搜档网
当前位置:搜档网 › 简谐运动公式

简谐运动公式

简谐运动公式

高中物理-简谐运动的图像和公式教学设计

高中物理-简谐运动的图像和公式教学设计 教学目标 1.理解振动图象的物理意义。 2.通过利用图象得到的信息,例如判断物体的位移、速度、加速度等物理量的大小与方向的变化规律,培养学生的抽象思维能力。 3.理解简谐运动的表达式,进一步使学生掌握解决物理问题的两种方法:公式法和图象法。 4.通过实验法得到简谐运动的图象,培养学生认真、严谨、实事求是的科学态度。 重点难点 重点:简谐运动图象的物理意义和特点;运用简谐运动的图象解决有关位移、周期、频率、加速度、回复力等问题。 难点:用实验法描绘出简谐运动的图象;运用简谐运动的图象求解实际问题。 设计思想 在高考中对本节的考查重点在于由振动图像获得振动的信息,并能理解振动方程,学生学习过程中重点在于理解振动图像的物理意义,并能很好得寻找出图像中包含的信息。这些重点知识,重要方法的学习,本课采用了学习自主探究的方式,培养学生的观察习惯,提高学生处理图像的能力。 教学资源《简谐运动的图像和公式》多媒体课件、、 实验器材:沙漏,悬挂支架,可拖动的长板,单摆 教学设计 【课堂引入】 质点做直线运动时,x-t图象能形象地说明质点的位移随时间变化的规律。物体做简 谐运动时,它的位移随时间变化的规律又是什么样的呢? 问题1:思考能否也用x-t图象来形象的描述简谐运动,还是你有其他的想法,并说明如 何获得你想要的图像? (学生分析、讨论:可以仍然作x-t图像,但此处的x与以往的位移不同,是指相对于平衡位置的位移;可以用拍照的方式,记下很多时刻做简谐运动的物体的位置,再用测量、描点的方式得到图像。) 老师引导: 老师小结:这位同学提的方案非常好,我们就以他的想法来画简谐运动的x-t图像,不过课堂上实验条件有限,下面我们就用最简便的装置来描绘x-t图像。 实验仪器介绍、分析:如图所示,沙摆装置,漏斗相对于绳子的长度是比较小的,并且摆动时角度较小,所以它的摆动近似可以看成是简谐运动,当它摆动时在沙漏的下方有一块可以拖动的薄板,薄板匀速拖动时接收漏下的沙子,就可以在板上留下一张图。下面我们就进行实验。 【课堂学习】 学习活动一:探究描述简谐运动的图像 实验演示:让砂摆振动,同时沿着与振动垂直的方向匀速拉 动摆下的长木板(即平板匀速抽动,如图所示)。 实验现象:砂子在长木板上形成一条曲线。现以板拖动的 反方向为横轴,以垂直于拖动方向为纵轴,得到了如图所示的图 像。 问题1:如图这样建立了坐标那么图线的横、纵坐标分别表 示什么物理量? (学生答案:横坐标表示时间,纵坐标表示质点在不同时刻相对

简谐运动位移公式推导

简谐运动位移公式推导-CAL-FENGHAI.-(YICAI)-Company One1

简谐运动位移公式推导 问题:质量为m的系于一端固定的轻弹簧(弹簧质量可不计)的自由端。如图(a)所示, 将物体略向右移,在弹簧力作用下,若接触面光滑,m物体将作往复运动,试求位移x与时间t的函数关系式。 图(a) 分析:m物体在弹力F的作用下运动,显然位移X与弹力F有关,进而由弹簧联想起胡克定律,但结果只有位移与时间,故要把弹力F替换成关于X与t的量,再求解该微分方程。 推导:取物体平衡位置O为坐标原点,物体运动轨迹为X轴,向右为正。设弹力为F, 由胡克定律,K为劲度系数,负号表示力与位移方向相反。 根据牛顿第二定律,m物体加速度a====-x (1) 可令= (2) 代入(a),得 =X或X=0 (3)

显然,想求出位移X与时间t的函数关系式,须解出此微分方程 求解:对于X=0,即X’’+X=0 (4) (4)式属可将阶的二阶微分方程, 若设X’=u,消去t,就要把把X”转化为关于X与t的函数,那么 X’’===u , u+X=0, u X 下面分离变量再求解微分方程,然后两边积分,得 = 得=+C,即+C1 (5) u=x’,x’== (6) 再次分离变量,=dt (7) 两边积分,右边=t,但左边较为复杂, 经过仔细思考,笔者给出一种求解方法: 运用三角代换,令X= (7)式左边化为==-, 两边积分,得-–=t+C2

由此可得,X=t+), 即 X=A t+) (8) 其中 A, Ψ皆为常数 此方程即为简谐运动方程 若Ψ=0,X-t为余弦曲线,如图(b)所示 图(b) 验证:通过高频照相机拍摄后发现m的轨迹为周期摆动的简谐曲线,与 X=A t+)图像基本吻合,故可判断X=A t+)即为所求,如图(c)所示。 图(c)

简谐运动的动力学条件和周期公式的推导

简谐运动的动力学条件和周期公式的推导 [摘要]:本文从简谐运动的概念出发, 用数学知识,推理出了简谐运动的动力学条件及弹簧振子的周期公式、单摆做小角度摆动的周期。从逻辑上对机械振动一章的知识有了一 个整体的认识。 [关键词]:简谐运动,动力学条件,周期公式,弹簧振子,单摆 [正文] 课程标准实验教科书《物理》3—4第十一章从运动学的角度对简谐运动进行了定义,恰好从数学课上学生也学到了关于导数的知识。这就为构造简谐运动的逻辑提供了条件,通过这样的一个逻辑构造,可以让学生体会数学在物理学中的应用。同时,也可以让学生充分体会物理学逻辑上的统一美。激发学生学习物理,从理论上探究物理问题的兴趣和决心。 如果质点的位移与时间的关系遵从正弦的规律,即它的振动图象( x —t 图象)是一条正弦,这样的运动叫做简谐运动。 由定义可知,质点的位移时间关系为t A x sin ………………(1)对时间求导数可得速度随时间变化的规律:t A dt dx v cos ………………(2)再次对埋单求导数可得加速度随时间变化的规律:t A dt dv a sin 2 (3) 由牛顿第二定律可知,质点受到的合力为: ma F ………………(4)由(3)(4)可知: t mA F sin 2 (5) 将(1)式代入(5)式可得: x m F 2..................(6)上式中,m 和都是常数,从而可以写成下面的形式kx F (7) 其中2m k ,至此得到了质点做简谐运动的动力学条件:质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置。 对于的弹簧振子来说,(7)式中的k 表示弹簧的劲度系数,对比(6)式可知k m 2,

高中物理第1章机械振动3简谐运动的图像和公式教师用书教科选修3-4

3.简谐运动的图像和公式 学习目标知识脉络 1.掌握简谐运动的位移——时间 图像.(重点、难点) 2.知道简谐运动的表达式、明确 各量表示的物理意义.(重点) 3.了解相位、初相和相位差的概 念. 4.能用公式描述简谐运动的特 征.(重点、难点) 简谐运动的图像 [先填空] 1.坐标系的建立 在简谐运动的图像中,以横轴表示质点振动的时间,以纵轴表示质点偏离平衡位置的位移. 2.物理意义 表示做简谐运动质点的位移随时间变化的规律. 3.图像的特点 是一条正弦(或余弦)曲线. 4.从图像中可以直接得到的信息 (1)任意时刻质点偏离平衡位置的位移; (2)振动的周期; (3)振动的振幅. [再判断] 1.简谐运动图像反映了物体在不同时刻相对平衡位置的位移.(√) 2.振动位移的方向总是背离平衡位置.(√) 3.振子的位移相同时,速度也相同.(×) 4.简谐运动的图像都是正弦或余弦曲线.(√) [后思考] 1.简谐运动的图像是否是振动物体的运动轨迹?

【提示】不是.简谐运动的图像是描述振动物体的位移随时间变化的规律,并不是物体的运动轨迹. 2.简谐运动中振动物体通过某一位置时,加速度和速度方向是否一致? 【提示】不一定.振动物体通过某一位置时,加速度方向始终指向平衡位置,但速度方向可能指向平衡位置,也可能背离平衡位置,故加速度和速度方向不一定一致. 1.图像含义 表示某一质点不同时刻的位移;简谐运动图像不是做简谐运动的物体的运动轨迹. 2.图像斜率 该时刻速度的大小和方向. 3.判断规律 (1)随时间的延长,首先得到质点相对平衡位置的位移情况. (2)任意时刻质点的振动方向:看下一时刻质点的位置,如图1-3-1中a点,下一时刻离平衡位置更远,故a此刻向上振动. 图1-3-1 (3)任意时刻质点的速度、回复力、加速度的变化情况及大小比较:看下一时刻质点的位置,判断是远离还是靠近平衡位置,如图1-3-1中b点,从正位移向着平衡位置运动,则速度为负且增大.回复力方向与位移方向相反,总指向平衡位置,t轴上方曲线上各点回复力取负值.t轴下方曲线上各点回复力取正值,回复力大小和位移成正比,离平衡位置越远,回复力越大.加速度变化步调与回复力相同. 1.一质点做简谐运动,其位移x与时间t的关系曲线如图所示,由图1-3-2可知( ) 图1-3-2 A.质点振动频率是4 Hz B.t=2 s时,质点的加速度最大 C.质点的振幅为2 cm D.t=2 s时,质点的位移是2 cm E.从t=0开始经过3 s,质点通过的路程是6 cm

单摆作简谐运动的周期公式可以应用简谐运动周期公式推出

单摆作简谐运动的周期公式可以应用简谐运动周期公式 推出。 可以看出:单 摆的振动周期 跟摆长的平方 根成正比,跟 该处重力加速 度的平方根成 反比。 单摆的 这就是单摆的振动周期公式,是荷兰物理学家惠更斯最早确定的。这个公式只适用于单摆最大偏 角很小的情况。 当最大偏角增大时,振幅随之增大,单摆的周期也将增大。下表是单摆的偏角增大时实际周期与简谐振动周期的比值的变化情况。

显然,最大偏角越小, 应用公式计算的周期 值与实际周期越相 符。当最大偏角为5° 时,误差为万分之五, 10°时误差为万分 之十九,将近千分之 二,30°时误差就接 近百分之二了。 这说明单摆的摆角很 小时,它的实际周期 就近似等于简谐振动 周期 周期为2秒的单摆叫做秒摆。 由于重力加速度跟地球的纬度与距地心的高 度有关,所以世界各地秒摆都有些差异。 若重力加速度g取9.8m·s -2 则秒摆摆长为l=0.993m。 秒摆 重力加速度一、首先是与地球的因素有关,如: 1、物体处在地面的位置。 如,由于地球自转的原因,重力是地球对物体万有引力的一个分力,还有一个分力是供给物体绕地球自转所需要的向心力。 1)赤道处物体,随地球转动的线速度大,需要的向心力大,则分得的重力小,重力加速度就小。 2)向两极位置去时,物体的随地球转动的线速度变小,需要的向心力变小,则分得的重力重力变大,重力加速度就变大。 3)到极点时,物体的随地球转动的线速度最小,需要的向心力最小,则分得的重力最大,

重力加速度就最大。 2、物体离地面的高度,越高,重力加速度越小,因为重力是地球对物体万有引力的一个分力,而且这个万有引力的主要分量就是重力,万有引力的大小与距离的平方成反比,物体离地面越高,物体与地球中心的距离越大,万有引力越小,重力就越小,所以加速度越小; 3、如果是地面打的一个深洞,则越深,重力加速度越小,物体处于地球中心时,理论上说重力加速度是“0”这是根据理论力学的原理得到的。 二、与外来星体的吸引力有关,如太阳、月亮对地球的吸引,使得物体受的重力减小,使重力加速度变小。

高三物理简谐运动的公式描述.docx

简谐运动的公式描述教案 教学目标 1.知识与技能 (1)会用描点法画出简谐运动的运动图象. (2)知道振动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线. (3)了解替代法学习简谐运动的位移公式的意义. (4) 知道简谐运动的位移公式为x=A sin (ωt+),了解简谐运动位移公式中各量的物 理含义. (5) 了解位相、位相差的物理意义. (6) 能根据图象知道振动的振幅、周期和频率、位相. 2.过程与方法 (1) 通过“讨论与交流”匀速圆周运动在Ⅳ方向的投影与教材表1— 3— 1 中数据的 比较,并描出z— t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图象一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易 以及应用已学的知识解决问题. (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点. 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简, 科学地寻找解决问题的方法. (2)培养学生合作学习、探究自主学习的学习习惯. ●教学重点 ,难点 1.简谐运动位移公式x=Asin(ω t +)的推导 2.相位 , 相位差的物理意义 .. ●教学过程 教师讲授 简谐振动的旋转矢量法 。y 在平面上作一坐标轴 OX,由原点 O 作一长度等于振幅的矢量 A t=0 ,矢量与坐标轴的夹角等于初相 矢量 A 以角速度w 逆时针作匀速圆周运动, 研究端点M 在 x 轴上投影点的运动, 1.M 点在 x 轴上投影点的运动 x=Asin(ω t+)为简谐振动。 x 代表质点对于平衡位置的位移,t 代表时间,简谐运动的三角函数表示 回答下列问题 a:公式中的 A 代表什么 ? b:ω叫做什么 ?它和 f 之间有什么关系? c:公式中的相位用什么来表示? d:什么叫简谐振动的初相? M A t M 0 o x P x

简谐运动位移公式推导

简谐运动位移公式推导 问题:质量为m的系于一端固定的轻弹簧(弹簧质量可不计)的自由端。如图(a)所示, 将物体略向右移,在弹簧力作用下,若接触面光滑,m物体将作往复运动,试求位移x与时间t的函数关系式。 图(a) 分析:m物体在弹力F的作用下运动,显然位移X与弹力F有关,进而由弹簧联想起胡克定律,但结果只有位移与时间,故要把弹力F替换成关于X与t的量,再求解该微分方程。 推导:取物体平衡位置O为坐标原点,物体运动轨迹为X轴,向右为正。设弹力为F, 由胡克定律F=?kX,K为劲度系数,负号表示力与位移方向相反。 根据牛顿第二定律,m物体加速度a=dv dt =d2X dt2 =F m =-k m x(1) 可令k m =ω2 代入(a),得 d2X dt2=?ω2X或d2X dt2 +ω2X=0 显然,想求出位移X与时间t的函数关系式,须解出此微分方程

求解:对于d2X dt 2+ω2X=0,即X ’’+ ω2X=0 (4) (4)式属可将阶的二阶微分方程, 若设X ’=u ,消去t,就要把把X ”转化为关于X 与t 的函数,那么 X ’’= dX "dt = du dx dx dt =u du dx , u du dx +ω2X=0, u du dx =?ω2X 下面分离变量再求解微分方程,然后两边积分,得 udu =?ω2 Xdx 得 12u 2=? 12ω2 x 2+C ,即u 2=? ω2 x 2+C1 (5) u=x ’,x ’= 2 x 2 =dx dt 再次分离变量, C1? ω2 x 2=dt (7) 两边积分,右边=t ,但左边较为复杂, 经过仔细思考,笔者给出一种求解方法: 运用三角代换,令X= C1ωcos z (7)式左边化为 d cos z ωsin z =?sin zdz ωsin z =-dz ω, 两边积分,得 -–z ω=t+C2 由此可得, X= C1ωcos(ωt+ωC2),

简谐运动周期公式的推导

简谐运动周期公式的推导 【摘要】:本文通过简谐运动与圆周运动的联系,用圆周运动的周期公式推导出了简谐运动周期公式。 【关键辞】:简谐运动、周期、匀速圆周运动、周期公式 【正文】: 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标图2 图3 图4

系。 则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= 二零一一年三月九日 图5

高中物理 1.3简谐运动的图像和公式同步练习(含解析)新人教版选修3-4

第3节简谐运动的图像和公式 1.以横坐标表示________,纵坐标表示________________________________________,描绘出简谐运动的质点的________随________变化的图像,称为简谐运动的图像(或振动图像).简谐运动的图像是一条________(或________)曲线. 2.由简谐运动的图像,可以直接读出物体振动的________和________.用图像记录振动的方法在实际生活中有很多应用,如医院里的________________、监测地震的____________等. 3.简谐运动的表达式:x=________________或x=________________.其中A表示简谐运动的________,T和f分别表示简谐运动的周期和频率,________或________表示简谐运动的相位,Φ表示t=0时的相位,叫做初相位,简称初相.频率相同、初相不同的两个振动物体的相位差是________. 4.如图1所示是一做简谐运动的物体的振动图像,下列说法正确的是( ) 图1 A.振动周期是2×10-2 s B.第2个10-2 s内物体的位移是-10 cm C.物体的振动频率为25 Hz D.物体的振幅是10 cm

5.摆长为l 的单摆做简谐运动,若从某时刻开始计时(即取t =0),当振动至t =3π 2 l g 时,摆球恰具有负向最大速度,则单摆的振动图像是下图中的( ) B 做简谐运动的振动位

概念规律练 知识点一简谐运动的图像 1.如图2所示是表示一质点做简谐运动的图像,下列说法正确的是( ) 图2

简谐运动周期公式的推导

简谐运动周期公式的推导 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标 系。 图2 图 3 图4

则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注) 图5

高中物理.《简谐运动的图像和公式》教案教科版选修解析

《简谐运动的图像》 一、教学三维目标 (一)知识与技能 1、知道振动图像的物理含义。 2、知道简谐运动的图像是一条正弦或余弦曲线。 3、能根据图象知道振动的振幅、周期和频率。 (二)过程与方法 1、学会用图象法、列表法表示简谐运动位移随时间变化规律,提高运用工具解决物理问题的能力。 2、分析简谐运动图像所表示的位移,速度、加速度和回复力等物理量大小及方向变化的规律,培养抽象思维能力。 (三)情感态度与价值观 1、描绘简谐运动的图像,培养学生认真、严谨、实事求是的科学态度。 2、从图像了解简谐运动的规律,培养学生分析问题的能力,以及审美能力(逐步认识客观存在着简洁美、对称美等)。 二、重点、难点、疑点及解决办法 1、重点 (1)简谐运动图像的物理意义。 (2)简谐运动图像的特点。 2、难点 (1)用描点法画出简谐运动的图像。 (2)振动图像和振动轨迹的区别。 (3)由简谐运动图像比较各时刻的位移、速度、加速度和回复力的大小及方向。 3、疑点 能用正弦(或余弦)图像判定一个物体的振动是否是简谐运动。 4、解决办法 (1)通过对颗闪照相的分析,利用表格,通过作图比较,认识简谐运动的特点。 (2)复习数学中的正弦(或余弦)图像知识;比较几种典型运动(匀速直线运动,匀加速、匀减速直线运动)的图像与简谐运动图像的区别。

三、课时安排 1课时 四、教具、学具准备 自制幻灯片、幻灯机(或多媒体课件)、音叉(带共鸣箱)(附小槌、灵敏话筒、示波器)。 五、学生活动设计 1、学生观看多媒体课件,观察振子的简谐运动情况及其频闪照片、位移一时间变化表格。 2、学生根据表格画出s-t图 3、学生分组讨论,确定振子在各时刻的位移、速度、回复力和加速度的方向。 六、教学步骤 [导入新课] 提问 1、在匀速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线?(是一条过原点的直线) 2、在匀变速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (根据s=at2,运动的位移图像是一条过原点的抛物线) 那么,简谐运动的位移图像是一条什么线? [新课教学] 多媒体课件(或幻灯)显示。观察气垫导轨上弹簧振子的振动情况,这是典型的简谐运动。 观察振子从离平衡位置最左侧20mm处向右运动的1/2周期内频闪照片,以及接下来1/2周期内的频门照片,已知频闪的频率为9.0Hz提问,相邻两次闪光的时间间隔t。是多少? 时间t0=s=0.11s 提问,频闪照片上记录下来什么? (照片上记录下来每隔t0振子所在的位置) 取平衡位置的右方为正方向。根据频门照片上的读数,列出位移。随时间;变

单摆周期原理及公式推导

关于单摆的回复力 ①在研究摆球沿圆弧的运动情况时,要以不考虑与摆球运动方向垂 直的力,而只考虑沿摆球运动方向的力,如图所示. ②因为F′垂直于v,所以,我们可将重力G 分解到速度v的方向 及垂直于v的方向.且G1=Gsin θ=mg sin θG2=G cos θ=mg cos θ ③说明:正是沿运动方向的合力G1=mg sin θ提供了摆球摆动的回 复力. 单摆做简谐运动的条件 ①推导:在摆角很小时,sin θ=l x 又回复力F=mg sin θ F=mg ·l x (x 表示摆球偏离平衡位置的位移,l表示单摆的摆长) ②在摆角θ很小时,回复力的方向与摆球偏离平衡位置的位移方向相 反,大小成正比,单摆做简谐运动. ③简谐运动的图象是正弦(或余弦曲线),那么在摆角很小的情况下,既然单摆做的是简谐运动,它振动的图象也是正弦或余弦曲线. 单摆周期公式推导 设摆线与垂直线的夹角为θ, 在正下方处时θ=0,逆时针方向为正,反之为负。 则 摆的角速度为θ’( 角度θ对时间t 的一次导数), 角加速度为θ’’( 角度θ对时间t 的二次导数)。对摆进行力学分析, 由牛顿第二运动定律,有 (m)*(l)* θ’’ = - mg*sin θ 即θ’’+ (g/l )*sin θ = 0 令 ω = (g/l)1/2 ,有 θ’’ + (ω2)*sin θ = 0 当 θ很小时, sin θ ≈ θ (这就是考虑单摆运动时通常强调“微”摆的原因) 这时, 有 θ’’ + (ω^2)*θ ≈ 0 该方程的解为 θ = A*sin(ωt+φ) 这是个正弦函数,其周期为 T = 2π/ω = 2π*√(l/g)

第一章第三节 简谐运动的公式描述

1-3简谐运动的公式描述(选修3-4) 教材分析:这节课的内容标准主要是用公式和图像描述简谐运动,与前两节一起完成《课程标准》中对简谐运动的要求,即“通过观察与分析,理解简谐运动的特征”。本节的内容比较抽象,过去的教学安排是从简谐运动的回复力出发,直接给出简谐运动的运动图像,现在不仅增加了简谐运动的运动公式,并且增加了运用参考圆得出简谐运动的位移公式以及各个量的物理意义的过程,并讨论公式的x-t 图像中表示,难度是比较大的。教学中应注意将教学难点分散,逐层进行教学,多采取学生动手练习、讨论和启发式讲述的方法,同时设计配套课件,节约一定时间,提高直观性。 教学目标: 1.知识与技能 (1)会用描点法画出简谐运动的运动图像。 (2)知道振动图象的物理含义,知道简谐运动的图像是一条正弦或余弦曲线。 (3)了解替代法学习简谐运动的位移公式的意义。 (4)知道简谐运动的位移公式为)(?ω+=t A x cos ,了解简谐运动位移公式中各 量的物理含义。 (5)了解位相、位相差的物理意义。 (6)能根据图像知道振动的振幅、周期和频率、位相。 2.过程与方法 (1)通过“讨论与交流”匀速圆周运动在“方向的投影与教材中给出的数据比较,描出x-t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图像一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易以及应用已学的知识解决问题。 (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点。 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简,科学地寻找解决问题的方法。 (2)培养学生合作学习、探究自主学习的学习习惯。 重难点分析: 1、得出简谐运动的位移公式、x-t 图象是重点。 2、运用参考圆来分析和理解简谐运动及图象,对各量的理解是难点。 教学过程: 1、复习回顾:简谐运动最基本的特征?(周期性) 2、提出问题:简谐运动的位移是如何随时间的变化做周期性变化的? 3、引导学生分析讨论得到简谐运动的运动公式。 (1)给出用频闪照相的方法得到的一组简谐运动的位移x 随时间t 变化的数据,引导学生找出大致规律。 (2)讲述分析参考圆的方法。

简谐振动及其周期推导与证明

简谐振动及其周期公式的推导与证明 简谐振动:如果做机械振动的物体,其位移与时间的关系遵从正弦(或余弦)函数规律, 这样的振动叫做简谐振动。 位移:用x 表示,指振动物体相对于平衡位置的位置变化,由简谐振动定义可以得出x 的 一 般式:)cos(?ω+=t A x (下文会逐步解释各个物理符号的定义); 振幅:用A 表示,指物体相对平衡位置的最大位移; 全振动:从任一时刻起,物体的运动状态(位置、速度、加速度),再次恢复到与该时刻完 全相同所经历的过程; 频率:在单位时间内物体完成全振动的次数叫频率,用f 表示; 周期:物体完成一次全振动所用的时间,用T 表示; 角频率:用ω表示,频率的2π倍叫角频率,角频率也是描述物体振动快慢的物理量。角频 率、周期、频率三者的关系为:ω=2π/T =2πf ; 相位:?ωφ+=t 表示相位,相位是以角度的形式出现便于讨论振动细节,相位的变化率 就是角频率,即dt d φω=; 初相:位移一般式中?表示初相,即t =0时的相位,描述简谐振动的初始状态; 回复力:使物体返回平衡位置并总指向平衡位置的力。(因此回复力同向心力是一种效果力) 如果用F 表示物体受到的回复力,用x 表示小球对于平衡位置的位移,对x 求二阶导即得: )cos(2?ωω+-=t A a 又因为F=ma ,最后可以得出F 与x 关系式: kx x m F -=-=2ω 由此可见,回复力大小与物体相对平衡位置的位移大小成正比。 式中的k 是振动系统的回复力系数(只是在弹簧振子系统中k 恰好为劲度系数),负号的意思是:回复力的方向总跟物体位移的方向相反。 简谐振动周期公式:k m T π 2=,该公式为简谐振动普适公式,式中k 是振动系统的回复力 系数,切记与弹簧劲度系数无关。 单摆周期公式:首先必须明确只有在偏角不太大的情况(一般认为小于10°)下,单摆的运 动可以近似地视为简谐振动。 我们设偏角为θ,单摆位移为x ,摆长为L ,当θ很小时,有关系式: L x ≈≈≈θθθtan sin , 而单摆运动的回复力为 F=mgsin θ,

简谐运动的六种图象

简谐运动的六种图象 北京顺义区杨镇第一中学范福瑛 简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征. 运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。 以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。 1.位移-时间关系式,图象是正弦曲线,如图2 2.速度-时间关系式,图象是余弦曲线,如图3

3.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图5 5.速度-位移关系式,图象是椭圆,如图6

, 整理化简得 6.能量-位移关系 弹簧和振子组成的系统能量(机械能)守恒, 总能量不随位移变化,如图7直线c 弹性势能,图象是抛物线的一部分,如图7曲线b

振子动能,图象是开口向下的抛物线的一部分,如图7曲线a 图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。 2011-12-20 人教网 【基础知识精讲】 1.振动图像 简谐运动的位移——时间图像叫做振动图像,也叫振动曲线. (1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹. (2)特点:只有简谐运动的图像才是正弦(或余弦)曲线. 2.振动图像的作图方法 用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线. 3.振动图像的运用 (1)可直观地读出振幅A、周期T以及各时刻的位移x. (2)判断任一时刻振动物体的速度方向和加速度方向 (3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 【重点难点解析】 本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况. 一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动. 所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲 线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律. 例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )

物理竞赛中简谐运动周期的四种求法

物理竞赛中简谐运动周期的四种求法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

物理竞赛中简谐运动周期的四种求法 物理竞赛中在解决简谐运动问题时,经常会涉及周期的求解。本文通过具体实例,介绍物理竞赛中简谐运动周期的四种求法。 一、周期公式法 由简谐运动的周期公式可知,运用周期公式求周期的关键是求出回复力系数 k。通常情况下,可以通过两种途径求出回复力系数。一是通过对简谐运动物体进行受力分析求出回复力,然后根据物体简谐运动时回复力大小的特征F=kx,找到回复力F与位移x的关系求出回复力系数k;二是通过求简谐运动物体在位移为x时的势能,然后根据物体做简谐运动时势能的关系求出回复力数k。 例1如图1所示,摆球质量为m,凹形滑块质量为M,摆长为L,m与M、M与水平面之间光滑,求摆线偏转很小角度,从静止释放后,系统振动的周期。 图1分析与解由于摆球m周期与整个系统运动周期相等,因此系统振动的周期可以通过求摆球m周期来求出。 凹形滑块M受到水平地面的支持力、重力 G=Mg及m对M的水平作用的作用(图2),由于 M只能在水平面上滑动,因此M沿水平面做往复运动时受到的回复力可表示为:(1) 对摆球m进行受力分析(图3),可得到下列关系式: (2)

例2如图4所示,横截面积为S,粗细均匀的U形管中灌有密度为ρ,质量为m 的水银,现在将B管管口用塞子密封后加热,由于封在B管中空气的膨胀,使水银面在A管内上升,若此时将B管口的塞子拔去,那么水银做简谐运动的周期是多少? 图4 分析与解设A、B两管液面相平时为水银柱的零势能位置,则当B管中水银面距两管液面相平时的液面高度为x时,整个水银柱具有的势能为 。 二、刚体角加速度法 绕定轴转动的刚体的角加速度和外力的关系应遵循刚体定轴转动定律:即刚体所受的对于某一固定转轴的合外力矩等于刚体对此转轴的转动惯量与刚体在此合外力矩

选修3-4 第2讲 简谐运动的公式描述

选修3-4 第2讲简谐运动的公式描述 1.以振幅值为半径做一个参考圆,一个小球在此参考圆上做匀速圆周运动,周期为12t0,把圆周分成12等分,测量圆周上每一个等分点在水平轴上的投影,描出过点t0、2 t0、3 t0、…12 t0的曲线。 2.匀速圆周运动在x轴上的投影和简谐运动图像一样,是余弦或正弦曲线。物体做匀速圆周运动,设半径为A,周期为T,质点从x1开始运动,则其在t时刻在x轴上的投影为。 式中w就是简谐运动所对应匀速圆周运动的角速度,在研究简谐运动时,称之为圆频率(或角频率)。 3.如果圆周运动的质点在t=0时刻从x7位置开始运动,则t时刻在x轴上的投影刚好与图1-3-2的曲线大小相等,方向相反,称之为反相,或者称这两种振动的相位差相反,也称相位差等于,数学公式为。 4.如果t=0时刻,质点的运动不是从x7开始,而是由任意一个角度开始,则应该写为:,叫做简谐运动在t时刻的相位,由于时间t

是变量,所以相位也在变化,是t=0时的相位叫做初相。相位每增加,振子完成一次全振动。相位从0变到,需要的时间。 5.对于频率、振幅相同,相位不同的振子,我们常通过相位差来比较它们,相位差用表示,有:。 当相位差为时,振动相差的时间为。 6.如图,一辆玩具电动车在一水平面上做匀速圆周运动,在同一水平面上放置一台幻灯机,灯光水平照射在这量小车上,小车运动时在墙壁的投影正好和弹簧振子做简谐运动的情景相似。 设小车沿半径为A的圆周做匀速圆周运动,其角速度为w,则 向心力F= 。 F在水平方向的投影Fx= 。式中负号表示Fx与坐标x轴的正方向相反。由几何关系知x= 。 于是有Fx= 。 由于m、w都有确定的值,mw2可以用一个常数k表示,k=mw2, 上式可写成:Fx= 。与弹簧振子做简谐运动的力相同。 由此可知,做匀速圆周运动的物体在直径方向的投影正好与弹簧振子做简谐运动的情景完全相同,并且w= 。 简谐运动的振动周期与物体做匀速圆周运动周期相等,所以T== 。

物理竞赛中简谐运动周期的四种求法

物理竞赛中简谐运动周期的四种求法 物理竞赛中在解决简谐运动问题时,经常会涉及周期的求解。本文通过具体实例,介绍物理竞赛中简谐运动周期的四种求法。 一、周期公式法 由简谐运动的周期公式可知,运用周期公式求周期的关键是求出回复力系数 k。通常情况下,可以通过两种途径求出回复力系数。一是通过对简谐运动物体进行受力分析求出回复力,然后根据物体简谐运动时回复力大小的特征F=kx,找到回复力F与位移x的关系求出回复力系数k;二是通过求简谐运动物体在位移为x时的势能,然后根据物体做简谐运动时势能的关系求出回复力数k。 例1 如图1所示,摆球质量为m,凹形滑块质量为M,摆长为L,m与M、M 与水平面之间光滑,求摆线偏转很小角度,从静止释放后,系统振动的周期。 图1分析与解由于摆球m周期与整个系统运动周期相等,因此系统振动的周期可以通过求摆球m周期来求出。 凹形滑块M受到水平地面的支持力、重力 G=Mg及m对M的水平作用的作用(图2),由于 M只能在水平面上滑动,因此M沿水平面做往复运动时受到的回复力 (1) 对摆球m进行受力分析(图3),可得到下列关系式:

(2) 例2 如图4所示,横截面积为S,粗细均匀的U形管中灌有密度为ρ,质量为m 的水银,现在将B管管口用塞子密封后加热,由于封在B管中空气的膨胀,使水银面在A管内上升,若此时将B管口的塞子拔去,那么水银做简谐运动的周期是多少? 图4 分析与解设A、B两管液面相平时为水银柱的零势能位置,则当B管中水银面距两管液面相平时的液面高度为x时,整个水银柱具有的势能为 。 二、刚体角加速度法

绕定轴转动的刚体的角加速度和外力的关系应遵循刚体定轴转动定律:即刚体所受的对于某一固定转轴的合外力矩等于刚体对此转轴的转动惯量与刚体在此合外力矩 作用下所获得的角加速度的乘积。采用这种方法时,往往通过刚体定轴转动定律求出刚体转动的角加速度,然后根据加速度与角加速度的关系求出刚体转动的角速度,从而求出刚体做简谐运动的周期。 例3 如图5所示,质量为m的小球用轻杆悬挂,两侧用劲度系数为k的弹簧连接。杆自由下垂时,弹簧无形变,图中a、b已知,求摆杆做简谐运动的周期T。 图5 分析与解设轻杆向右偏很小的角度θ时,小球向右偏离平衡位置距离x=bsinθ≈bθ,此时右侧弹簧压缩了aθ,左侧弹簧伸长了aθ。根据刚体定轴转动定律可得: 三、解方程组法

高中物理第一章机械振动第3节简谐运动的图像和公式教学案教科版选修

第3节简谐运动的图像和公式 对应学生用书P7 简谐运动的图像 [自读教材·抓基础] 1.建立坐标系 以横轴表示做简谐运动的物体的时间t,纵轴表示做简谐运动的物体运动过程中相对平衡位置的位移x。 2.图像的特点 一条正弦(或余弦)曲线,如图1-3-1所示。 图1-3-1 3.图像意义 表示物体做简谐运动时位移随时间的变化规律。 4.应用 1.简谐运动图像是一条正弦(或余弦)曲线,描述了质点 做简谐运动时位移x随时间t的变化规律,并不是质点运动 的轨迹。 2.由简谐运动图像可以直接得出物体振动的振幅、周 期、某时刻的位移及振动方向。 3.简谐运动的表达式为x=A sin( 2π T t+φ)或x=A sin(2πft +φ),其中A为质点振幅、( 2π T t+φ)为相位,φ为初相位。

由简谐运动的图像可找出物体振动的周期和振幅。 [跟随名师·解疑难] 1.图像的含义 表示某一做简谐运动的质点在各个时刻的位移,不是振动质点的运动轨迹。 2.由图像可以获取哪些信息? (1)可直接读取振幅、周期。 (2)任意时刻质点的位移的大小和方向。如图1-3-2所示,质点在t1、t2时刻的位移分别为x1和-x2。 图1-3-2 (3)任意时刻质点的振动方向:看下一时刻质点的位置,如图1-3-3中a点,下一时刻离平衡位置更远,故a此刻向上振动。 图1-3-3 (4)任意时刻质点的速度、加速度、位移的变化情况及大小比较:看下一时刻质点的位置,判断是远离还是靠近平衡位置,若远离平衡位置,则速度越来越小,加速度、位移越来越大,若靠近平衡位置,则速度越来越大,加速度、位移越来越小。如图中b点,从正位移向着平衡位置运动,则速度为负且增大,位移、加速度正在减小;c点从负位移远离平衡位置运动,则速度为负且减小,位移、加速度正在增大。 [学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手) 一质点做简谐运动,其位移x与时间t关系曲线如图1-3-4所示,由图可知( ) 图1-3-4 A.质点振动的频率是4 Hz

简谐运动位移公式推导

简谐运动位移公式推导 问题:质量为m 的系于一端固定的轻弹簧(弹簧质量可不计)的自由 端。如图(a )所示, 将物体略向右移,在弹簧力作用下,若接触面光滑, m 物体将作往复 运动,试求位移x 与时间t 的函数关系式。 j ■ E 0 C 图(a ) 分析:m 物体在弹力F 的作用下运动,显然位移 X 与弹力F 有关,进 而由弹簧联想起胡克定律,但结果只有位移与时间,故要把弹力F 替 换成关于X 与t 的量,再求解该微分方程。 推导:取物体平衡位置 0为坐标原点,物体运动轨迹为X 轴,向右为 正。设弹力为F, 由胡克定律 ,K 为劲度系数,负号表示力与位移方向相反。 根据牛顿第二定律,m 物体加速度a 二曲二山‘二【】】二-m x 代入(a ),得(1) 址2 可令|^= - -J ...................... (2) ..................

d2x d2x 2 —7 2 P + U) dt 二一 3 X 或 dt X=0 ................. (3) 显然,想求出位移X 与时间t 的函数关系式,须解出此微分方程 (4)式属可将阶的二阶微分方程, 若设X =u ,消去t,就要把把X’转化为关于X 与t 的函数,那么 dX H dudx du X'' = dt = dxdr 二卫% du F 面分离变量再求解微分方程,然后两边积分,得 .......................... (6) .................... dx 再 次 分 离 变 量, ' =dt ⑺ 两边积分,右边=t ,但左边较为复杂, 经过仔细思考,笔者给出一种求解方法: dr X=0 , 2 即 X '' +3 X=0 得 1 2 尹 = -7°2 2 X +C , (5) u=x ' ‘ Jjci - ,X =7^丄 O >2X 2=E 2 2 2 即 u =- 3 X +C1 Judu =- a?Jxdx

高中物理 1.3简谐运动的图像和公式同步练习(含解析)教科版选修34

第3节 简谐运动的图像和公式 1.以横坐标表示________,纵坐标表示________________________________________,描绘出简谐运动的质点的________随________变化的图像,称为简谐运动的图像(或振动图像).简谐运动的图像是一条________(或________)曲线. 2.由简谐运动的图像,可以直接读出物体振动的________和________.用图像记录振动的方法在实际生活中有很多应用,如医院里的________________、监测地震的____________等. 3.简谐运动的表达式:x =________________或x =________________.其中A 表示简谐运动的________,T 和f 分别表示简谐运动的周期和频率,________或________表示简谐运动的相位,Φ表示t =0时的相位,叫做初相位,简称初相.频率相同、初相不同的两个振动物体的相位差是________. 4.如图1所示是一做简谐运动的物体的振动图像,下列说法正确的是( ) 图1 A .振动周期是2×10-2 s B .第2个10-2 s 内物体的位移是-10 cm C .物体的振动频率为25 Hz D .物体的振幅是10 cm 5.摆长为l 的单摆做简谐运动,若从某时刻开始计时(即取t =0),当振动至t =3π 2 l g 时,摆球恰具有负向最大速度,则单摆的振动图像是下图中的( ) 6.物体A 做简谐运动的振动位移x A =3sin (100t +π 2 ) m ,物体B 做简谐运动的振动位 移x B =5sin (100t +π 6 ) m .比较A 、B 的运动( ) A .振幅是矢量,A 的振幅是6 m , B 的振幅是10 m B .周期是标量,A 、B 周期相等为100 s C .A 振动的频率f A 等于B 振动的频率f B D .A 的相位始终超前B 的相位π 3 概念规律练 知识点一 简谐运动的图像 1.如图2所示是表示一质点做简谐运动的图像,下列说法正确的是( )

相关主题