搜档网
当前位置:搜档网 › 煤的先进燃烧技术

煤的先进燃烧技术

煤的先进燃烧技术
煤的先进燃烧技术

煤的先进燃烧技术

化艺1101 苗蓓目前,在我国的能源消费结构中,煤炭是第一能源,以煤、石油、和天然气为主的化石燃料的使用也随之带来一系列的环境问题。煤是最重要的固体燃料,它是一种不均匀的有机燃料,主要由植物的部分分解和变质形成的,所以其形成要经历一段很长的时期,常常是处于高压覆盖层以及较高的温度条件。而在燃烧过程中,煤的发热量低,灰分含量高,含硫量虽然比重油低,但为获得同样热量所耗煤量要大的多,所以产生的硫氧化物反而可能更多。煤的含氮量约比重油高5倍,因而氮氧化物生成量也高于重油,此外煤的燃烧还会带来汞、砷等微量重金属类污染,氟、氯等卤素污染和低水平的放射性污染。因此,采用先进的燃烧技术可以使煤充分燃烧,产生的污染会随之减少。

控制NO x 排放的技术措施可以分为两类,一是所谓的源头控制,其特征是通过各种技术手段,控制燃烧过程中NO x 的生成反应,另一类是所谓的尾部控制,其特征是把已经生成的NO x 通过某种手段还原为N2,从而降低NO x 的排放量。低NO x 燃烧技术措施一直是应用最广泛的措施,即便为满足排放标准的要求不得不使用尾气净化装置,仍需采用它来降低净化装置入口的NO x浓度,已达到节省费用的目的。从20世纪50年代起,人们就开始了燃烧过程中氮氧化物生成机理和控制方法的研究,到70年代末和80年代,低NO x 燃烧技术的研究和开发达到高潮,开发出低NO x 燃烧器等。90年代后,已开发的低NO x 燃烧器经过大量改进和优化,日臻完善。

一、低NO x 燃烧技术

目前工业采用的低NO x 燃烧技术主要包括低氧技术、烟气循环燃烧、分段燃烧和浓淡燃烧技术等。

1、低氧燃烧技术

NO x 排放量随着炉内空气量的增加而增加,为了降低其含量,锅炉应在炉内空气量较低的工况下运行,一般来说,可以降低15%-20%。锅炉采用低空气过剩系数运行技术,不仅可以降低NO x ,还减少了锅炉排烟热损失,提高锅炉热效率。需要说明的是,由于采用低空气过剩系数会导致一氧化碳、碳氢化合物以及炭黑等污染物相应增多,飞灰中可燃物质也可能增加,从而使燃烧效率下降,故电站锅炉实际运行时的空气过剩系数不能做大幅度调整。因此,在低空气过剩系数燃烧时,必须同时满足过路盒燃烧效率较高、而一氧化氮等有害物质最少的要求。

我国燃用烟煤的电站锅炉多数设计在空气过剩系数为 1.17-1.20(氧含量为3.5%-4.0%)下运行,此时一氧化碳含量为(30-40)*10^-6;若氧含量降到3.0%以下,则一氧化碳含量将急剧增加,不仅导致化学不完全燃烧损失增大,而且会引起炉内的结渣和腐蚀。因此,以炉内含氧量3%以上或一氧化碳含量等于2*10…^-4作为最小空气过剩系数的选择依据。

2、降低助燃空气预热温度

在工业实际操作中,经常利用尾气的废热预热进入燃烧器的空气。虽然这样有助于节约能源和提高火焰温度,但也导致氮氧化物排放量增加。实验数据表明,当燃烧空气由27℃预热至315℃,NO排放量将会增加三倍。降低助燃空气预热温度可降低火眼去的温度峰值,从而减少热力型NO x 生成量。实践表明,这一措施不宜用于燃煤、燃油锅炉;对于燃气锅炉,则有明显降低NO x 排放的效果。

3、烟气循环燃烧

烟气循环燃烧法将燃烧产生的部分烟气冷却后,再循环送回燃烧区,起到降低氧浓度和燃烧区温度的作用,以达到减少NO生成量的目的。烟气循环燃烧法主要减少热力型NO x 的生成量,适合热力型NO x 排放所占份额较大的液态排渣炉、燃油和燃气锅炉,对燃料型NO x 和瞬时NO x 的减少作用甚微。对固态排渣锅炉而言,大约80%的NO由燃料氢生成的,这种方法的作用就非常有限。

在使用中,烟气循环率在25%-40%的范围内最为适宜。通常的做法是从省煤器出口抽出烟气,加入二次风或者一次风中。加入二次风时,火焰中心不受影响,其唯一作用是降低火焰温度。对不分级的燃烧器,在一次风中加入循环烟气效果较好,但由于燃烧器附近的燃烧工矿会有所变化,要对燃烧过程进行调整。

4、分段燃烧技术

这种技术最早由美国在20世纪50年代发展起来。实验表明,较低的空气过剩系数有利于控制NO x 的形成,分段燃烧法控制氮氧化物就是利用这种原理。在分段燃烧装置中,燃料在接近理论空气量的条件下燃烧;通常空气总需要量—(一般为理论空气量的1.1-1.3倍)的85%-95%与燃料一起供到燃烧器,因为富燃料条件下的不完全燃烧,使得第一段燃烧的烟气温度较低,由于此时氧量不足,NO x 生成量很少。在燃烧装置的尾端,通过第二次空气,时的第一阶段剩余的不完全燃烧产物CO和CH完全燃尽。这时虽然氧过量,但由于烟气温度仍然较低,动力学上限制了NO x 的形成。应当指出,在较低空气过剩系数下,不利的燃料-空气分布可能出现,这将导致CO和粉尘排放量增加,使得燃烧效率降低。根据分段燃烧原理所研制的各类燃气体、重油、粉煤燃料的烧嘴,以及分段燃烧技术在流化床上的应用,对降低废气排放中NOx 的含量,起到了很好作用。日本在这一领域的研究成果尤为显著。我国应大力开展这方面的科研与技术开发工作,以改善目前炉窑废气污染状况。DNOr—I型烧嘴的研制正是为了这一目的。试验表明,此烧嘴不仅具有较好的热工性能,而且对NOx 生成也具有较好的抑制功能。

5、再燃技术

再燃技术,即在炉膛的特定区域内注入再燃燃料(占燃料总量的10%-30%),再燃燃料需要使用微细的煤粉,在每个区域都需要保证充分的停留时间,才能达到完全燃烧。煤粉再燃技术又称为燃料分级或炉内还原技术,它是降低NO 排放的诸多炉内方法中最有效的措施之一。再燃技术是先将80%~85% 的燃料送人主燃区,在空气过量系数大于1的条件下燃烧,其余15% ~2O% 的燃料作为还原剂在主燃烧器的上部某一合适位置喷人形成再燃区,再燃区空气过量系数小于1(再燃区不仅使已生成的N0x 得到还原,同时还抑制了新的No 的生成,进一步降低NOx)。再燃区上方布置燃尽风以形成燃尽区,保证再燃区出口的未完全燃烧产物燃尽。再燃区的化学计量数对氮氧化物的减少程度有着显著的影响。改变化学计量数受到以下因素的限制:1、各区域对火焰稳定性的要求;2、加入再燃燃料引起的CO和未燃炭增加;3、再燃区水管发生腐蚀的潜在风险。

使用再燃技术会给系统带来很大的灵活性,让电厂有能力控制N0x 的排放浓度。如果仅使用再燃风可以去除25%的N0x ,再加入再燃燃料可以控制60%的排放。管理者能够根据不同的排放限制进行调整。

从原理上来说,任何碳氢燃料都可作为再燃燃料使用。但天然气在再燃中使用的最为广泛,煤炭也可作为再燃燃料。与天然气相比,使用煤炭的优势是价格较低而且减少了在燃煤电厂使用第二种燃料带来的系统复杂性。但使用煤炭作为

再燃燃料通常需要在再燃区和燃尽区有相对较长的停留时间。在一些使用案例中,需要升级磨煤系统或者使用更细的煤,这些措施都提高了成本。

6、浓淡燃烧技术

通过将整个燃烧过程人为区分为燃气和空气配比不同的若干阶段,使燃气的燃烧分别在燃气过浓、燃气过淡和燃尽三个区域分阶段完成,从而达到在燃烧过程中一直NOx生成的目的。NOx的生成与空燃比有关。当空燃比接近1时,NOx 的生成量最大。空燃比小于1时,由于氧浓度较低,燃烧过程缓慢,可抑制NOx 的生成。当空燃比大于1.5时,由于燃烧温度较低,也能抑制NOx的生成。因此该类方法又称为非化学当量燃烧或者偏差燃烧。

通常燃料稀薄燃烧的燃烧器和燃料过浓燃烧的燃烧器互相配置交替使用,也可有效降低NOx的生成。在燃烧器多层不值得电厂锅炉,通过调整各层燃烧器的燃料和空气分配,既可降低NOx的浓度。实现浓淡偏差燃烧技术有两种方法,一是在总风量不变的条件下,调整上下燃烧器喷口的燃料和空气的比例,将气流中0.3-0.5g(煤粉)/kg(空气)的常规浓度提升至0.6-1.0kg(煤粉)/kg(空气),例如W形火焰炉使用的旋风分离浓缩;另一种方法是使用浓淡燃烧型低氮燃烧器,下面简单介绍一下。

各种低NOx燃烧器依据一种原理或者几种原理的组合,仅仅采用空气分级燃烧的技术多为第二代低NOx燃烧器,采用燃料分级技术的燃烧技术多为第三代低NOx燃烧器。为了减少未完全燃烧造成的热损失,空气分级的特征是助燃空气分级进入燃烧装置,降低初始燃烧去的氧浓度,以降低火焰的峰值温度。空气分级燃烧一般有两类:一是整个燃烧室内的分级燃烧,另一类是单个燃烧器的分级燃烧。燃料分级燃烧中能形成二次火焰区,在这里还原部分已生成的NOx。延期再循环技术将烟气直接送到燃烧器,产生还原性气氛。目前有多种类型的低NOx燃烧器广泛应用于电站锅炉和大型工业锅炉。

1)、炉膛内整体空气分级的低NOx直流燃烧器

这种燃烧器与传统燃烧器的区别在于设置了一层或两层燃尽风喷口,一部分助燃空气(5%-30%)通过这些喷口进入炉膛。前面讲的分段燃烧技术是这种燃烧器的最早形式。这种燃烧器的主燃区处于空气过剩系数较低的工况,使得燃烧生成CO;而且燃料中的挥发分氮分解生成大量的HN、HCN、NH3以及NH2等,它们或相互复合生成N2或与生成的NOx发生还原反应,因而抑制了NOx的生成。在顶部引入的燃尽风用于保证燃料完全燃烧。

这类燃烧器要求:

a、合理的确定燃尽风(OFA)喷口与最上层煤粉喷口的距离,距离越大,分级效果越好,NO生成量的下降幅度大,但飞灰等可燃物浓度会增加。最佳距离的确定取决于炉膛结构和燃料种类。

b、燃尽风量要适当。风量大,分级效果好,但燃尽风量过大会引起一次燃烧区因严重缺氧而出现结渣和高温腐蚀。对于燃煤炉合理的燃尽风量约为20%左右,对燃油和燃气炉可以再高一些。

c、燃尽风应有足够高的流速,以便能与烟气充分混合。

燃尽风一般有三种布置形式:强耦合式燃尽风、分离式燃尽风以及两者一起采用的形式。使用两层OFA时,为保证飞灰可燃物不至于升高过多,需将煤粉磨得更细一些,目前我国对此使用较少。OFA能减少NOx排放20%-60%。控制效果与燃煤性质、锅炉设计、燃烧器设计和初始NOx浓度有关。当煤中挥发分较高时,效果较好。一些新型的OFA方法能获得更好的去除效果。

2)空气分级的低NOx旋流燃烧器

在这种燃烧器的出口,助燃空气便逐渐混入煤粉-空气射流。准确的控制燃烧器区域燃料与助燃空气的混合过程成为这种助燃器的技术关键,这种技术能控制燃料型NOx和热力型NOx的生成,同时又能具有较高的燃烧效率。通过良好的结构设计,合理地控制燃烧器喉部空气和燃料的动量以及射流的流动方向,可以满足以上两项要求。该燃烧器的设计是在紧靠燃烧器前沿陈生了一个主燃烧区,常称为一次火焰区。一次火焰区内燃料相对比较富裕,经常形成实际空气量低于理论空气量的状况。在一次火焰区的外围供入过剩的空气,形成二次火焰区,将燃料燃尽。挥发分和含氮组分的大部分在一次火焰区析出,但因处于缺氧、高CO和高CH浓度区,限制了喊单组分向NOx的转化。研究表明,低NOx燃烧器与燃尽风的结合,可使NOx减少幅度高达50%。

3)浓淡偏差型低NOx燃烧器

浓淡偏差型NOx燃烧器的基本原理是在燃烧器中增加了气固分离装置,使进入燃烧器风管中的煤粉-空气混合物分离,在摄入炉膛之后,使向火侧煤粉浓度高,背火侧的煤粉浓度低,富粉流的空气量少,抑制燃料型NOx的生成;贫粉流因空气量多,燃料型NOx生成增多,但因温度低,热力型NOx减少,所以总的NOx排放会降低,并且加快和强化煤粉的着火和燃烧。该燃烧器喷嘴体内设导向管,利用离心分离作用,使得弯头处风粉分离,通过隔板保持风粉分离状态,实现了浓淡偏差燃烧,可以使NOx降低,浓煤粉流由于热容小加上高温烟气回流,将先着火。然后对淡煤粉流进行辐射加热使之着火,这样着火比较稳定,在出口形成一个回流区,可燃物损失减少,因此这种燃烧器具有高效低NOx的综合性能。

4)空气/燃料分级低NOx燃烧器

这种燃烧器的主要特征是空气和燃料都是分级送入炉膛。燃料分级送入,可在一次火焰区的下游形成一个富集NH3、CH、HCN的低氧还原区,燃烧产物通

分级送入的燃料常称为辅助过此区时,已经生成的NOx会被部分的还原为N2

燃料或者还原燃料。该燃烧器原理与空气分级低NOx燃烧器一样,形成一次火焰区,接近理论空气量燃烧,可以保证火焰稳定性;分级燃料在一次火焰下游一定距离混入,形成二次火焰(超低氧条件),在此区域内,已经生成的NOx被NH3、HCN和CO等还原为N2;分级风在第三阶段送入,完成燃尽阶段。这种燃烧器的性能取决于以下条件:

a、一次火焰的扩散度

b、二次火焰区的空气/燃料比例(还原燃料量)

c、燃烧产物在二次火焰区的停留时间

d、还原燃料的还原活性

增加还原燃料量有利于NOx的还原,但还原燃料过多会使一次火焰不能维持其主导作用并产生不稳状况,最佳还原燃料比例在20%-30%之间。还原燃料的反应活性会影响燃尽时间和燃烧产物在还原区的停留时间。用氮含量低、挥发分高的燃料作为还原燃料较佳。

与此类似,利用直流燃烧器可以在炉膛内同时实现空气和燃料分级,在炉膛内形成三个区域,即一次区、还原区和燃尽区,常称为三级燃烧技术。

另外,采用循环流化床锅炉也是控制氮氧化物排放的先进技术。

二、循环流化床燃烧技术

循环流化床燃烧技术是一项近二十年发展起来的清洁煤燃烧技术。当气流速

度达到使升力与煤粒的重力相当的临界速度时,煤粒将开始浮动流化。维持料层内煤粒间的气流实际速度大于临界值而小于输送速度,是建立流化状态的必要条件。流化床为固体燃料的燃烧创造了良好的条件。首先,流化床内物料颗粒在气流中进行强烈的湍动和混合强化了气固两相的热量和质量交换;其次,燃料颗粒在料层内上下翻滚,延长了它在炉内的停留时间;同时,由于流化床内的料层主要由炙热的灰渣粒子组成,料层内有很大的储热量,一旦新煤加入,立即被高温灼热的灰渣颗粒包围加热、干燥乃至着火燃烧。燃烧过程中,处于沸腾状的煤粒和灰渣粒子相互碰撞,使煤粒不断更新表面,再加上能与空气充分混合并在床内停留较长时间,促进了它的燃尽过程。流化床燃烧的这些特点,使得它具有燃料适应性广、燃烧效率高、氮氧化物排放低、低成本石灰石炉内脱硫、负荷调节比大和负荷调节快等突出优点。

流化燃烧的床层温度一般控制在850-900℃之间。床层温度过低时,煤中析出的某些挥发分和燃烧中产生的CO来不及燃尽就从床层逸出,从而降低燃烧效率。由于料层中绝大部分是灰粒,为防止运行中结渣,床层温度一般不宜超过1000℃。循环流化床的流化速度介于鼓泡流化床和气力输送之间,物料循环比约为20:1,甚至更高。循环流化床中无明显的气泡存在,断面孔隙率大,沿垂直轴向存在颗粒的浓度梯度但不存在确定的床层界面。它与鼓泡床锅炉的最大区别在于炉内流化风速较高(一般为4~8m/s),在炉膛出口加装了气固物料分离器。被烟气携带排出炉膛的细小固体颗粒,经分离器分离后,再送回炉内循环燃烧。

循环流化床锅炉可分为两个部分:第一部分由炉膛(快速流化床)、气固物料分离器、固体物料再循环设备和外置热交换器(有些循环流化床锅炉没有该设备)等组成,上述部件形成了一个固体物料循环回路。第二部分为对流烟道,布置有过热器、再热器、省煤器和空气预热器等,与其它常规锅炉相近。循环流化床锅炉燃烧所需的一次风和二次风分别从炉膛的底部和侧墙送入,燃料的燃烧主要在炉膛中完成,炉膛四周布置有水冷壁用于吸收燃烧所产生的部分热量。由气流带出炉膛的固体物料在气固分离装置中被收集并通过返料装置送回炉膛。

循环流化床燃烧锅炉的基本技术特点:a、低温的动力控制燃烧。循环流化床燃烧是一种在炉内使高速运动的烟气与其所携带的湍流扰动极强的固体颗粒密切接触,并具有大量颗粒返混的流态化燃烧反应过程;同时,在炉外将绝大部分高温的固体颗粒捕集,并将它们送回炉内再次参与燃烧过程,反复循环地组织燃烧。显然,燃料在炉膛内燃烧的时间延长了。在这种燃烧方式下,炉内温度水平因受脱硫最佳温度限制,一般850℃左右。这样的温度远低于普通煤粉炉中的温度水平,并低于一般煤的灰熔点,这就免去了灰熔化带来的种种烦恼。这种“低温燃烧”方式好处甚多,炉内结渣及碱金属析出均比煤粉炉中要改善很多,对灰特性的敏感性减低,也无须很大空间去使高温灰冷却下来,氮氧化物生成量低,可于炉内组织廉价而高效的脱硫工艺,等等。从燃烧反应动力学角度看,循环流化床锅炉内的燃烧反应控制在动力燃烧区(或过渡区)内。由于循环流化床锅炉内相对来说温度不高,并有大量固体颗粒的强烈混合,这种情况下的燃烧速率主要取决于化学反应速率,也就是决定于温度水平,而物理因素不再是控制燃烧速率的主导因素。循环流化床锅炉内燃料的燃尽度很高,通常,性能良好的循环流化床锅炉燃烧效率可达95~99%以上。 b、高速度、高浓度、高通量的固体物料流态化循环过程。循环流化床锅炉内的固体物料(包括燃料、残炭、灰、脱硫剂和惰性床料等)经历了由炉膛、分离器和返料装置所组成的外循环。同时在炉膛内部因壁面效应还存在着内循环,因此循环流化床锅炉内的物料参与了外循环和内

循环两种循环运动。整个燃烧过程以及脱硫过程都是在这两种形式的循环运行的动态过程中逐步完成的。 c、高强度的热量、质量和动量传递过程。在循环流化床锅炉中,大量的固体物料在强烈湍流下通过炉膛,通过人为操作可改变物料循环量,并可改变炉内物料的分布规律,以适应不同的燃烧工况。在这种组织方式下,炉内的热量、质量和动量传递过程是十分强烈的,这就使整个炉膛高度的温度分布均匀。

循环流化床锅炉的优点:a、燃料适应性广。这是循环流化床锅炉的主要优点之一。在循环流化床锅炉中按重量计,燃料仅占床料的1~3%,其余是不可燃的固体颗粒,如脱硫剂、灰渣等。因此,加到床中的新鲜煤颗粒被相当于一个“大蓄热池”的灼热灰渣颗粒所包围。由于床内混合剧烈,这些灼热的灰渣颗粒实际上起到了无穷的“理想拱”的作用,把煤料加热到着火温度而开始燃烧。在这个加热过程中,所吸收的热量只占床层总热容量的千分之几,因而对床层温度影响很小,而煤颗粒的燃烧,又释放出热量,从而能使床层保持一定的温度水平,这也是流化床一般着火没有困难,并且煤种适应性很广的原因所在。 b、燃烧效率高。循环流化床锅炉的燃烧效率要比鼓泡流化床锅炉高,通常在95~99%范围内,可与煤粉锅炉相媲美。循环流化床锅炉燃烧效率高是因为有下述特点:气固混合良好;燃烧速率高,其次是飞灰的再循环燃烧。c、高效脱硫。由于飞灰的循环燃烧过程,床料中未发生脱硫反应而被吹出燃烧室的石灰石、石灰能送回至床内再利用;另外,已发生脱硫反应部分,生成了硫酸钙的大粒子,在循环燃烧过程中发生碰撞破裂,使新的氧化钙粒子表面又暴露于硫化反应的气氛中。这样循环流化床燃烧与鼓泡流化床燃烧相比脱硫性能大大改善。当钙硫比为1.5~2.0时,脱硫率可达85~90%。而鼓泡流化床锅炉,脱硫效率要达到85~90%,钙硫比要达到3~4,钙的消耗量大一倍。与煤粉燃烧锅炉相比,不需采用尾部脱硫脱硝装置,投资和运行费用都大为降低。 d、氮氧化物(NOX)排放低。氮氧化物排放低是循环流化床锅炉另一个非常吸引人的特点。运行经验表明,循环流化床锅炉的NOX排放范围为50~150ppm或40~120mg/MJ。循环流化床锅炉NO X排放低是由于以下两个原因:一是低温燃烧,此时空气中的氮一般不会生成NO X;二是分段燃烧,抑制燃料中的氮转化为NO X,并使部分已生成的NO X 得到还原。e、燃烧强度高,炉膛截面积小。炉膛单位截面积的热负荷高是循环流化床锅炉的另一主要优点。其截面热负荷约为 3.5~4.5MW/m2,接近或高于煤粉炉。同样热负荷下鼓泡流化床锅炉需要的炉膛截面积要比循环流化床锅炉大2~3倍。f、负荷调节范围大,负荷调节快当负荷变化时,只需调节给煤量、空气量和物料循环量,不必像鼓泡流化床锅炉那样采用分床压火技术。也不象煤粉锅炉那样,低负荷时要用油助燃,维持稳定燃烧。一般而言,循环流化床锅炉的负荷调节比可达(3~4):1。负荷调节速率也很快,一般可达每分钟4%。

三、煤的先进燃烧技术在国内外的发展现状

1、低NO x 燃烧技术

为了控制燃烧装置排放的氮氧化物对生态环境的危害,国外从50年代起就开始了燃烧过程中氮氧化物生成机理和控制方法的研究。到70年代末和80年代, 低NOx燃烧技术的研究和开发达到高潮, 开发出了低NOx燃烧器等实用技术。进入90年代,有关电站锅炉供货商又对其开发的低NOx燃烧器做了大量的改进和优化工作, 使其日臻完善。空气分级燃烧技术是目前国内外采用的较多的一种低氮燃烧技术,又称分段送风,基本原理是将燃烧过程分两阶段完成。1989 年,德国Babcock公司设计的一台新型低NOx 煤粉锅炉投入商业运行, 这台安装

在STEAG煤电联营公司He rne热电厂的4号机组锅炉是德国综合采

用抑制NOx生成(两次空气分级)、炉内还原已生成的NOx(燃料分级)和烟气脱硝装置( SCR ) 的首台机组。早在1980年日本的三菱公司就将天然气再燃技术应用于实际锅炉NOx排放减少50%以上。美国能源部的“洁净煤技术”计划也包括再燃技术,其示范项目分NOx排放减少30%到70%。在日本、美国、欧洲再燃技术大量应用于新建电站锅炉和已有电站锅炉的改造在商业运行中取得良好的环境效益和经济效益。在我国燃料再燃烧技术研究和应用起步较晚,主要是因为我国过去对环保的要求较低。另一方面则是出于技术经济上的考虑。进入90年代,我国严重缺电局面开始缓和,大气污染日益严重。1994年全国85个大中城市中NOx超标的城市就有30个,占35%。1998年对全国322个省控城市量监测结果分析NOx年日平均值范围在0.006一0.152mg/m3。全国平均为0.037mg/m3,治理大气污染成为十分迫切的任务。随着环保要求的不断提高,研究适应我国国情的低成本的再燃低NOx燃烧技术具有良好的前景。

2、循环流化床燃烧技术

德国鲁奇公司首先取得了循环流化床燃烧技术的专利,并研究开发出当时世界上最大的270 t/h循环流化床锅炉,由此引发出了循环流化床燃烧技术的开发热潮,至今已经形成几个技术流派:以鲁奇公司为代表(包括Stain公司和ABB公司) 的绝热旋风筒带有外置换热床的流化床锅炉技术,以美国FW公司为代表的带有Intrex的汽冷旋风分离循环流化床锅炉技术;以原芬兰Alhstrom公司为代表的燃烧室内布置翼形受热面的高温绝热旋风分离的循环流化床锅炉技术等。上世纪90年代中期,又迅速崛起了由前Alhstrom公司开发出的冷却式方型分离紧凑式循环流化床锅炉技术。技术流派的演变是一个技术发展的过程。上世纪80年代,由笨重易损的热旋风筒,进步到上世纪90年代初的精巧耐用的汽冷旋风筒,进而到上世纪90年代中开发出的冷却式方型分离紧凑式循环流化床锅炉又克服了汽冷旋风筒的生产成本问题,并为循环流化床锅炉最终回归到传统锅炉的简洁布置开创了道路;目前由F.W.公司生产,安装于波兰的260MW循环流化床锅炉即采用方形分离器技术。我国曾多次引进国外循环流化床锅炉技术,并数次购买国外循环流化床锅炉产品,推动了中国循环流化床锅炉技术的发展。国内三家大型锅炉厂先后引进了美国F.W.公司50~100 MW汽冷旋风筒循环流化床锅炉技术、德国EVT150 MW以下容量再热循环流化床锅炉技术和前ABB-CE的再热循环流化床锅炉技术。目前国家发改委组织引进了阿尔斯通300 MW循环流化床锅炉技术。国内的循环流化床技术发展,在消化引进国外循环流化床技术和研制开发自主知识产权的大型循环流化床锅炉制造技术并重的基础上,一方面消化完善引进国外循环流化床技术,使之完全适应我国的国情;另一方面在消化的基础上找到突破口,结合自己开发工作的成果和经验予以创新,形成自己的专利技术,将大大推动中国的循环流化床技术发展。

目前随着工业化进程的推进,环境问题越来越严峻。保护环境是人类有意识地保护自然资源并使其得到合理的利用,防止自然环境受到污染和破坏;对受到污染和破坏的环境必须做好综合的治理,以创造出适合于人类生活、工作的环境。让人民的生活更美好。有利于解决现实的或潜在的环境问题,协调人类与环境的关系,保障经济社会的持续发展。经过学习本门课程,我感觉收获很多很多。虽然是化学工艺而非环境保护专业,但是经过课程的学习、资料的查询以及作业的完成,我发现不管任何专业,只要你想做环保方面的事情,需要好好学习专业知

识,然后进行发散性思维,为我国乃至世界的环境做出自己的贡献。经过学习,我明白了工艺的创新是在最简单的原理基础之上,万变不离其宗,需要改变的是个人的阅历以及专业知识的武装。本门课程改变了我对专业的一些看法,之前一直以为学一门只能在本专业有所成就,现在看来之前的想法有多幼稚。感谢本门课程让我明白了很多很多,也感谢老师的耐心指导。

煤的先进燃烧技术

煤的先进燃烧技术 化艺1101 苗蓓目前,在我国的能源消费结构中,煤炭是第一能源,以煤、石油、和天然气为主的化石燃料的使用也随之带来一系列的环境问题。煤是最重要的固体燃料,它是一种不均匀的有机燃料,主要由植物的部分分解和变质形成的,所以其形成要经历一段很长的时期,常常是处于高压覆盖层以及较高的温度条件。而在燃烧过程中,煤的发热量低,灰分含量高,含硫量虽然比重油低,但为获得同样热量所耗煤量要大的多,所以产生的硫氧化物反而可能更多。煤的含氮量约比重油高5倍,因而氮氧化物生成量也高于重油,此外煤的燃烧还会带来汞、砷等微量重金属类污染,氟、氯等卤素污染和低水平的放射性污染。因此,采用先进的燃烧技术可以使煤充分燃烧,产生的污染会随之减少。 控制NO x 排放的技术措施可以分为两类,一是所谓的源头控制,其特征是通过各种技术手段,控制燃烧过程中NO x 的生成反应,另一类是所谓的尾部控制,其特征是把已经生成的NO x 通过某种手段还原为N2,从而降低NO x 的排放量。低NO x 燃烧技术措施一直是应用最广泛的措施,即便为满足排放标准的要求不得不使用尾气净化装置,仍需采用它来降低净化装置入口的NO x浓度,已达到节省费用的目的。从20世纪50年代起,人们就开始了燃烧过程中氮氧化物生成机理和控制方法的研究,到70年代末和80年代,低NO x 燃烧技术的研究和开发达到高潮,开发出低NO x 燃烧器等。90年代后,已开发的低NO x 燃烧器经过大量改进和优化,日臻完善。 一、低NO x 燃烧技术 目前工业采用的低NO x 燃烧技术主要包括低氧技术、烟气循环燃烧、分段燃烧和浓淡燃烧技术等。 1、低氧燃烧技术 NO x 排放量随着炉内空气量的增加而增加,为了降低其含量,锅炉应在炉内空气量较低的工况下运行,一般来说,可以降低15%-20%。锅炉采用低空气过剩系数运行技术,不仅可以降低NO x ,还减少了锅炉排烟热损失,提高锅炉热效率。需要说明的是,由于采用低空气过剩系数会导致一氧化碳、碳氢化合物以及炭黑等污染物相应增多,飞灰中可燃物质也可能增加,从而使燃烧效率下降,故电站锅炉实际运行时的空气过剩系数不能做大幅度调整。因此,在低空气过剩系数燃烧时,必须同时满足过路盒燃烧效率较高、而一氧化氮等有害物质最少的要求。 我国燃用烟煤的电站锅炉多数设计在空气过剩系数为 1.17-1.20(氧含量为3.5%-4.0%)下运行,此时一氧化碳含量为(30-40)*10^-6;若氧含量降到3.0%以下,则一氧化碳含量将急剧增加,不仅导致化学不完全燃烧损失增大,而且会引起炉内的结渣和腐蚀。因此,以炉内含氧量3%以上或一氧化碳含量等于2*10…^-4作为最小空气过剩系数的选择依据。 2、降低助燃空气预热温度 在工业实际操作中,经常利用尾气的废热预热进入燃烧器的空气。虽然这样有助于节约能源和提高火焰温度,但也导致氮氧化物排放量增加。实验数据表明,当燃烧空气由27℃预热至315℃,NO排放量将会增加三倍。降低助燃空气预热温度可降低火眼去的温度峰值,从而减少热力型NO x 生成量。实践表明,这一措施不宜用于燃煤、燃油锅炉;对于燃气锅炉,则有明显降低NO x 排放的效果。

燃烧理论基础复习题

《燃烧理论基础》复习题 第一章燃烧中的化学热力学及燃烧化学问题 1、我国目前能源与环境的现状怎样? 2、什么叫燃烧? 3、从正负两方面论述研究燃烧的意义。 4、不同的学科研究燃烧学各有设么侧重点? 5、简述能量转化与守恒关系。 6、标准生成焓、生成焓的定义? 7、反应焓的定义及计算方法? 8、燃烧焓的定义? 9、用图示的方法(△H-T)表达放热反应与吸热反应。 10、燃烧焓与燃烧能近似相等的原因? 11、燃料热值与燃烧焓的关系? 12、高热值和低热值的区别和转换方法怎样? 13、液体以及气体燃料热值的测试方法如何? 14、反应焓和温度的关系? 15、什么叫化学平衡? 16、平衡常数的三种表达方式和相互间的关系怎样? 17、反应速度、生成速度或消耗速度的表达式? 18、反应度的概念及计算方法? 19、Gibbs函数的定义? 20、自由焓与温度变化的关系? 21、自由焓与压力变化的关系? 22、孤立系统与非孤立系统的反应平衡关系各自通过什么来判断? 23、过量空气系数(φat)与当量比(φ)的概念? 24、浓度以及化学计量浓度的概念? 25、化学反应中达到平衡状态时的反应度及各组分的摩尔比的计算方法怎样? 26、氧化反应中,燃烧空气量与燃烧产物的计算方法怎样? 27、绝热火焰温度的计算方法(反应度为1、反应度小于1、考虑高温热分解三种)怎样? 28、净反应速度的定义? 29、化学反应过程中浓度岁时间的变化关系怎样? 30、反应级数的定义(反应物浓度的指数和)与确定?一般烃类的燃烧反应级数为多少? 31、Arrhenius定律的内容是什么?(它考察了比反应速度与温度的关系) 32、为什么说Arrhenius定律的结论与分子碰撞理论对化学反应速度的解释是一致的? 33、热爆理论的局限性体现在什么地方? 34、什么叫链反应?它是怎样分类的? 35、链反应一般可以分为几个阶段? 36、以氢气与溴反应生成溴化氢微粒推导该反应的反应级数。 37、分支链反应为什么能极大地增加化学反应的速度? 38、图解燃烧半岛现象。 39、常见的有机类燃料及其衍生物有哪几种? 40、图解碳氢化合物燃烧过程中出现的现象。

洁净煤技术考试

洁净煤技术考试(辽) 第一章 洁净煤技术:是煤炭高效和洁净开发、加工、燃烧、转化及污染控制技术的总称。 洁净煤技术的根本目的:减少环境污染和提高煤炭利用效率。 我国洁净煤技术的主要目标:1、全过程减排污染物,重点是减排二氧化硫;中悬浮颗粒物; 氮氧化物;2、提高煤炭利用效率,节约煤炭,减排二氧化碳; 3、强化煤炭转化,改善能源终端消费结构,实现煤炭低碳化 利用,促进能源安全问题的解决。 洁净煤技术分类:1、煤炭燃烧前净化技术:选煤、型煤、水煤浆。 2、煤炭燃烧中净化技术:低污染燃烧、燃烧中固硫、流化床燃烧、涡流燃烧。 3、燃烧后净化技术:烟气净化、灰渣处理、粉煤灰利用。 4、煤炭转化:煤气联合循环发电、煤气化、煤的地下气化、没得直接液化、煤的间接液 化、煤料电池、磁流体发电。 5、煤系共伴生资源利用:煤层气资源开发利用、煤系有益矿产利用、煤层伴生水利用。第三章型煤技术 一粉煤成型后具有多方面的优点: 1,可以提高炉窑效率5%-15%,从而节约煤炭7%-15% 2,可以减少粉尘排放量30%-60%,从而降低大气中粉尘颗粒物浓度 3,使用固硫添加剂的型煤可以降低SO2排放20%-50%从而在一定程度上遏制酸雨的危害4,使燃煤的其他有害物质排放降低 二1型煤:是按照一定粒度要求,将一种或者几种煤粉在有或者无粘结剂的条件下,加工制成一定的外形和物理化学性质的煤炭制品。 2 按照成型过程中的温度通常将型煤分为冷压法和热压法型煤 3 粉煤成型过程主要有无粘结剂成型和粘结剂成型两种,根据成型的温度分为冷压成型和热压成型 4煤炭无粘结剂成型的机理有沥青质假说,腐植酸假说,毛细孔假说,胶体假说,分子粘结假说等。 5 常见的型煤粘结剂可以分为有机粘结剂,无机粘结剂,复合粘结剂工农业废物粘结剂等四大类 有机粘结剂:焦油沥青腐植酸木质素硫磺酸高分子聚合物。特点:粘结性强,制取的型煤冷态强度高,但高温时易分解燃烧缺少成焦成分,因此对型煤热性能的作用不太强。无机黏结剂:粘土石灰水玻璃石膏水泥氯化钠等特点:价格低廉具有一定的粘结强度,且内含碱金属碱土金属,碳酸盐或者氧化物等成分。 7 型煤生产工艺随着原料煤的性质,型煤用途,成型方式等会有不同,分为冷压成型和热压成型,冷压成型是指原料在低于100度的温度下进行的成型,包括无粘结剂成型和粘结剂成型

煤及其燃烧的介绍

.煤及其燃烧的介绍(资料) 煤的组成 煤由碳、氢、氧、氮、硫等元素组成,还含有一定水分,灰分和其它杂质。煤的燃烧部分:一是碳,二是挥发分。 碳是煤的主要成分,含碳量越高的,其发热量亦越高。由于碳的燃点较高(约700℃左右)故含碳量越高的煤越难点燃。 挥发分包括氢(H2)、氧(O2)、硫化氢(H2S)、甲烷(CH4)、乙烯(C 2H4)等。挥发分含量较高的煤燃点较低,容易点燃,但碳量相应减少,发热量也较低。 水分是煤的杂质之一,其含量以小于10%为好。 灰分是混入煤中的沙、石、灰土等杂质,一般应小于30%,其含量高的,将使炉渣增多,降低煤质,影响燃烧。但含量过少,在燃烧时又容易出现“流炉”漏炭。 2.煤的种类 煤有褐煤、烟煤、无烟煤、半无烟煤等几种。云南常用的是褐煤、烟煤、无烟煤三种。煤的种类不同,其成分组成与质量不同,发热量也不相同(表4-15)。单位重量燃料燃烧时放出的热量称为发热量,人为规定以每公斤发热量7000千卡的煤作为标准煤,并以此标准折算耗煤量。 (1)褐煤:多为块状,呈黑褐色,光泽暗,质地疏松;含挥发分40%左右,燃点低,容易着火,燃烧时上火快,火焰大,冒黑烟;含碳量与发热量较低(因产地煤级不同,发热量差异很大),燃烧时间短,需经常加煤。

(2)烟煤:一般为粒状、小块状,也有粉状的,多呈黑色而有光泽,质地细致,含挥发分30%以上,燃点不太高,较易点燃;含碳量与发热量较高,燃烧时上火快,火焰长,有大量黑烟,燃烧时间较长;大多数烟煤有粘性,燃烧时易结渣。 (3)无烟煤:有粉状和小块状两种,呈黑色有金属光泽而发亮。杂质少,质地紧密,固定碳含量高,可达80%以上;挥发分含量低,在10%以下,燃点高,不易着火;但发热量高,刚燃烧时上火慢,火上来后比较大,火力强,火焰短,冒烟少,燃烧时间长,粘结性弱,燃烧时不易结渣。应掺入适量煤土烧用,以减轻火力强度。 3.煤的燃烧 (1)煤燃烧需要的条件:煤的燃烧是碳和其它可燃物剧烈氧化的反应。为了把煤炭所含有的热量尽量释放出来,就应充分满足煤对燃烧的要求,以达到使煤尽可能完全燃烧的目的。煤的燃烧需要以下条件: ①维持足够的炉膛温度。煤只有加热到一定温度时才能着火燃烧,而且炉膛内温度越高,煤的燃烧越快,越充分。所以应防止炉膛温度降低,影响煤的燃烧。 ②供给充足的氧气。通风供氧不足,煤不能燃尽。通风供氧过多,导致炉膛温度下降。适当偏多的通风,是保证充分燃烧的条件。在烘烤时,可根据火焰颜色判断通风量进行调节。通常,火焰呈黑红色的表示通风供氧不足,火焰呈亮白色的表示通风供氧过多,火焰呈麦黄色的表示通风供氧适当。 ③需有足够的燃烧时间。煤的燃烧要经过蒸发、分解、碳燃烧、燃尽等阶段。各阶段都需要

洁净煤技术的现状利用概述

煤炭是世界上最丰富的化石燃料资源,占世界化石燃料贮量的70%以上。世界煤的储量也十分丰富,计有可采煤6369亿t[1]。我国煤的储量居世界第三位(有可采煤989亿t)仅次于美国(1776亿t),独联体国家(前苏联1099亿t)[2]。目前煤炭约占世界一次能源消费的30%,按世界能源会议预测,煤炭作为一次能源的重要组成部分的地位将在相当长时间内不会改变,预计2020年煤炭将占世界一次能源消费的33.7%。中国是煤炭生产和消费大国,目前煤炭提供了我国一次能源的70%左右,在可预见的未来几十年内,煤炭仍将是我国主要的一次能源。 煤炭作为能源对人类的发展作出了巨大的贡献,但在煤炭的开发与利用过程中也产生了一系列污染问题,危及生态平衡与人类生存。 洁净煤技术旨在最大限度地发挥煤作为能源的潜能利用,同时又实现最少的污染物释放,达到煤的高效,清洁利用目的。洁净煤技术是一项庞大复杂的系统工程,包含从煤炭开发到利用的所有技术领域,主要研究开发项目包括煤炭的加工、高效燃烧、转化和污染控制等[3]。 为解决美国和加拿大的越境酸雨问题,美国于1986年率先提出洁净煤技术(Clean Coal Technolo-gy),并制订出洁净煤技术示范计划。此后10年中,洁净煤技术已引起国际社会普遍重视,目前已成为世界各国解决环境问题的主导技术之一。 1国外洁净煤技术的进展 美国是最早制定和实施洁净煤技术的国家[3]。美国“洁净煤技术示范计划”共制订了5轮计划的实施。共有40个CCT项目,分布于美国的18个州。项目类型共分为以下4类:(1)先进发电技术:包括常压循环流化床燃烧发电、增压流化床联合循环发电、 洁净煤技术的研究现状及进展 赵嘉博,刘小军 (中国矿业大学化工学院,江苏徐州221008) 摘要:我国是煤炭生产和消费大国,大力开发应用和推广适合我国国情的洁净煤技术是我国能源发展战略的主要内容,具有重要的意义。阐述了洁净煤技术的研究背景及其概念,介绍和分析了国内、外洁净煤技术的研究和发展现状,重点论述了我国目前在洁净煤研究领域的情况,如煤炭地下气化技术、工业型煤技术、水煤浆技术、煤液化技术、洁净煤联合循环发电技术等的情况,列出了洁净煤技术的特点,指出了我国发展洁净煤技术应加强的工作。 关键词:煤炭;洁净煤技术;研究现状 中图分类号:TQ53文献标识码:A文章编号:1671-9816(2011)01-0066-04 Present research status and development of clean coal technology ZHAO Jia-bo,LIU Xiao-jun (School of Chemical Engineering and Technology,China University of mining and Technology,Xuzhou221008,China)Abstract:China is a country which has a big amount of coal production and consumption.It is a very important part to research and apply proper clean coal technology,it’s also the main content of the national energy sources development strategy and has significant sense.The paper describes the background of research and the concept of clean coal technology,introduces and analyzes the status of research and development of clean coal technology with in China and abroad;in particular,describes the special features of Chinese clean coal technology,such as underground coal gasification,industrial moulded coal,coal water slurry, coal liquefaction,clean coal united cycling energy production techniques,in this paper,the features of the clean coal technology are shown,and the works which should be enhanced to develop the techniques in China are also pointed out. Key words:coal;clean coal techniques;present research status 收稿日期:2010-08-09 作者简介:赵嘉博(1986-),男,辽宁锦州人,中国矿业大学 09级在读研究生,主要从事空气重介流化床干法选煤工作和洁 净煤技术方面研究。

煤的清洁燃烧技术

煤的先进清洁燃烧技术介绍 【摘要】中国作为世界上最大的发展中国家,每年都需要燃烧大量的煤。据可靠统计,2013年中国煤的燃烧量达到了36亿吨,比世界其他国家燃煤量的总和还要多。大量煤的燃烧不仅使中国煤炭资源急剧减少,而且严重污染了大气环境,所以发展煤的清洁燃烧技术迫在眉睫。本文从煤的污染物的产生原因和防止措施出发,详细介绍了当前比较先进的煤炭清洁燃烧技术。 【关键词】煤燃烧清洁 一、引言 燃烧是当今世界的主要能源来源,超过85%的全球一次能源消费都是由化石燃料的燃烧提供的。然而,全球能源需求量的不断增长与有限的化石能源储量之间存在着严重的矛盾,从而引发了一系列政治、经济和社会问题;化石燃料燃烧所排放的大量颗粒物、二氧化碳、二氧化硫、氮氧化物等大气污染物还会影响环境安全和人类健康。因此,如何实现高效清洁的燃烧已经成为包括我国在内的世界各国所面临的重大问题。 二、直接燃煤是我国城乡大气污染的主要原因 由于传统的燃煤方式和煤炭加工过程中产生大量的污染物,必然会导致严重的大气污染、酸雨和水污染,甚至造成生态环境与自然植物的破坏,特别是以煤为主要能源的动力燃料的消耗。每年我国电站锅炉、工业炉窑与工业锅炉,仅发电与其它工业耗煤就占了煤炭总消费量的2/3左右,而用于民用生活仅占1/10左右,用于城市供热的占不到1/20。因此,长期以来我国在能源生产与消费中,以煤炭作为主要能源而直接燃烧,又正是造成我国严重大气污染的主要原因之一。

三、煤粉富氧燃烧技术 燃烧中碳捕集即富氧燃烧技术,它是在现有电站锅炉系统基础上,用高纯度的氧气 代替助燃空气,同时辅助以烟循环的燃烧技术,可获得高达富含80%体积浓度的C0 2 烟 气,从而以较小的代价冷凝压缩后实现C0 2 的永久封存或资源化利用:具有相对成本低、易规模化、可改造存量机组等诸多优势,被认为是最可能大规模推广和商业化的CCUS 技术之一。其系统流程:由空气分离装置(ASU)制取的高纯度氧气(0 2 纯度95%以上),按一定的比例与循环回来的部分锅炉尾部烟气混合,完成与常规空气燃烧方式类似的燃 烧过程,锅炉尾部排出的具有高浓度C0 2 的烟气产物,经烟气净化系统(FGCD)净化处理 后,再进入压缩纯化装置(CPU),最终得到高纯度的液态C0 2 ,以备运输、利用和埋存。 国际能源署在减少温室气体排放的研究与开发计划中明确指出,在全球能源与电力 生产如此多样化的今天,不能仅用一种方法来达到减少和控制 CO 2 排放的目的,应采用不同的方法或相互的结合来适应各种不同的燃料资源、环境和地区的具体条件。从技术创新角度来说,可采用提高电站的效率、采用超高参数的发电机组、联合循环等方法; 而 从燃煤烟气产物中捕集CO 2、储存和利用这些高浓度 CO 2 被认为是近期内减缓CO 2 排放 的根本方法,也是真正实现无碳化、低碳化较为可行的措施与技术。中国在发展空间受制、减排压力不断增大的严峻挑战下,积极推动温室气体减排与控制技术的研究与应用尤为重要。 四、浓淡燃烧技术 煤粉浓淡燃烧技术是指通过一定的措施把一次风分成煤粉浓度高的浓气流和煤粉浓度低的淡气流喷入炉内进行燃烧。理论和实践均证明:采用浓淡燃烧技术可提高煤粉着火的稳定性和有效地降低 NOx 排放量。 NOx 生成机理: 再燃区:

浅谈燃煤中重金属控制技术

浅谈燃煤中重金属控制技术 发表时间:2018-12-21T09:31:25.423Z 来源:《电力设备》2018年第23期作者:啜广毅1 孙钰2 [导读] 摘要:我国作为一个煤炭大国,煤炭在一次能源结构中占比高,重金属主要存在于煤炭中,因此重金属控制已成为燃煤污染中的一个新领域。我国在相关标准中对汞等重金属的排放已做了规定。 (1大唐环境产业集团股份有限公司北京 100097;2北京大唐恒通科技有限公司北京 100097) 摘要:我国作为一个煤炭大国,煤炭在一次能源结构中占比高,重金属主要存在于煤炭中,因此重金属控制已成为燃煤污染中的一个新领域。我国在相关标准中对汞等重金属的排放已做了规定。本文首先介绍了痕量重金属的理化特性,说明了重金属对人体的危害。又对我国重金属的排放现状做了简要地介绍。最后对燃煤重金属控制技术做了重点介绍,得出流化床燃烧技术和添加吸附剂技术在现阶段得到 了普遍的应用,这两种技术都具有重金属脱除效果明显。同时高效电除尘技术、湿法脱硫、织物过滤技术和湿式电除尘技术在炉后脱除重金属方面也有着非常显著的作用。 关键词:燃煤重金属控制技术大气污染 1引言 我国作为一个煤炭大国,煤炭在一次能源结构中占比非常高,并且预期在相当长的一段时间内我国一次能源生产和消费仍会以煤炭为主。煤是一种不清洁燃料,燃煤造成的大气污染是全球共同面临的难题,更是制约我国国民经济和社会可持续发展的一个重要因素。因此对燃煤造成的大气污染是我国需要重点关注的热点。 痕量重金属主要存在于燃煤中,因此控制痕量重金属排放已成为燃煤污染中一个新兴领域,也越来越受到各界关注。以往,欧美国家主要关注的是固体废物和垃圾焚烧过程中产生的重金污染,其目的是为了避免焚烧带来更严重的二次污染。近年来,由于燃煤电厂的大量建设,并且我国的能源还将继续依赖煤电产能,因而继SOx、NOx和CO2等污染物之后,燃煤排放重金属污染问题也被提上了全球污染控制的议事日程。随着人们环保意识的提高和认识的深入,燃煤电厂重金属控制必然会愈来愈广泛和严格。 我国在2011年就颁布了新的《火电厂大气污染物排放标准》(GB13223-2011),规定燃煤电厂Hg排放浓度限值为30μg/m3,同年由国务院正式批复的《重金属污染综合防治“十二五”规划》中,明确提出对重点污染物为铅(Pb)、汞(Hg)、镉(Cd)、铬(Cr)和类金属砷(As)等重点区域和重点行业制订严厉的整治措施。因此,研究燃煤过程中重金属的控制技术,对于燃煤电厂重金属减排有着及其重要意义。 2 煤中痕量元素的理化特性[1] 汞作为煤中一种痕量元素,燃烧后大部分随烟气排入大气,生态环境中的汞会对环境、人体产生长期危害。烟气中的汞主要以两种形式存在:单质汞和二价汞的化合物。汞的毒性以有机化合物的毒性最大,大量的汞通过干沉降或湿沉降变为甲基汞侵入沉降污染水体。甲基汞能使细胞的通透性发生变化,破坏细胞离子平衡,抑制营养物质进入细胞,导致细胞坏死。汞能在生物体内富集后循环进入人体,对人类造成危害,并对植物产生毒害,使植物叶片脱落、枯萎。由于汞在大气中的停留时间很长,毒性也大,因此对于汞的排放控制研究已成为研究热点。 砷在地壳中含量不多,主要以硫化物存在。砷化合物为原生质毒物,所有可溶性的砷化合物都是有毒的。砷中毒可以使人体内的酶失去活性,影响细胞正常代谢,导致细胞死亡,引起中毒性神经衰弱症,多发性神经炎,皮肤癌,畸形。砷污染对生态环境的破坏是不可逆的,即使停止排放后,环境中的砷也不会自行消减。煤燃烧、垃圾焚烧和金属冶炼等都会产生含砷废气污染环境。燃煤是大气中砷的主要来源,因此燃煤电厂成为了控制砷排放的重点区域。 硒是谷胱肽氧化酶的活性中心,具有抗脂质过氧化保护生物膜的作用。研究表明适量的硒具有防癌抗癌,预防和治疗心血管疾病,克山病和大节骨病,防衰老,抗辐射及增强机体免疫力等多种功能。但高硒又将出现硒中毒,引起脱发,脱指甲,偏瘫等病症,可见硒的摄入量必须控制在一个很窄的范围内,含量过多或过少都能引起疾病和中毒。 铅是两性金属,具有吸收放射线的性能。铅进入人体后,除部分通过粪便、汗液排泄外,其余在数小时后溶入血液中,阻碍血液的合成,导致人体贫血,出现头痛、眩晕、乏力、困倦、便秘与肢体酸痛等;有的人口中有金属味,动脉硬化、消化道溃疡与眼底出血等症状也与铅中毒有关。小孩铅中毒则出现发育迟缓、食欲不振、失眠,伴有多动、听觉障碍、注意不集中、智力低下等现象。 3我国燃煤电厂烟气重金属排放现状[2] 一些学者对我国部分燃煤电厂烟气重金属元素进行了现场采样分析,但所测重金属元素种类大都较少,并且就全国各省市电厂来说,进行的重金属测试远远不够,表1整理了部分研究者在某些省市实测的的燃煤电厂汞排放数据。 表1 我国部分燃煤电厂汞排放实测数据 目前我国对燃煤电厂汞排放的研究结果显示我国多数燃煤电厂烟气汞排放浓度低于《火电厂大气污染物排放标准》GBl3223—2011汞及其化合物标准限值0.03mg/m3(30μg/m3)。我国学者在研究燃煤电厂汞排放特征的同时,还研究了电厂污控设施对汞的脱除效果。研究表明,燃煤电厂污控设施中除尘装置、脱硫装置、脱硝装置的运行均对烟气中汞的去除有一定的作用。 4 燃煤重金属控制技术[3-4]

灭火的基本原理

灭火的基本原理由燃烧所必须具备的几个基本条件可以得知,灭火就是破坏燃烧条件使燃烧反应终止的过程。其基本原理归纳为以下四个方面:冷却、窒息、隔离和化学抑制。 1.冷却灭火:对一般可燃物来说,能够持续燃烧的条件之一就是它们在火焰或热的作用下达到了各自的着火温度。因此,对一般可燃物火灾,将可燃物冷却到其燃点或闪点以下,燃烧反应就会中止。水的灭火机理主要是冷却作用。 2.窒息灭火:各种可燃物的燃烧都必须在其最低氧气浓度以上进行,否则燃烧不能持续进行。因此,通过降低燃烧物周围的氧气浓度可以起到灭火的作用。通常使用的二氧化碳、氮气、水蒸气等的灭火机理主要是窒息作用。 3.隔离灭火:把可燃物与引火源或氧气隔离开来,燃烧反应就会自动中止。火灾中,关闭有关阀门,切断流向着火区的可燃气体和液体的通道;打开有关阀门,使已经发生燃烧的容器或受到火势威胁的容器中的液体可燃物通过管道导至安全区域,都是隔离灭火的措施。 4.化学抑制灭火:就是使用灭火剂与链式反应的中间体自由基反应,从而使燃烧的链式反应中断使燃烧不能持续进行。常用的干粉灭火剂、卤代烷灭火剂的主要灭火机理就是化学抑制作用。 灭火的基本方法 根据物质燃烧原理和人们长期同火灾作斗争实践经验,灭火的基本方法有四种:

一、冷却灭火法 冷却灭火,是根据可燃物质发生燃烧时必须达到一定的温度这个条件,将灭火剂直接喷洒在燃烧的物体上,使可燃物的温度降低到燃点以下从而使燃烧停止。用水进行冷却灭火,是扑救火灾的最常用方法。二氧化碳的冷却效果也很好。 在火场上,除用冷却法直接扑灭火灾外,还经常冷却尚未燃烧的可燃物质及建筑构件、生产装置或容器。 二、隔离灭火法 隔离灭火法,是根据发生燃烧必须具备可燃物这个条件,将已着火物体与附近的可燃物隔离或疏散开,从而使燃烧停止,如关闭阀门,阻止可燃气体、液体流入燃烧区;拆除与火源相毗连的易燃建筑等。 三、窒息灭火法 窒息灭火法,是根据燃烧需要足够的空气这个条件,采取适当措施来防止空气流入燃烧区,使燃烧物质缺乏或断绝氧气而熄灭。这种灭火方法,适用于扑救封闭的房间、地下室、船舱内的火灾。 四、抑制灭火法 抑制灭火法,就是使灭火剂参与燃烧的连锁反应,使燃烧过程中产生的游离基消失,形成稳定分子,从而使燃烧反应停止。 目前被认为效果较好、使用较广的抑制灭火剂是囱代烷灭火剂(如1211、1301)。 但囱代烷灭火剂对环境有一定污染,国际环境卫生组织已限制使用。 此外,近年发展起来的干粉灭火剂,也有认为是属抑制法灭火剂之一,而

洁净煤技术发展综述

洁净煤技术(clean coal technology) 传统意义上的洁净煤技术主要是指煤炭的净化技术及一些加工转换技术,即煤炭的洗选、配煤、型煤以及粉煤灰的综合利用技术,国外煤炭的洗选及配煤技术相当成熟,已被广泛采用;目前意义上洁净煤技术是指高技术含量的洁净煤技术,发展的主要方向是煤炭的气化、液化、煤炭高效燃烧与发电技术等等。它是旨在减少污染和提高效率的煤炭加工、燃烧、转换和污染控制新技术的总称,是当前世界各国解决环境问题的主导技术之一,也是高新技术国际竞争的一个重要领域。根据我国国情,洁净技术包括:选煤,型煤,水煤浆,超临界火力发电,先进的燃烧器,流化床燃烧,煤气化联合循环发电,烟道气净化,煤炭气化,煤炭液化,燃料电池。 《洁净煤技术》杂志创刊于1995年,是由国家煤矿安全监察局主管、由煤炭科学研究总院与煤炭工业洁净煤工程技术中心联合主办,经国家科委与新闻出版署正式批准向国内外公开发行的国家级技术刊物。主要刊载煤炭加工(洗选、型煤、水煤浆、配煤、煤泥利用),煤炭高效洁净燃烧(流化床技术、粉煤燃烧、燃煤联合循环发电、矸石发电),煤炭转化(气化、液化、焦化、燃料电池),污染控制与废弃物管理(土地复垦、烟气净化、粉煤灰综合利用、矿井水处理、矿区污染治理)等洁净煤技术方面的学术论文、研究报告、专题评述、国外技术动态和政策法规等文章。 2000年荣获中国学术期刊(光盘版)检索与评价、首届《CAJ-CD规范》执行优秀奖,全国中文核心期刊,中国科技核心期刊,是煤炭系统著名的技术类期刊。 《洁净煤技术》杂志社主营业务:①编辑、出版《洁净煤技术》期刊;编辑、出版书籍、增刊、专刊;②为矿山设备提供科学研究、设备选型、专题调研、专家咨询等咨询服务;为矿山设备、技术应用提供广告策划宣传、企业产品鉴定、推介(策划与发布)服务;③举办专业或专题技术培训、学术研讨会;承办、宣传、协办煤炭、电力、冶金、化工、机械等行业相关领域展会;④承包各类系统数据集成信息化项目;承担循环经济、企业管理、发展战略等方面的经济咨询业务;⑤承担煤炭企业技术咨询课题及技术服务项目、可行性研究及煤炭企业发展规划和区域规划等。 编辑本段技术工艺 洁净煤技术包括两个方面,一是直接烧煤洁净技术,二是煤转化为洁净燃料技术。 直接烧煤洁净技术 这是在直接烧煤的情况下,需要采用的技术措施:①燃烧前的净化加工技术,主要是洗选、型煤加工和水煤浆技术。原煤洗选采用筛分、物理

煤炭燃烧特性指标

煤炭燃烧特性指标 几乎所有的煤炭特性指标都与煤炭的燃烧特性是相关的,反之,也没有一个能完全、全面表征煤炭燃烧特性的指标。与此同时,不同的煤炭特性指标对于煤炭燃烧特性的重要性,也随着煤炭燃烧方式的不同而异,并具有相当的差别。作为影响煤炭燃烧特性或者说过程最明显的指标是煤炭的挥发份和粘结性或者说膨胀系数。前者表征着煤炭在燃烧过程中的以气相完成的份额和其对后续固相燃烧过程的影响;后者则关系到煤炭颗粒因形态、尺寸和反应表面积的变化而使其自身的燃烧特性受到的影响。而前者和后者有时又是具有密切联系的。与煤炭燃烧特性有关的还有挥发份的释出特性、焦炭的反应性、煤炭的热稳定值、重度等,以及煤炭在堆放过程中的风化、自燃特性和可磨度。 煤炭颗粒在受热过程中的熔融软化、胶质体和半焦的形式几乎所有的烟煤在受热升温的过程中与挥发份释出的同时,都会出现胶质体,呈塑性和颗粒的软化现象。煤炭颗粒间的粘结就是因颗粒胶体间的相互粘结而产生的,因此煤炭的粘结性也就于其所呈现胶体的条件相关。当一个按一定升温速度,经历着受热过程的煤炭颗粒进行观察时,考虑到在此受热过程中热量总是从表面传向颗粒核心的,在同一时间内表面温度也总高于核心。可以发现不同的烟煤,在表面温度达到320~350℃以前,颗粒的形态变化一般觉察不到,只

有煤化程度低的气煤才可观察到表面开始有挥发份气体释出。在温度到350~420℃时,可以观察到在颗粒表面出现了一层带有气泡的液相膜,表面上也逐渐失去原来的棱角,这层膜就是胶质体。当温度为500~550℃时,一方面因颗粒内部温度升高,使胶质体层向内层发展,以及外部的胶质体层因挥发份释出被蒸干转化为半焦,即从表面到中心由半焦壳、胶质体和原有的煤三层所构成,但这种形态所保持的时间是短暂的。随着受热的继续,胶质体的发展和体积的膨胀,半焦外壳出现裂口,胶质体流出。其后是胶质体向颗粒中心区域的发展,流出的胶质体被蒸干转变为半焦,直到整个颗粒都经历胶质体和半焦的形成。整个的过程如图3-2-2所示:试验证明软化温度越低的煤种,挥发份开始释出的时间越早。因此软化温度Tp(对于不同的烟煤表面开始出现液相膜的温度)和再固化温度TK(呈现最大塑性的温度TMAX以及被蒸干再次呈固体形状的温度)都是表明煤炭流变特性的指标,同样也间接表明了于煤炭燃烧特性密切相关的问题。 Ⅰ软化开始阶段Ⅱ开始形成半焦的阶段Ⅲ煤粒强烈软化和半焦破 裂阶段

燃烧理论基础

本课程的学习内容 第一章燃烧热力学 第二章化学动力学 第三章燃烧物理系 第四章着火(自然与引燃) 第五章预混合气体燃烧火焰 第六章扩散火焰与液体燃料燃烧 第七章气体燃料的喷射与燃烧 第八章固体燃料的燃烧 课程实验 考试说明 课程考核形式 闭卷考试 依托大纲,参考教材 70%考卷,30%平时 题型:填空、(判断、)多项选择、名词解释、简答、计算、图解分析 考试时间:6月9日下午或晚上 第一章 1 2 3.化合物的标准生成焓 化合物的构成元素在标准状态下(25℃,0.1MPa)。定温——定容或者定温定压;经化合反应生成一个mol的该化合物的焓的增量(KJ/mol) 所有元素在标准状态下的标准生成焓均为零。 4.反应焓(**) 在定温——定容或定温——定压条件下,反应物与产物之间的焓差为该反应物的反应焓(KJ)。 5.反应焓的计算(**) 6.燃烧焓(**) 单位质量的燃料(不包括氧化剂)在定温——定容或定温——定压条件下,燃烧反应时的反应焓之值(KJ/Kg)。 7.燃料热值(**) 燃料热值有高热值与低热值之分,相差一个燃烧产物中的水的汽化潜热。 8.平衡常数的三种表达方式和相互间的关系(**) 按浓度定义的反应平衡常数,以分压定义的反应平衡常数,以体积百分比定义的反应平衡常数。 9.反应度λ(**)

表示系统达到平衡时反应物能有效变为产物的程度 10.Gibbs函数的定义 自由焓,为状态参数。g=h-Ts 11.Helmholtz函数 自由能f 12.焓与生成焓仅是温度的单一函数,而自由焓与P、T有关。 ) 13.过量空气系数(**)(?a=m a m ast 燃烧1Kg燃料,实际提供空气量/理论所需空气量。 14.当量比(?=!#@¥%!@) C——实际浓度,Cst——理论浓度 15.浓度(空燃比)(C=#@¥) 一定体积混合气体中的燃料重量/空气重量 16.化学计量浓度 ?a=1时的浓度 17.绝热火焰温度的求解方法,尤其是考虑化学平衡时的计算方法(**)(附图) 首先分别根据平衡常数Kp和能量守恒方程得到的反应度λ和绝热火焰温度T f的关系,然后采用迭代法计算得到T f 18.绝热燃烧火焰计算程序及数据处理。 第二章化学动力学 1.化学反应动力学是研究化学反应机理和化学反应速率的科学。(*) 2.燃烧机理研究的核心问题有:燃烧的反应机构,反应速度,反应程度,燃烧产物的生成机理等 3.净反应速度(*)(公式见书本) 消耗速度与生成速度的代数和。 4.反应级数n 一般碳氢燃料n=1.7~2.2≈2 5.Arrhenius定律 A-频率因子(分子间碰撞的频率);E-活化能;T-温度 ? 比反应速度k n=Ae?E RT 6.分子碰撞理论与Arrhenius定律属热爆燃理论 7.热爆燃理论(**) 反应物在一定温度的反应系统中,分子碰撞使部分分子完成放热反应,放出的燃烧热提高反应系统中的温度,从而加速反应速度。反应系统处于一种正反馈的加热、加速反应过程。当反应速度趋于无穷大,就产生爆炸。这种由于反应热量聚集的加速反应乃至燃烧爆炸的理论称为热爆燃理论。 8.热爆燃理论的局限性体现在什么地方?

煤的燃烧过程及燃烧条件讲课讲稿

煤的燃烧过程及燃烧 条件

煤的燃烧过程及燃烧条件 煤的燃烧是复杂的物理化学过程,煤进入炉内,收到高温烟气的加热,温度逐渐升高,在此期间经历干燥、干馏、挥发分着火燃烧、焦炭燃烧、焦炭燃尽等各个阶段。 1、干燥: 煤被加热时,首先是水分不断蒸发,煤被干燥,显然,煤中水分多,干燥多消耗的热量也多,时间也长。 2、干馏: 煤被干燥后,继续被加热,达到一定温度就开始析出挥发分,同时生成焦炭,即是煤的干馏过程,每种挥发分越多,开始析出挥发分的温度越低,加热的温度越高,时间越长,析出的挥发分越多,因此,测定挥发分时规定了加热的温度和时间。 挥发分多,其中碳氢化合物也越多,重碳氢化合物在高温、缺氧的条件下,会进行热分解,形成微笑的碳粒,称为炭黑。由于碳粒很小很轻,在炉内不易烧掉而随烟排走,形成黑烟,为了使燃烧充分,不冒黑烟,必须保证挥发分燃烧所需足够高的温度和充足的空气,例如加装二次风。 只有当挥发分达一定浓度,而且到一定温度时,才能着火燃烧,干馏阶段为燃烧前的准备阶段。 煤在燃烧的准备阶段中,非但不放热而且要吸收热量,所以必须组织好热量供应,其热源来自炉膛火焰或高温烟气、炽热的炉墙和炉拱等。热量供应情况就决定了准备阶段的时间长短。 3、挥发分着火燃烧:

煤继续被加热,挥发分不断析出,而且温度也随之提高,挥发分中可燃物质与氧气的化学反应也在逐渐加快,当挥发分达到一定温度和浓度时,化学反应速度急速加快,着火燃烧,形成明亮的黄色火焰,这里,挥发分要加热到一定的温度时个重要条件。 不同的煤的挥发分着火温度时不一样的,通常我们将挥发分着火温度看成煤的着火温度,挥发分燃烧时放出热量,将焦炭加热到赤红程度(已达到能够着火的温度),但是焦炭并不会立刻燃烧,因为挥发分包围了焦炭,挥发分首先遇氧将氧耗掉了,氧气不能扩散到焦炭的表面,焦炭只能被加热而不能燃烧。 挥发分多,着火温度低,着火容易;挥发分少,着火温度高,着火困难。 4、焦炭的燃烧: 当挥发分基本烧完以后,氧气不能扩散到焦炭表面上,焦炭开始着火燃烧,并发出较短的蓝色火焰。 焦炭时煤的主要可燃物,燃烧时能发出很多热量,例如:无烟煤的焦炭燃烧发热量占总发热量的95%左右,挥发分很多,碳含量较小的褐煤,其焦炭燃烧发热量也占总发热量的一半以上。 焦炭的燃烧时固体(焦炭)与气体(氧气)之间的反应,化学反应速度很慢,因此燃烧时间较长,所以组织好焦炭的燃烧往往煤燃烧的关键。 5、焦炭燃尽: 焦炭燃烧时,在其表面形成灰壳,阻碍空气与焦炭接触,同时焦炭被燃烧形成的二氧化碳和一氧化碳所包围,又妨碍空气向焦炭表面的扩散。因此,焦炭燃尽往往需要很长的时间,为了及时排掉燃烧产生的气体,还应保证空气有适当的速度,但也应注意供应太多的空气量,不利于保证一定的炉膛温度。

《洁净煤燃烧技术》课程复习题.doc

洁净煤燃烧技术课程复习题 目录 洁净煤燃烧技术课程复习题 (1) 第一章 超临界与超超临界燃煤发电技术 (3) 1.1. 超临界锅炉的工作原理 (3) 1.2. 超临界锅炉水冷壁安全工作存在的不利条件及其原因 (3) 1.3. 为什么采用螺旋管圈后水冷壁管间的吸热偏差较小?超临界锅炉 消除热偏差有哪些方法 (3) 1.4. 垂直管低质量流速技术中的正流量补偿特性原理 (4) 第二章超超临界机组结构特点及应用 (4) 2.1、 结合系统简图说明HG/OOOMW 超超临界锅炉带再循环泵的启动 系统流程,并说明启动初期尽量减小工质热损失的措施 (4) 2.2、 常见低氮燃烧技术原理(双调风旋流燃烧技术、PM 燃烧技术及 MACT 燃烧技术) (5) 2.3、 超临界机组高温氧化原理及改善措施 (6) 2.4、 超超临界机组常采用二次再热技术的优势 (6) 第三章循环流化床锅炉 (6) 3.1、CFB 锅炉本体结构及工作原理 (6) 3.2、 为什么说CFB 锅炉是一种洁净煤燃烧设备 (7) 3.3、 超临界锅炉可以采用CFB 燃烧技术的优势 (7) 3.4、 结合简图说明富氧CFB 锅炉燃烧过程 (7) 4.1、 IGCC 原理框图 ............................................. 8 4.2、 气化炉气化反应模型 .. (9) 4.4、常温湿法净化技术原理与高温干法净化技术原理的比较 (10) 第五章烟气净化 (8) 4.3、两种煤气冷却工艺流程的组成及特点 (9) 10 第四章 体煤气化联合循环

5.1、湿式石灰石?石膏法脱硫的化学反应机理及工艺流程 (10) 5.2、湿式石灰石烟气脱硫吸收塔的四个工作区域及作用 (11) 5.3、湿式石灰石?石膏法脱硫工艺系统中浆液的PH值为什么维持在 5?6之间 (11) 5.4、湿式石灰石?石膏法脱硫工艺系统存在的问题及改进措施 (11) 5.5、烟塔合一的条件及优点 (11) 5.6、循环流化床烟气脱硫的运行控制 (12) 5.7、S CR反应原理及主要影响因素 (12) 5.8、S CR工艺流程 (13) 5.9、烟气杂质对SCR催化剂性能的影响 (13) 5.10、燃煤电厂控制汞排放的方法 (13)

燃料及燃烧基本理论解析

京能集团运行人员培训教程 BEIH Plant Course 燃料及燃烧基本理论 The Basic Theory of Fuel And Combustion MAJ TD NO.100.2

目录 1燃煤的形成与分类 (1) 1.1燃料 (1) 1.2煤的生成 (1) 1.3煤炭的分类 (1) 2燃煤的成分与分析 (3) 2.1煤的元素分析 (3) 2.2煤的工业分析 (3) 2.3煤的成分基准及其换算 (4) 3燃煤的性质 (6) 3.1燃烧特性 (6) 3.2常规性指标 (6) 3.3实验室指标 (9) 3.4煤粉的颗粒特性 (10) 3.5自燃特性 (12) 3.6爆炸特性 (13) 3.7可磨特性 (15) 3.8磨损特性 (17) 3.9黏结特性 (19) 3.10燃烧产物的腐蚀特性 (19) 3.11飞灰磨损性 (20) 3.12灰的熔融性 (20) 3.13堆积特性 (20) 3.14流动特性 (21) 4电煤技术条件、要求与标准 (22) 5煤粉(粒)燃烧技术 (24) 5.1燃烧的基础知识 (24) 5.2煤粉的燃烧 (26) 5.3独立有限空间冷态(单体燃烧器)燃烧运行技术 (32) 5.4自由空间热态(整体成组)燃烧运行技术 (33) 6燃油的燃烧研究 (35) 6.1燃油及其化学成分 (35) 6.2燃油的物理特性 (35) 6.3燃油的燃烧 (36) 7 延伸阅读 (39)

7.1质量作用定律 (39) 7.2阿累尼乌斯定律 (40) 7.3影响化学反应速度的因素 (40) 7.4热力着火理论 (42) 7.5火焰的传播 (46) 7.6链锁反应 (47) 7.7煤粉的着火燃烧 (48) 7.8碳粒的燃烧 (49) 8 题库 (52) 8.1填空题 (52) 8.2问答题 (53)

实验一煤燃烧特性的热重分析

实验一燃烧特性的热重分析 一、实验目的 1.了解热重分析仪的基本结构,掌握仪器操作; 2.学会应用热重法分析煤/生物质的燃烧特性。 二、实验内容及要求 1.熟悉热重分析工作原理; 2.学会处理煤/生物质燃烧热失重曲线,求解典型燃烧特性参数,并分析燃烧特性。 三、实验步骤 1.试样、气体准备,如预先干燥、磨制、筛分、称量试样等,罐装所需浓度和纯度的保护气体和反应气体。检查仪器放置平稳、管路气密性及电源连接完好等。 2.开启系统:(1)打开恒温水浴槽(温度设定:22℃);(2)接通气体(氮气流量:30ml/min;空气流量:100ml/min);(3)待恒温水浴槽达到设定温度 和气流稳定后,打开TGA 主机;(4)打开计算机进入Windows NT,双击“STAR e” 图标打开STAR e软件。 3.根据软件建立试验方法,设置升温速率10℃~30℃/min、最大温度900℃,完毕后按提示放置样品,按提示开始、结束(重新开始)试验。 4.根据随机软件进行数据处理。 5.关闭系统:(1)须在TGA 主机的炉温低于300℃后关闭恒温水浴槽;(2)关闭TGA 主机;(3)关闭气体;(4)关闭计算机。 四、实验报告 1.热重燃烧特性指标的含义和求解方法; 2.热重燃烧条件下各燃烧特性参数代表的意义; 3.求解煤/生物质燃烧特性参数; 4.结合所得数据分析燃烧特性。

瑞士Mettler-Toledo公司的TGA/SDTA851e热分析系统 图1、图2为热分析系统原理图。该系统包括热重/差热同步分析仪,热重天平和高温恒温浴槽。 具体参数如下:型号:TGA/SDTA851e;温度范围:室温~1600℃;大测试炉:直径12mm,容积900μl;温度准确度:±0.25℃;温度重复性:±0.15℃;线性升温速率:0.01~100℃/min;SDTA分辨率:0.005℃。 图1中,天平和测试炉组成的测试单元是热重/差热同步分析的核心,采用平行支架微量/超微量天平,称量不受样品支架长度变化(如热胀冷缩效应)的影响;内置砝码全自动校准;称量部件处于恒温室内(22.0±0.1℃),不受环境因素的影响。其中的测试炉采用水平结构,可最大限度地消除可能产生的气体紊流的影响,克服热气体对流上升容易产生的“烟囱效应”。该系统采用单坩埚结构,使样品处于测试炉的几何对称中心,在升温室得到均匀加热。测量样品的温度传感器直接安装于坩埚底部,能准确测取样品温度。加热炉内可通入需要的各种反应气体,同时为了保护天平免受反应气体的腐蚀,需要通入保护气体。 图1 热分析系统示意图 图2 TGA/SDTA851e原理图 1—隔热挡板;2—反应性气体毛细管;3—石英护套;4—气体排出阀门(偶联接口);5—样品温度传感器;6—加热炉;7—炉温传感器;8—电源接点;9—真空和清洁气体管;10—恒温天平室;11—平行导向超微量天平;12—样品室开启装置;13—冷却水管道;14—保护气体入口;15—反应气体入口;16—真空连接和清洁气体入口

相关主题