解时,如何继续解题呢?

考点一猜出方程f′(x)=0的根

[典例]设x

x x f ln 1)(+=.(1)若函数)(x f 在)1,(+a a 上有极值,求实数a 的取值范围;

(2)若关于x 的方程k x x x f +-=2)(2有实数解,求实数k 的取值范围.

[关键点拨]

当所求的导函数解析式中出现x ln 时,常猜1=x ;当函数解析式中出现x e 时,常猜0=x .

考点二隐零点代换

[典例]设函数x a e x f x ln )(2-=.

(1)讨论)(x f 的导函数)(x f '零点的个数;

(2)求证:当0>a 时,a

a a x f 2ln 2)(+≥.[关键点拨]

本题第(2)问的解题思路是求函数)(x f 的最小值,因此需要求0)(='x f 的根,但是02)(2=-='x

a e x f x 的根无法求解.故设出0)(='x f 的根为0x ,通过证明)(x f 在),0(0x 和)(0∞+,x 上的单调性知a

a ax x a x f x f 2ln 22)()(000min ++=

=,进而利用基本不等式证得结论,其解法类似解析几何中的设而不求.考点三证明方程0)(='x f 无根

[典例]已知R m ∈,函数x x m mx x f ln 2)(--=,x

e x g 2)(=,若],1[0e x ∈?,使得)()(00x g x

f >成立,求实数m 的取值范围.

[关键点拨]

当利用导函数求函数)(x f 在区间],[b a ,),[b a 或],(b a 上的最值时,可首先考虑函数)(x f 在该区间上是否具有单调性,若具有单调性,则)(x f 在区间的端点处取得最值(此时若求0)(='x f 的根,则此方程是无

解的).

第五课时构造函数

利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,如何恰当构造函数,往往成为解题的关键.

考点一“比较法”构造函数证明不等式

当试题中给出简单的基本初等函数,例如x x g x x f ln )(,)(3

==,进而证明在某个取值范围内不等式)()(x g x f ≥成立时,可以类比作差法,构造函数)()()(x g x f x h -=或)()()(x f x g x -=?,进而证明0)(min ≥x h 或0)(max ≤x ?即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明)0)((0)(>>x f x g 的前提下,也可以类比作商法,构造函数))

()()(()()()(x f x g x x g x f x h ==?,进而证明1)(min ≥x h 或1)(max ≤x ?).

[典例]已知函数ax e x f x

-=)((e 为自然对数的底数,a 为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a 的值及函数)(x f 的极值;

(2)求证:当0>x 时,x

e x <2.

[关键点拨]

在本题第(2)问中,发现“x e x ,2”具有基本初等函数的基因,故可选择对要证明的“x e x <2”构造函数,得到“2)(x e x g x -=”,并利用(1)的结论求解.

考点二“拆分法”构造函数证明不等式

当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为)()(x g x f ≤的形式,进而证明min max )()(x g x f ≤即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.

[典例]已知函数)(ln )(R a ax x e x f ∈-=.(1)讨论)(x f 的单调性;

(2)当e a =时,证明:02)(≤+-ex e x xf x

.

[关键点拨]

对于第(2)问02)(≤+-ex e x xf x 的证明直接构造函数ex e ax x xe x h x

2ln )(2+--=,求导后不易分析,故可将不等式合理拆分为e x

e x

f x 2)(-≤或ex e x x x ≤+-2ln ,再分别对不等式两边构造函数证明不等式.考点三“换元法”构造函数证明不等式

若两个变元21,x x 之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于),(21x x m 的表达式(其中),(21x x m 为21,x x 组合成的表达式),进而使用换元令t x x m =),(21,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元.

[典例]已知函数k x

x x f -=ln )(有两个不同的零点21,x x ,求证:221,e x x >[关键点拨]

不妨设021>>x x ,由0)()(21==x f x f ,可得0ln 11=-kx x ,0ln 22=-kx x ,两式相加减,利用分析法将要证明的不等式转化为2

121212ln ln x x x x x x +>--,再利用换元法,通过求导证明上述不等式成立.考点四“转化法”构造函数

在关于21,x x 的双变元问题中,若无法将所给不等式整体转化为关于),(21x x m 的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.

[典例]设函数R m x m x x f ∈+=,ln )(,若对任意0>>a b ,1)()(<--a

b a f b f 恒成立,求m 的取值范围.第六课时“任意”与“存在”问题

考点一单一任意与存在问题

(1)x ?,使得)()(x g x f >,只需

0)]()([)(min min >-=x g x f x h .如图①.

(2)x ?,使得)()(x g x f >,只需

0)]()([)(max max >-=x g x f x h .如图②.

[典例]设函数)()(),1ln()(x f a x g x x f '=+=,其中)(x f '是)(x f 的导函数.

(1)若对于任意0≥x ,总有)()(x g x f ≥,求实数a 的取值范围;

(2)若存在0≥x ,使得)()(x g x f ≥,求实数a 的取值范围.

[关键点拨]

(1)这是较为常见的一类恒成立问题,运用数形结合的思想可知,当00≥x 时,总有)()(00x g x f ≥,即0)()(00≥-x g x f (注意不是max min )()(x g x f ≥,可以转化为当0≥x 时,0)()()(≥-=x g x f x h 恒成立问题.

(2)存在0≥x ,使得)()(x g x f ≥,即至少有一个00≥x ,满足)()(00x g x f -不是负数,可以转化为当0≥x 时,)()()(x g x f x h -=的函数值至少有一个是非负数.

考点二双任意与存在相等问题

类型二“若2211,D x D x ∈?∈?,使得)()(21x g x f =”与“2211,D x D x ∈?∈?,使得)()(21x g x f =”的辨析

(1)2211,D x D x ∈?∈?,使得)()(21x g x f =等价于函

数)(x f 在1D 上的值域A 与)(x g 在2D 上的值域B

的交集不是空集,即?=B A ,如图③.其等价

转化的目标是两个函数有相等的函数值.

(2)2211,D x D x ∈?∈?,使得)()(21x g x f =等价于函数)(x f 在1D 上的值域A 是)(x g 在2D 上的值域B 的子集,即B A ?,如图④.其等价转化的目标是函数)(x f y =的值域都在函数)(x g y =的值域之中.说明:图③,图④中的条形图表示函数在相应定义域上的值域在y 轴上的投影.

[典例]已知函数)

1(1)(,,0,32)(232x x x g R x a ax x x f -=∈>-=.(1)若)2

1,(],1,(21--∞∈?--∞∈?x x ,使得)()(21x g x f =,求实数a 的取值范围;(2)当2

3=a 时,求证:对任意的),2(1+∞∈x ,都存在),1(2+∞∈x ,使得)()(21x g x f =.[关键点拨]

本题第(1)问等价转化的基本思想是:两个函数有相等的函数值,即它们的值域有公共部分;第(2)问等价转化的基本思想是:函数)(x f 的任意一个函数值都与函数)(x g 的某一函数值相等,即)(x f 的值域都在)(x g 的值域中.

考点三双任意与双存在不等问题

类型(三))(x f ,)(x g 是闭区间D 上的连续函数,“D x x ∈?21,,使得)()(21x g x f >”与“D x x ∈?21,,使得)()(21x g x f >”的辨析

类型(四)

(1))(x f ,)(x g 是在闭区间D 上的连续函数且

D x x ∈?21,,使得)()(21x g x f >,等价于

max min )()(x g x f >.其等价转化的目标是函数)(x f y =的任意一个函数值均大于函数

)(x g y =的任意一个函数值.如图⑤.

(2)D x x ∈?21,,使得)()(21x g x f >,等价于min max )()(x g x f >其等价转化的目标是函数)(x f y =的某一个函数值大于函数)(x g y =的某些函数值.如图⑥.

[典例]已知x x x g a x

a x x f ln )(),0()(2

+=>+=.(1)若对任意的],1[,21e x x ∈,都有)()(21x g x f ≥成立,求实数a 的取值范围;

(2)若存在],1[,21e x x ∈,使得)()(21x g x f <,求实数a 的取值范围.

[关键点拨]

(1)本题第(1)问从数的角度看,问题的本质就是max min )()(x g x f ≥.从形的角度看,问题的本质就是函数)(x f 图象的最低点不低于)(x g 图象的最高点.

(2)本题第(2)问从数的角度看,问题的本质就是max min )()(x g x f <.从形的角度看,问题的本质就是函数)(x f 图象的最低点低于)(x g 图象的最高点.

考点四存在与任意嵌套不等问题

(1)2211,D x D x ∈?∈?,使)()(21x g x f >,等价于函数)(x f 在1D 上的最小值大于)(x g 在2D 上的最小值,即min min )()(x g x f >(这里假设min min )()(x g x f ,存在).其等价转化的目标是函数)(x f y =的任意一个函数值大于函数)(x g y =的某一个函数值.如图⑦.

(2)2211,D x D x ∈?∈?,使)()(21x g x f <,等价于函数)(x f 在1D 上的最大值小于)(x g 在2D 上的最大值,即max max )()(x g x f <.其等价转化的目标是

函数)(x f y =的任意一个函数值小于函数)(x g y =的某一个函数值.如图⑧.

[典例]已知函数42)(,14341ln )(2+-=-+-=bx x x g x x x x f ,若对任意的)2,0(1∈x ,总存在]2,1[2∈x ,使)()(21x g x f ≥,求实数b 的取值范围.

[关键点拨]

“对任意)2,0(1∈x ,总存在]2,1[2∈x ,使)()(21x g x f ≥”等价于“)(x f 在)2,0(上的最小值大于或等于)(x g 在]2,1[上的最小值”.

人教版高中数学高一培优讲义第7讲函数与方程

第7讲函数与方程 理清双基 1.函数的零点(非点) (1)函数零点的定义;对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数 ))((D x x f y ∈=的零点. (2)几个等价关系:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数 )(x f y =有零点。 (3)函数零点的判定(零点存在性定理):如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(++=a c bx ax y 的图象与零点的关系 >?0=?0 ++=a c bx ax y 的图象与x 轴的交点) 0,)(0,(21x x ) 0,(1x 无交点零点个数 2 1 无 3.二分法 定义:对于在区间],[b a 上连续不断,且满足0)()(

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

第06讲 解析几何综合3大考点-培优辅导冲刺高考讲义

第03讲导数压轴专项突破 第一课时分类讨论的“界点”确定 考点一根据二次项系数确定分类“界点” [典例]已知函数x x x g x x x f 2)(,1ln )(2 +=++=.(1)求函数)()()(x g x f x -=?的极值; (2)若m 为整数,对任意的0>m 都有0)()(≤-x mg x f 成立,求实数m 的最小值. [关键点拨] 导函数中含有二次三项式,需对最高项的系数分类讨论: (1)根据二次项系数是否为0,判断函数是否为二次函数; (2)由二次项系数的正负,判断二次函数图象的开口方向,从而寻找导数的变号零点. 考点二根据判别式确定分类“界点” [典例]已知函数1)1()(2-+=x e ax x f ,当0≥a 时,讨论函数)(x f 的单调性. [关键点拨] 求导后,要判断导函数是否有零点(或导函数分子能否分解因式),若导函数是二次函数或与二次函数有关,此时涉及二次方程问题,Δ与0的大小关系往往不确定,所以必须寻找分界点,进行分类讨论. 考点三根据导函数零点的大小确定分类“界点” [典例]已知ax x x ax x x f 22 3ln )()(22+--=,求)(x f 的单调递减区间.[关键点拨] (1)根据导函数的“零点”划分定义域时,既要考虑导函数“零点”是否在定义域内,还要考虑多个“零点”的大小问题,如果多个“零点”的大小关系不确定,也需要分类讨论. (2)导函数“零点”可求,可根据“零点”之间及“零点”与区间端点之间的大小关系进行分类讨论.本题根据零点2 a ,e 之间的大小关系进行分类讨论,再利用导数研究其函数的单调性.考点四根据导函数零点与定义域的关系确定分类“界点” [典例]已知函数R a ax x e x a x f x ∈+--=,ln )(.(1)当0

高考中解析几何的常考题型分析总结

高考中解析几何的常考题型分析 一、高考定位 回顾2008,2012年的江苏高考题,解析几何是重要内容之一,所占分值在25 分左右,在高考中一般有2,3条填空题,一条解答题.填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥曲线本身,综合性较小,试题的难度一般不大;解答题主要是以圆或椭圆为基本依托,考查椭圆方程的求解、考查直线与曲线的位置关系,除了本身知识的综合,还会与其它知识如向量、函数、不等式等知识构成综合题,多年高考压轴题是解析几何题. 二、应对策略 复习中,一要熟练掌握椭圆、双曲线、抛物线的基础知识、基本方法,在抓住通性通法的同时,要训练利用代数方法解决几何问题的运算技巧. 二要熟悉圆锥曲线的几何性质,重点掌握直线与圆锥曲线相关问题的基本求解方法与策略,提高运用函数与方程思想、向量与导数的方法来解决问题的能力. 三在第二轮复习中要熟练掌握圆锥曲线的通性通法和基本知识. 预测在2013年的高考题中: 1.填空题依然是直线和圆的方程问题以及考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. 2.在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还 有可能涉及简单的轨迹方程和解析几何中的开放题、探索题、证明题,重点关注定值问题. 三、常见题型

1.直线与圆的位置关系问题 直线与圆的位置关系是高考考查的热点,常常将直线与圆和函数、三角、向量、数列、圆锥曲线等相互交汇,求解参数、函数最值、圆的方程等,主要考查直线与圆的相交、相切、相离的判定与应用,以及弦长、面积的求法等,并常与圆的几何性质交汇,要求学生有较强的运算求解能力. 求解策略:首先,要注意理解直线和圆等基础知识及它们之间的深入联系;其次,要对问题的条件进行全方位的审视,特别是题中各个条件之间的相互关系及隐含条件的挖掘;再次,要掌握解决问题常常使用的思想方法,如数形结合、化归转化、待定系数、分类讨论等思想方法;最后,要对求解问题的过程清晰书写,准确到位. 点评:(1)直线和圆的位置关系常用几何法,即利用圆的半径r,圆心到直线的距离d及半弦长l2构成直角三角形关系来处理. (2)要注意分类讨论,即对直线l分为斜率存在和斜率不存在两种情况分别研究,以防漏解或推理不严谨. 2.圆锥曲线中的证明问题 圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等). 求解策略:主要根据直线、圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关的性质应用、代数式的恒等变形以及必要的数值计算等进行证明. 常用的一些证明方法: 点评:本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

高三数学解析几何专题复习讲义(含答案解析)

二轮复习——解析几何 一.专题内容分析 解析几何:解析几何综合问题(椭圆或抛物线)及基本解答策略+圆锥曲线的定义和几何性质+直线与圆+极坐标、参数方程+线性规划 二.解答策略与核心方法、核心思想 圆锥曲线综合问题的解答策略: 核心量的选择: 常见的几何关系与几何特征的代数化: ①线段的中点:坐标公式 ②线段的长:弦长公式;解三角形 ③三角形面积: 2 1底×高,正弦定理面积公式 ④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式 ⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系 ⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征 代数运算:设参、消参 重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.

三.典型例题分析 1.(海淀区2017.4)已知椭圆C :22 221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12 . (Ⅰ)求椭圆C 的方程; (Ⅱ)设点(4,0)Q , 若点P 在直线4x =上,直线BP 形APQM 为梯形?若存在,求出点P 解法1:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ AP MQ k k =. 设点0(4,)P y ,11(,)M x y ,06 AP y k =,114MQ y k x = -, ∴ 01164y y x =-① ∴直线PB 方程为0(2)2 y y x =-, 由点M 在直线PB 上,则0 11(2)2 y y x = -② ①②联立,0 101(2) 264y x y x -=-,显然00y ≠,可解得11x =. 又由点M 在椭圆上,211143y + =,所以132y =±,即3 (1,)2 M ±, 将其代入①,解得03y =±,∴(4,3)P ±. 解法2:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k =, 显然直线AP 斜率存在,设直线AP 方程为(2)y k x =+. 由(2)4y k x x =+??=? ,所以6y k =,所以(4,6)P k ,又(2,0)B ,所以632PB k k k ==. ∴直线PB 方程为3(2)y k x =-,由22 3(2) 34120 y k x x y =-?? +-=?,消y , 得2222(121)484840k x k x k +-+-=.

2021艺体生基础生培优讲义考点1 复数(学生版)

考点1 复数 [玩前必备] 1.复数的有关概念 (1)定义: 形如a +b i(a ,b ∈R )的数叫做复数,其中a 叫做实部,b 叫做虚部.(i 为虚数单位) (2)分类: (3)复数相等:a +b i =?a =c ,b =d ((4)共轭复数:a +b i 与c +d i 共轭?a =c ,b =-d (a ,b ,c ,d ∈R ). 2.复数的运算 (1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R 3.复数的几何意义 (1)复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ → =(a ,b )(a ,b ∈R )是一一对应关系. (2)模:向量OZ → 的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ). [玩转典例] 题型一 复数的概念 例1(2018?福建)若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( ) A .1 B .2 C .1或2 D .1- 例2(2019江苏2)已知复数的实部为0,其中为虚数单位,则实数a 的值是 . 例3(2015?湖北)i 为虚数单位,607i 的共轭复数为( ) A .i B .i - C .1 D .1- (2i)(1i)a ++i

例4【2016高考新课标理数1】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( ) (A )1 (B (C (D )2 [玩转跟踪] 1.(2020届山东省烟台市高三模拟)设i 是虚数单位,若复数5i 2i ()a a +∈+R 是纯虚数,则a 的值为( ) A .3- B .3 C .1 D .1- 2.已知复数 z = (m 2 - m - 2) + (m 2 - 3m + 2)i 是实数,则实数 m =_________ 3.(2020届山东省淄博市高三二模)已知复数z 满足(12)43i z i +=+,则z 的共轭复数是( ) A .2i - B .2i + C .12i + D .12i - 题型二 复数的代数运算 例5(2016?全国)复数2 2 (12)(2)i i -+的模为( ) A .1 B .2 C D .5 例6(2020?梅河口市校级模拟)设i 为虚数单位,若复数(1)22z i i -=+,则复数z 等于( ) A .2i - B .2i C .1i -+ D .0 例7【2015高考新课标1,理1】设复数z 满足 11z z +-=i ,则|z|=( ) (A )1 (B (C (D )2 [玩转跟踪] 1.(2020届山东省潍坊市高三模拟一)如图,在复平面内,复数1z ,2z 对应的向量分别是OA ,OB , 若12z zz =,则z 的共复数z =( ) A . 1322i + B . 1322i - C .1322 i - + D .13 22i - - 2.(2020届山东省潍坊市高三模拟二)设复数z =a +bi (a ,b ∈R ),若12z i i i =+-,则z =( ) A .1355i -+ B .1355i - C .3155i -+ D .3155 i -- 题型三 复数的几何意义

解析几何学习知识重点情况总结复习资料

一、直线与方程基础: 1、直线的倾斜角α: [0,)απ∈ 2 、直线的斜率k : 21 21 tan y y k x x α-== -; 注意:倾斜角为90°的直线的斜率不存在。 3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x y a b +=; ⑤两点式: 121 121 y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。 4、两直线平行与垂直的充要条件: 1111:0l A x B y C ++=,2222:0l A x B y C ++=, 1l ∥2l 1221 1221 A B A B C B C B =???≠?; 1212120l l A A B B ⊥?+= . 5、相关公式: ①两点距离公式:11(,)M x y ,22(,)N x y ,

MN = ②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122 ( ,)22 x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l 的距离d = ; ④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d = ⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为 θ,(0,)(,)22 ππ θπ∈U ,则2112 tan 1k k k k θ-=+? .(两倾斜角差的正切) 二、直线与圆,圆与圆基础: 1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ; 2、圆的一般方程:220x y Dx Ey F ++++=,(22 40D E F +->); 3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆内? 22200()()x a y b r -+-<; 点00(,)P x y 在圆上? 22200()()x a y b r -+-=; 点00(,)P x y 在圆外? 222 00()()x a y b r -+->; 4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看: 令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离?d r >;

最新名校2020高考解析几何大题二(定值定点)(4.2日)

解析几何大题二 1.椭圆M 的中心在坐标原点O ,左、右焦点F 1,F 2在x 轴上,抛物线N 的顶点也在原点O ,焦点为F 2,椭圆M 与抛物线N 的一个交点为A (3,2). (Ⅰ)求椭圆M 与抛物线N 的方程; (Ⅱ)在抛物线M 位于椭圆内(不含边界)的一段曲线上,是否存在点B ,使得△AF 1B 的外接圆圆心在x 轴上?若存在,求出B 点坐标;若不存在,请说明理由. 2.已知椭圆22 22:1(0)x y C a b a b +=>>的右焦点F 到直线30x y -+=的距离为22,231,P ?? ? ? ?? 在椭圆C 上. (1)求椭圆C 的方程; (2)若过F 作两条互相垂直的直线12,l l ,,A B 是1l 与椭圆C 的两个交点,,C D 是2l 与椭圆C 的两个交点,,M N 分别是线段,AB CD 的中点试,判断直线MN 是否过定点?若过定点求出该定点的坐标;若不过定点,请说明理由. 3.已知抛物线C:y 2 =2px(p>0)的焦点F 和椭圆22 143 x y +=的右焦点重合,直线过点F 交抛物线于A 、 B 两点. (1)求抛物线C 的方程; (2)若直线交y 轴于点M,且,MA mAF MB nBF ==u u u r u u u r u u u r u u u r ,m 、n 是实数,对于直线,m+n 是否为定值? 若是,求出m+n 的值;否则,说明理由. 4.已知椭圆22 22:1(0)x y E a b a b +=>>的上顶点为B ,点(0,2)D b -,P 是E 上且不在y 轴上的点, 直线DP 与E 交于另一点Q .若E 的离心率为2 2,PBD ?的最大面积等于 322 . (1)求E 的方程; (2)若直线,BP BQ 分别与x 轴交于点,M N ,判断OM ON ?是否为定值.

高中数学竞赛与自主招生专题全套精品讲义:解析几何(教师版)

高中数学竞赛与自主招生专题全套精品讲义 第十五讲 解析几何一(教师版) 从2015年开始自主招生考试时间推后到高考后,政策刚出时,很多人认为,是不是要在高考出分后再考自主招生,是否高考考完了,自主招生并不是失去其意义。自主招生考察了这么多年,使用的题目的难度其实已经很稳定,这个题目只有出到高考以上,竞赛以下,才能在这么多省份间拉开差距. 所以,笔试难度基本稳定,维持原自主招生难度,原来自主招生的真题竞赛真题等,具有参考价值。 在近年自主招生试题中,解析几何是高中数学内容的一个重要组成部分,也是高考与自主招生常见新颖题的板块,各种解题方法在解析几何这里得到了充分的展示,尤其是平面向量与解析几何的融合,提高了综合性,形成了题目多变、解法灵活的特色。 一、知识精讲 1.点到直线的距离 : d =(点00(,)P x y ,直线l :0Ax By C ++=). 2.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θ θ =+??=+?. (4)圆的直径式方程 1212()()()()0x x x x y y y y --+--= (圆的直径的端点是11(,)A x y 、22(,)B x y ). 3.点与圆的位置关系 点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若 d = d r >?点P 在圆外;d r =?点P 在圆上;d r

2019高考大题之解析几何

高考大题之解析几何 1.如图,椭圆C :22221x y a b +=(a >b >0)的离心率e =3 5 ,左焦点为F ,A ,B ,C 为其三个顶 点,直线CF 与AB 交于点D ,若△ADC 的面积为15. (Ⅰ)求椭圆C 的方程; (Ⅱ)是否存在分别以AD ,AC 为弦的两个相外切的等圆? 若存在,求出这两个圆的圆心坐标;若不存在,请说明理由. 解:(Ⅰ)设左焦点F 的坐标为(-c ,0),其中c =22a b -, ∵e = 35c a =,∴a =5 3 c ,b =43c . ∴A (0,43c ),B (-5 3c ,0),C (0,-43c ), ∴AB :33154x y c c -+=,CF :314x y c c --=, 联立解得D 点的坐标为(-54c ,1 3c ). ∵△ADC 的面积为15,∴12|x D |·|AC |=15,即12·54c ·2·4 3 c =15, 解得c =3,∴a =5,b =4,∴椭圆C 的方程为22 12516 x y +=. (Ⅱ)由(Ⅰ)知,A 点的坐标为(0,4),D 点的坐标为(-15 4 ,1). 假设存在这样的两个圆M 与圆N ,其中AD 是圆M 的弦,AC 是圆N 的弦, 则点M 在线段AD 的垂直平分线上,点N 在线段AC 的垂直平分线y =0上. 当圆M 和圆N 是两个相外切的等圆时,一定有A ,M ,N 在一条直线上,且AM =AN . ∴M 、N 关于点A 对称,设M (x 1,y 1),则N (-x 1,8-y 1), 根据点N 在直线y =0上,∴y 1=8.∴M (x 1,8),N (-x 1,0), 而点M 在线段AD 的垂直平分线y -52=-54(x +158)上,可求得x 1=-251 40 . 故存在这样的两个圆,且这两个圆的圆心坐标分别为 M (-25140,8),N (25140 ,0). 2.如图,椭圆22 221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线交椭圆于B A ,两点, AF 的最大值为M ,BF 的最小值为m ,满足2 34 M m a ?= 。 (Ⅰ)若线段AB 垂直于x 轴时,3 2 AB = ,求椭圆的方程; (Ⅱ) 设线段AB 的中点为G ,AB 的垂直平分线与x 轴和y 轴分别交于E D ,两

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

上海2020年高三数学基础知识回顾辅导讲义——解析几何(教师版)

1 / 26 一、直线与方程 ★1、直线的倾斜角及斜率: (1)倾斜角:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0,因此,倾斜角的范围是[)π,0. (2)斜率:①倾斜角不是2 π 的直线,它的倾斜角的正切叫做这条直线的斜率,即αtan =k (2 π α= 时,直线斜率不存在);②过两点的直线斜率公式:()211 21 2x x x x y y k ≠--= . ★2、直线的方程:点方向式: v y y u x x 0 0-= -(过点()00,y x ,方向向量()v u ,) 点法向式:()()000=-+-y y b x x a (过点()00,y x ,法向量()b a ,) 斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b 点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 两点式: 11 2121 y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x 截矩式: 1x y a b +=(与x 轴交于点(,0)a ,与y 轴交于点(0,)b ) 一般式:0=++C By Ax (A ,B 不全为0) 高考数学基础知识回顾:解析几何 基础知识

2 / 26 ★★3、直线与直线的位置关系:(1)平行直线系:01=++C By Ax 与02=++C By Ax ;(2)垂直直线系:01=++C By Ax 与02=+-C Ay Bx ;(3)直线平行与垂直的充要条件:①当 111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=?;12121-=?⊥k k l l ;②当 :1111=++c y b x a l , :2222=++c y b x a l 时, //122121=-?b a b a l l ; 0212121=+?⊥b b a a l l ★★4、直线的夹角公式:(1)对直线0:1111=++c y b x a l ,0:2222=++c y b x a l , 2 2 2 22 12 121212121||| |||| |cos |cos b a b a b b a a d d +?++= ?==θα;(2)对直线111:b x k y l +=, 222:b x k y l +=,2 12 11tan k k k k +-= α ★★5、点到直线的距离:(1)点到直线的距离:点()00,y x P 到直线0:1=++C By Ax l 的距离为 2 2 00B A C By Ax d +++= ;(2 )点在直线的同侧或异侧的问题:令δ= ,当两点在直线l 的同侧,则它们的δ同号;当两点在直线l 的异侧,则δ异号;(3)两平行线间的距离公式: 0:11=++C By Ax l 与0:22=++C By Ax l 为2 2 21B A C C d +-= ★6、线性规划:①设出所求的未知数;①列出约束条件(即不等式组);①建立目标函数;①作出可行域;①运用图解法求出最优解. 二、圆与方程 ★1、圆的方程:(1)标准方程()()22 2 r b y a x =-+-,圆心 ()b a ,,半径为r ;(2)一般方程 02 2 =++++F Ey Dx y x ,圆心?? ? ??--2,2E D ,半径2422F E D -+,能形成圆的充要条件是 0422>-+F E D ;(3)参数方程:???+=+=θ θ sin cos r b y r a x ,圆心()b a ,,半径为r .

高中数学培优班专题资料(含答案)

空间几何体的表面积和体积 培优班专题资料 考点一 几何体的表面积 (1)一个正方体的棱长为m ,表面积为n ,一个球的半径为p ,表面积为q .若m p =2,则n q =( ) A.8π B.6π C.π6 D. π8 解析 由题意可以得到n =6m 2 ,q =4πp 2 ,所以n q =6m 24πp 2= 32π×4=6 π ,故选B. 答案 B (2)某一几何体的三视图如图所示,则该几何体的表面积为( ) A .54 B .58 C .60 D .63 解析 由三视图可知,该几何体是一个棱长为3的正方体截去一个长、宽、高分别为1,1,3的长方体,所以该几何体的表面积S 表=6×32 +2×1×3=60. 答案 C (3)(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为 A .3π B .4π C .2π+4 D .3π+4 解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为: S =2×1 2π×12+12 ×2π×1×2+2×2 =π+2π+4=3π+4. 答案 D (4)(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )

A .1+ 3 B .2+ 3 C .1+2 2 D .2 2 解析 由空间几何体的三视图可得 该空间几何体的直观图,如图,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2 =2+3,故 选B. 答案 B (5)(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π 解析 如图,要使三棱锥O -ABC 即C -OAB 的体积最大,当且仅当点C 到平面OAB 的距离,即三棱锥C -OAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O -ABC 最大=V C -OAB 最大=13×12S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2 =4π× 62 =144π,选C. 答案 C (6)(2014·重庆,7)某几何体的三视图如图所示,则该几何体的表面积为( ) A .54 B .60 C .66 D .72 解析 该几何体的直观图如图所示,易知该几何体的表面是由两个直角三角形,两个直角梯形和一个矩形组成的,则其表面积S =12×3×4+12×3×5+2+52×5+2+5 2×4+3×5=60.选B.答案 B (7)(2014·浙江,3)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

解析几何讲义详解

解决解析几何的基本思路和流程讲义稿 解析几何的本质:用代数方法解决几何问题,即由图形到代数的问题。从这个意义上讲,解决解析几何问题的基本思路和流程就应该是(1)画出图形(2)找出几何关系(3)把几何关系转化为代数关系(4)代数运算。 图形:形状、位置、大小三个要素。 函数解析式(方程)????点的坐标(描点) 图像(图形)点代数式 因此,解析几何问题要从图形中的“点”找出几何关系和代数关系。 看见“点”想位置: (1)“点”的自身位置:直角坐标系的意义就在于把一个点的位置分解为一个水平位置和一个竖直位置。如点(2,3)的水平位置是相对于原点方向向右、距离为2,竖直位置是相对于原点方向向上、距离为3. (2)“点”相对于其他点或线的位置关系。 点? ? ???????????? 表达位置(水平位置、竖直位置)代数关系:函数关系、方程关系知道位置找关系表达关系几何关系:与其他点或线的关系知道关系找位置 一、 关于直线 直线需要确定其形状和位置。其中形状即直线的倾斜程度,由直线的倾斜角α(或斜率k ,k=tg α)确定,位置由直线上的一个点000(,)P x y 确定。因此,直线的代数表达式(称之为直线的方程)是00()y y k x x -=-(k 存在的前提下)。 (1)因为直线的确定需要形状和位置两个要素,所以求直线的方程

就需要两个相互独立的条件。比如已知两个点的坐标或已知一个点的坐标和直线的斜率等等。 (2)如果直线的形状(即直线的倾斜程度)不能确定(x或y前面有字母系数),那么直线方程表达的就是过定点的直线集合。(如kx+y-2k+1=0,过定点(2,-1)的直线集合; X+ky+1=0,过定点(-1,0)的直线集合等等。 (3)如果直线的位置(即直线过的点)不能确定(x或y前面没有字母系数、形状确定),那么直线方程表达的就是平行线集合。 如x-2y+k=0,斜率为1 k 的平行线集合 2 2x+y+b=0,斜率为k=-2的平行线集合等等。 从解决函数问题的角度说就是:看到字母想分类(这里主要分成两类)。 二、关于圆 圆的本质是均匀变化,需要确定其位置和大小。其中位置由圆心确定,大小由半径确定,因此确定圆的方程需要三个相互独立的条件。 解决圆的相关问题主要是用圆的性质,比如弦的性质(垂径定理:弦的中垂线过圆心。从直线和圆的位置关系上讲就是有两个公共点、代数关系:方程组有两组解)、切线的性质(切线垂直过切点的半径。从直线和圆的位置关系上讲就是有一个公共点、代数关系:方程组有一组解)。从图形的角度讲可以产生直角三角形等。也可以用方程或方程组解决。

高中数学 基本不等式培优讲义

高中数学——基本不等式培优专题 目录 1.常规配凑法 (2) 2.“1”的代换 (3) 3.换元法 (5) 4.和、积、平方和三量减元 (7) 5.轮换对称与万能k法 (10) 6.消元法(必要构造函数求异) (11) 7.不等式算两次 (13) 8.齐次化 (14) 9.待定与技巧性强的配凑 (15) 10.多元变量的不等式最值问题 (17) 11.不等式综合应用 (19)

1.常规配凑法 1.(2018届温州9月模拟)已知242=+b a (a,b ∈R ),则a+2b 的最小值为_____________ 2. 已知实数x,y 满足116 2 2 =+y x ,则22y x +的最大值为_____________ 3.(2018春湖州模拟)已知不等式9)1 1)( (≥++y x my x 对任意正实数x,y 恒成立,则正实数m 的最小值 是( ) A.2 B.4 C.6 D.8 4.(2017浙江模拟)已知a,b ∈R,且a ≠1,则b a b a -+++1 1 的最小值是_____________ 5.(2018江苏一模)已知a ﹥0,b ﹥0,且ab b a =+3 2, 则ab 的最小值是_____________

6.(诸暨市2016届高三5月教学质量检测)已知a ﹥b ﹥0,a+b=1,则b b a 21 4+ -的最小值是_____________ 7.(2018届浙江省部分市学校高三上学期联考)已知a ﹥0,b ﹥0,11 111=+++b a ,则a+2b 的最小值 是( ) A.23 B.22 C.3 D.2 2.“1”的代换 8.(2019届温州5月模拟13)已知正数a,b 满足a+b=1,则b a b 1 +的最小值为_____________此时a=______ 9.(2018浙江期中)已知正数a,b 满足112=+ b a 则b a +2 的最小值为( ) A.24 B.28 C.8 D.9 10.(2017西湖区校级期末)已知实数x,y 满足x ﹥y ﹥0,且x+y=2,则 3y x 4 y -x 1++的最小值是_____________ 11.(18届金华十校高一下期末)记max {x,y,z }表示x,y,z 中的最大数,若a ﹥0,b ﹥0,则max {a,b, b a 31+} 的最小值为( )