搜档网
当前位置:搜档网 › 压电陶瓷测量原理..

压电陶瓷测量原理..

压电陶瓷测量原理..
压电陶瓷测量原理..

压电陶瓷及其测量原理

近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。

(一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷

在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。

(2)压电陶瓷的主要参数

1、介质损耗

介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为

CR

I I C R ωδ1

tan ==

其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数

机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为:

π2

的机械能

谐振时振子每周所损失能谐振时振子储存的机械?=m Q

机械品质因数可根据等效电路计算而得

11

1

11

R L C R Q s s m

ωω=

=

式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。

不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。

3、压电常数

压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A

Q

D ==

式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

S=dE

两式中的压电应变常数 d 在数值上是相同的,即E S D

d =

=

σ

另一个常用的压电常数是压电电压常数 g ,它表示应力与所产生的电场的关系,或应变与所引起的电位移的关系。常数 g 与 d 之间有如下关系: ε

d

g =

式中ε为介电系数。在声波测井仪器中,压电换能器希望具有较高的压电应变常数和压电电压常数,以便能发射较大能量的声波并且具有较高的接受灵敏度。

4、机电耦合系数

当用机械能加压或者充电的方法把能量加到压电材料上时,由于压电效应和逆压电效应,机械能(或电能)中的一部分要转换成电能(或机械能)。这种转换的强弱用机电耦合系数 k 来表示,它是一个量纲为一的量。机电耦合系数是综合反映压电材料性能的参数,它表示压电材料的机械能和电能的耦合效应。机电耦合系数的定义为:

k 2=输入电能电能转变为机械能或者k 2=输入机械能

机械能转变为电能

机电耦合系数不但与材料参数有关,还与具体压电材料的工作方式有关。对于压电陶瓷来说,它的大小还与极化程度相关。它只是反映机、电两类能量通过压电效应耦合的强弱,并不代表两类能量之间的转换效率。压电材料的耦合系数在不同的场合有不同的要求,当制作换能器时,希望机电耦合系数越大越好。

(二)压电换能器的等效电路

压电换能器的等效电路表示法,是利用电学网络术语表示压电陶瓷的机械振动特性,即把某些力学量模拟为电学量的方法。把压电换能器用等效电路来表示,有很多优点:其一,可以把力学上复杂的振动问题有效地进行简化;其二,为了得到换能器的各个参数,从而定量地分析或筛选换能器;其三,实际应用的需要,因为在实际的应用当中,压电换能器也是接入到具体的电子线路中的,得到压电换能器的等效电路能够更好地对其外围电路进行匹配设计。由此可见,得到压电换能器的等效电路是十分必要的。

2.3 压电换能器的谐振特性

将压电换能器按照图 2-2 所示线路连接。当改变信号频率时,可以发现,通过压电陶瓷换能器的电流也随着发生变化,其变化规律如图 2-3(a )所示。从图2-3(a )可以看出,

I;而当信号变到另一当信号为某一频率m f时,通过压电陶瓷换能器的电流出现最大值max

I。由流经它的电流随频率的变化可以看出,压电陶瓷频率n f时,传输电流出现最小值min

换能器的阻抗是随频率的变化而变化的,其变化规律同电流相反,如图2-3(b)所示。

图2-2 压电陶瓷换能器谐振特性接线示意图

图2-3 压电陶瓷换能器电流、阻抗同频率的关系曲线

(a)电流-频率关系曲线(b)阻抗-频率关系曲线

从图中可以看出,当信号频率为m f时,通过压电陶瓷换能器的电流最大,即其等效阻抗最小,导纳最大;当信号频率为n f时,通过压电陶瓷换能器的电流最小,即其等效阻抗最大,导纳最小。因此把m f称为最大导纳频率或最小阻抗频率;而把n f称为最小导纳频率或最大阻抗频率。而当信号频率继续增大时,还会出现一系列的电流的极大值和极小值,如图2-4 所示。

图2-4 压电陶瓷换能器电流随频率变化示意图(多谐振模式)

2.2.4 压电换能器的等效电路

根据交流电路相关知识,对于图2-5 所示好的LC 电路来说,其阻抗Z 也随着频率的变化而变化。在图2-2 所示的线路中,用LC 电路代替压电陶瓷换能器,可以发现,在压电陶瓷换能器的谐振频率处,只要选择合适的1L、1C、1R和0C,通过LC 电路的电流和LC 电路的阻抗的绝对值随频率的变化曲线,分别同图2-1中的(b)和(c)的关系曲线非常相似。也就是说,在串联谐振频率附近,压电陶瓷换能器的阻抗特性和谐振特性同LC 电路的阻抗特性和频率特性非常相似。因此,利用机电类比的方法,可以用一个LC 电路来表示压电陶瓷换能器的参数和特性,这个LC 电路即为压电陶瓷换能器的等效电路。

图2-5 LC 电路

对压电陶瓷换能器来说,在任何串联谐振频率附近,其电行为可以用图2-3所示的LC 电路来表示。在压电陶瓷换能器的串联谐振频率附近,如果值存在一种振动模式,即没有其它寄生响应,则在串联谐振频率附近很窄的频率范围内,可以认为压电陶瓷换能器的等效参数1R、1C、1R和0C与频率无关。在实际中通过选择合适的尺寸进行加工处理,是可以将所需要的振动模式同其他模式充分隔离开来的。

另外,考虑到在实际中,在通电之后,压电陶瓷换能器必然会存在能量的损耗,这一

R来等效。所以其最终等效电路图如图2-6所示。

能量损耗可用一个并联电阻

图 2-6 压电陶瓷换能器等效电路图

图中串联支路中的1L 称为压电陶瓷换能器的动态电感,1C 称为动态电容,1R 称为动态电阻。这三个参数用来表征压电陶瓷换能器在工作(加电源激励产生振动)的情况下,振动部分所受到的力阻抗和介质对振动的反作用的强弱。并联电容 0C 又称静态电容,表征压电陶瓷换能器在未加激励的情况下等效为一个纯电容,它的值的大小与换能器的形状有关。并联电阻 0R 又称静态电阻,表征换能器的电损耗的大小。

2.2.5 压电换能器的导纳特性

根据已得到的压电换能器的等效电路图,来进一步分析其导纳特性。为了简化推导,先假定压电陶瓷换能器没有电损耗,即 0R =0,此时其等效电路即为一个 LC 电路,如图 2-5 所示。则 10Y Y Y += (2-1)

式中:Y 为换能器的总的导纳值,000ωj jB Y ==为并联支路的导纳值,111jB G Y ==为串联支路的导纳值。

先对串联支路进行分析。

000ωj jB Y ==

)1()

1

(1111

12111111

11C L R C L j R C j L j R Z ωωωωωω-+-

-=++==得到:

21

111

1)

1(2

C L R R G ωω-+=

,2111111)1()1

(2C L R C L B ωωωω-+-

-=

(2-2) 若令x C L R =-

+2111)1(2

ωω则)1(1

112

C L R x ωω-=-。由式(2-2)可得:

1

1G R x =,1

1111121111

2

22

2)()(R G G R x R G R x R G B +-=-=

--= 所以,011112

2

=-

+R G G B 两边同时加上21)21(R ,可得21

1211)21()21(2

R B R G =+-(2-3) 若以电导为横坐标,电纳为纵坐标,则式(2-3)表示一个以(121R ,0)为圆心,1

21

R 为

半径的圆,也即是我们所说的导纳圆。如图 2-7 中虚线所示

图 2-7 导纳圆图

对于串联支路进行分析,根据串联谐振频率的定义,令 1B =0,则由式(2-3)可得到

1G =0 或 111R G =。由于实际的压电陶瓷换能器的动态电阻 0R 不可能为零,根据式(2-2)

中1G 的表达式可以知道,只有111R G =满足串联谐振的条件。即:01

1

1=-

C L ωω,所以可以得到串联支路的谐振频率(又称机械共振频率):1

11

C L s =

ω (2-4) 接着考虑加入静态电容后的情况。由式(2-1)可知,考虑静态电容后换能器的导纳相当于在串联支路的电纳(虚部)加上 0Y 。鉴于一般情况下,压电陶瓷换能器的机械品质因数都较大,也即在串联谐振频率s ω 附近,00C j Y ω=的值随频率的变化很小,可以近似认为是一个常数。因此,只需将串联支路所得到的导纳圆的纵坐标向上平移一个常数,而横坐标保持不变即可得到加入静态电容后换能器的导纳关系图,如图 2-7 中点划线所示。若再考虑到换能器的静态电阻并不为零,则实际中的导纳圆不可能与纵轴相切,而是向横轴的正向平移一定的量(平移距离的大小取决于静态电阻的阻值),如图 2-7 中实线圆所示

对导纳圆图进行简要的分析可知:当s f f <即s ωω<时,电纳值大于零,当s f f >即

s ωω>时,电纳值小于零。所以,随着频率的增加,导纳圆是沿顺时针方向变化的。另外,

在串联谐振频率的附近,还存在着两个频率点使得换能器总的电纳为零,此时电源信号经过换能器之后只有幅值的改变,而没有相位的变化,也即电压和电流信号同相位。这两个频率中,值较小的那个频率r f 称为谐振频率,较大a f 的称为反谐振频率。另外还存在使得换能器的导纳值取得最大的频率m f ,导纳值最小的频率n f 。连接原点和串联谐振频率点,与导纳圆的交点处的频率p f 称为并联谐振频率。

另外,需要特别指出的是,上述讨论是在一个振动模态谐振频率s ω 附近较小的频率变化范围内进行的,并且只有在导纳圆的直径远大于这个频率范围内0C ω的变化时才是正确的,否则换能器的导纳曲线将变得十分复杂,具有蔓叶曲线的特征。

根据以上导纳圆图的推导过程,下面介绍一下压电陶瓷换能器等效电路中各个参数和导纳圆图的关系,并给出各自的计算公式。

在换能器的导纳圆图中作平行于纵轴的直径,交导纳圆于两点,分别记作1f 、2f 。在1f 点处,串联支路的动态电导和电纳值相等,即11B G =。由式(2-2)可得:

21

1112

11

111111111)

1()

1

()1(2C L R C L C L R R ωωωωωω-+-

-=- (2-5) 在2f 点处,串联支路的动态电导和电纳值相等,但符号相反,即11B G -=。由式(2-2)

可得:21

2122

11

212121211)

1(1)1(2

C L R C L C L R R ωωωωωω-+-

=-+ (2-6) 结合式(2-5)和式(2-6),可得:

1

21

1ωω-=

R L (2-7)

再由式(2-4)可得:

1

121L C s ω=

(2-8) 机械品质因数:1

11111111C L R R L R C Q s s M ===

ωω (2-9)

结合式(2-7)和(2-8)可得:1

21

2f f f Q s

s m -=

-=

ωωω

式(2-5)和式(2-6)消去1R 得到:

11212

1

1

C L s

==

ωωω 则21f f f s =

所以:1

22

1f f f f Q m -=

(2-10)

动态电阻的值可以通过导纳圆的直径求得:

D R 10= (2-11)

静态电容 0C 的值也可由导纳圆偏离横轴的距离来确定:s

y C ω0

0= (2-12)

式中0y 为圆心的纵坐标。

静态电阻0R 的值可由导纳圆偏离纵轴的距离(或圆心的横坐标)来确定:

1

00211

R x R -

=

(2-13) 式中0x 为圆心的横坐标。

至此,我们已得到压电陶瓷换能器等效电路中所有参数的计算公式。 2.3 测量原理

在上一节中,得到的压电陶瓷换能器等效电路参数的计算公式都是基于导纳圆的,也即是基于各个频率下的电导和电纳值的,因此我们需要得到每个频率点的导纳值。为此采用图 2-8 所示的测量原理图进行测量。

图 2-8 压电陶瓷换能器测量原理示意图

图 2-8 中,AC 为频率可控的交流信号源,R 表示源内阻,m R 称为精密电阻,A U 为加在压电陶瓷换能器山的电压信号B U 为经过换能器之后的电压信号。根据前面章节所介绍的压电陶瓷的导纳特性可以知道,在经过换能器之后的电压信号B U 相对于A U 会有一个幅度和相位的变化。不失一般性,在这里设定:

ω?j Am A e U U =,)(θω?+=j Bm B e U U (2-14)

其中: Am U ,Bm U 分别表示两路信号的幅值,ω 为信号的角频率,φ为信号的初始相位,θ为两路信号的相位差。

按照习惯表达,先求压电陶瓷换能器的阻抗,再取倒数得到导纳。

m

B B

A R U U U I

U Z -==

将式(2-14)代入得

m

j Bm j Bm j Am R e U e U e U Z )(θω?θωω?++-==)1(--θj Bm

Am m e U U R =jX R U U j U U R Bm

Am

Bm Am m

+=--]sin )1cos [(θθ 对应得到:)1cos (

-=θBm Am m U U R R ,θsin Bm

Am m U U

R X -= (2-15) 再由导纳和阻抗的关系可得

jB G jX

R Z Y +=+==

1

1

即:22X R R G +=

,2

2X R X

B +-= (2-16)

由以上推导可以看出,换能器的导纳和阻抗值仅与加在其两端的电压信号的幅值比和相位差有关,因此只需要得到两路信号的幅值和相位信息即可得到换能器等效电路的各个参数。而实际中,只需要对两路信号进行采样,再通过对采样所得数据进行处理便可得到幅值和相位信息。

2.4 正弦信号的测量方法

根据上一节介绍的测量原理可知,要得到压电换能器在测试频率下的电导和电纳值,就需要测得其两端正弦信号的幅值比和相位差。但是实际中,硬件电路实现的仅是对两路信号的 A/D 转换采集,也即是得到的是两路正弦信号的一系列的离散的点。在这一节中,将介绍从这些采集到的离散的点计算其幅值和相位的方法。

2.4.1 数字相关法

随着微处理器和大规模集成电路的迅速发展,在测试系统中,越来越多的传统的测量方法被数字化测量方法所取代。近年来,由于相关函数法具有提高测试精度,减少或简化硬件设计,能够充分利用测试系统中的数据采集系统和微型计算机,提高测试系统的可靠性和可维护性的诸多优点,使得相关技术原理在相位差的测量及数字信号处理中得到了广泛应用,并展现出良好的应用前景

1、相关函数法原理

相关函数法利用两同频正弦信号的延时为零时的互相关函数值与其相位差的余弦值成正比的原理获得相位差。

设两路被测信号为:

)()2sin()(t N ft A t x x +=π,)()2sin()(t N ft B t y y ++=?π (2-17)

其中:A 、B 分别表示两路信号的幅值,f 表示信号的频率,)(t N x 、 )(t N y 分别表示两路信号的干扰噪声信号,φ表示两路信号的相位差。显然,信号 x(t)和y(t)是相关的,则两路信号的互相关函数为:

dt

t N t f B t N ft A T

R dt

t y t x T R T

y x xy T

xy ?

?++++?+=

+=

0)]())(2sin([)]()2sin([1

)()()(1

)(τ?τππτττ (2-18)

式中 T 为信号的周期,即f

T 1= 当 τ =0时,有

dt t N ft B t N ft A T R y T

x xy )]()2sin([)]()2sin([1)0(0

++?+=

??ππ 由于噪声信号之间不相关,噪声和信号之间也不相关,将上式进一步展开得:

?+=

T

xy dt ft ft AB T R 0)2sin()2sin(1?ππ ?+=T

dt ft ft ft AB T 0]sin )2cos(cos )2)[sin(2sin(1?π?ππ

?==T AB dt ft ft AB T 0cos 21

cos )2sin()2sin(1??ππ

所以,可以得到相位差的计算公式:

))0(2arccos(AB

R xy =? (2-19)

而信号幅值的大小可由信号的自相关函数求得

dt t f A ft A T dt t x t x T R T T T

T x ))(2sin()2sin(1

)()(1)(2222

τππττ+=+=??-- (2-20)

当 τ =0时,有

?-==222222

)2(sin 1)0(T T x A dt ft A T R π 所以可得信号幅值的计算公式:

)

0(2)0(2y x R B R A == (2-21)

将上式代入式(2-19),可得相位差计算公式的另一种表达式:

))

0()0()0(arccos(

y x xy R R R =? (2-22)

而在实际中,是没有完整精确的信号的表达式的,有的是对信号的模数转换所得到的离散的数据,离散序列的自相关和互相关的计算公式如下:

∑∑∑-=-=-====1

2

1

02

1

0)(1)0()(1)0()

()(1)0(n i y n i x n i xy i y n R i x n R i y i x n R (2-23)

式中:n 表示采样个数,i 表示第 i 个采样点,x(i)、y(i)分别表示两路信号的第 i 个点的转换得到数值。

由式(2-23)分别求出两路信号的自相关和互相关函数值之后,再由式(2-21)和式(2-22)即可得到两路信号各自的幅值和它们之间的相位差。但是,需要指出的是,由数字相关法求得的相位差,并不能区分是超前还是滞后,这就需要采用其他方法来确定相位差符号的正负号。根据前面测量原理中的介绍,由式(2-15)和式(2-16)可知,压电陶瓷换能器的电导值仅取决于两路信号相位差的余弦值,而电纳的值是在电导值取得最大的时候发生变号。由此,可以先求得电导的值,再通过循环找其最大值,并从使电导取得最大值时的相位差开始,把相位差变号,得到新的相位差序列,再由新的相位差序列求电纳的值即可。图2-9 表示的为采用数字相关法对一号压电换能器测量数据的处理结果,其中(a )表示的是导纳圆图,(b )表示的是电导和电纳值随测试频率的变化曲线。

(a) (b) 图 2-9 数字相关法处理结果 2、相关函数法的特点及误差分析

通过上面对相关函数法测量原理的理论推导过程可以看出,相关函数法测量信号的幅值和相位差与信号的频率无关。也即是说相关函数法不受频率的影响,可以用来测量未知频率的信号的相位差。同时,相关函数法测量原理的推导都是基于正弦函数的,因此,它只能用于测量正弦或余弦信号,并不能测量一般的周期信号。

由于噪声干扰信号和原信号并不相关,所以相关函数法能够有效的抑制噪声干扰。但是,如果在系统中存在相关性较强的干扰信号,并且信噪比又比较低的情况下,相关函数法测量误差就会比较大。由相关函数法离散序列的最终计算公式可以看出,其计算结果与采样的点数有关,也即是说测量误差的大小与采样点数是相关的,采样点数越大,计算结果越接近真实值,测量误差也就越小。

综合以上对相关函数法的特点的分析,可知相关函数法对于采样转换信号中的直流偏移和噪声等干扰具有很强的抑制能力,它的误差主要是因为采用有限长度的样本代替了高斯白噪声和均匀分布的 A/D 量化误差,使得被检正弦信号与噪声信号并非完全不相关。所以,相关函数法的测量误差与 A/D 转换的位数、信号的信噪比和采集点数有关。

2.4.2 快速离散傅里叶变换法

现代信号分析采用数字化方式实现,其核心是离散傅立叶变换,它完成了从时域到频域的转换,不仅可以实现线性谱分析,而且还是均方谱分析的关键。离散傅立叶变换(DFT )实现了信号首次在频域表示的离散化,使得频域也能够用计算机进行处理,但由于用于实际时计算量太大而使应用受到限制。直到1965 年由 Cooly 和 Tukey 建立了一种快速傅立叶变换——FFT 时,DFT 的应用才成为现实

1、FFT 获取正弦波幅值和相位的原理

设采集正弦信号得到的离散序列为 x(n),n=1,2,…KN 。则该序列的离散傅里叶变换为:

∑-=-==1

2)()]([)(N n n N

k

j

e

n x n x DFT k X π

∑-=+=-=

1

)](Im[)](Re[)]2sin()2)[cos((N n k X k X n N k

j n N k n x ππ 1-N ,2,1,0??=k (2-24) 则其初始相位为:

1),)](Im[)]

(Re[arctan(

0+==s

f f k k X k X θ

其中:s f 是信号的采样频率,N 是采样长度。

在对时域离散序列进行傅立叶变换之后,可以得到其离散的幅度谱和相位谱,在幅度谱和相位谱中找到对应时域波形的频率的谱线就可以得到时域的正弦波形的幅值和相位信息。图 2-10 所示的是采用快速离散傅里叶变换法对采集到的数据处理的结果。

(a ) (b) 图 2-10 快速离散傅里叶变换法处理结果 2、FFT 的特点及误差分析

通过傅里叶变换可以只提取基波参数,因此谐波的存在并不影响基波成分,所以谐波的存在对应用这种方法测量相位差几乎没有影响;对于噪声干扰,只有当高斯白噪声接近基波的频率分量时才会影响到基波的相位,所以应用 FFT 法测量相位差也能有效地抑制高斯白噪声干扰。但是,实际上信号是连续的无限长的序列,用 FFT 对其进行谱分析时,必须截短形成有限长序列,再进行周期延拓,这样就不可避免的造成信号频谱的泄漏,由此便产生了相位差测量误差。误差现象主要是:混叠现象、栅栏效应和截断效应。要想减小相位差测量误差,就必须提高谱分辨率。实际中可通过提高采样频率或者增加采样数据长度来提高谱分辨率,进而达到减小相位差测量误差的目的。

2.4.3 正弦曲线参数拟合法 设被测的正弦信号为:

D ft A t f ++=)2sin()(0?π (2-25)

其中: f 表示信号频率,0A 表示被测信号幅值,φ表示被测信号的初始相位角,D 表示被测信号的直流分量。由于被测信号的频率为已知的,故只需对测得的数据进行三参数的正弦曲线拟合,即可得到被测信号的幅值和相位信息。为此,进一步将上式展开可得:

D ft B ft A f ++=)2cos()2sin(ππ (2-26)

其中:??sin ,cos 00A B A A ==

从而将被测信号的幅值和初始相角转化为对参数 A 、B 的求取。

其基本思想就是寻找合适的 A 、B 和 D 的值,使得其测量残差的平方和取得最小。

设每个频率下测量的时间序列为)n 3,2,1(,1

?==

i f t s

i ,n 为测量数据的个数,s f 为采样频率,i f 为每个点的测量值。则测量残差的表达式为:

∑=---=n

i i i D ft B ft A t f 1

2])2cos()2sin()([ππε (2-27)

要使得上式取得最小值,可对其参数求偏导,并令其为零。即:

}

}

}

??????????????=---??=?????=---??=?????=---??=

??∑∑∑===n i i i n i i i n i i i D ft B ft A i f D D D ft B ft A i f B B D ft B ft A i f A A 1

21212

0])2cos()2sin()([0])2cos()2sin()([0])2cos()2sin()([ππεππεππε (2-28) 进一步化简得到:

?????????=++=++=++∑∑∑∑∑∑======n

i n i i i n

i n

i i i i i n

i n i i i i i i f D ft B ft A i f ft D ft B ft A ft i f ft D ft B ft A ft 0

00

00

)

(])2cos()2sin([)()2cos(])2cos()2sin()[2cos()

()2sin(])2cos()2sin()[2sin(ππππππππππ (2-29)

对于式(2-29),构造如下三个矩阵:

????

??

?????

?=????

??????=??????????=)(1...)(1)(1,,1111

2cos ...2cos 2cos 2sin ...2sin 2sin 212

12

1n n n T t f t f t f F D B A X ft ft ft ft ft ft ππππππψ

式(2-29)可写成如下矩阵形式:

F X T T ψψψ=

上式中 X 的解为:

)()(1F X T T ψψψ-= (2-30)

则被测信号幅值的计算公式为:

220B A A +=

(2-31)

初始相角的计算公式为:

???

????

<+≥=0)arctan(0)arctan(A A B A A B π? (2-32)

至此,得到了被测信号的幅值和相位信息。采用同样的方法对第二路信号的采样数据进行处理,即可得到第二路信号的幅值和相位信息,从而求出两路信号的幅值比和相位差,进一步便可得到每个频率下换能器的电导和电纳值。图 2-11为参数拟合法的处理结果。

图 2-11 正弦曲线参数拟合法处理结果 2.5 导纳圆的带约束最小二乘曲线拟合

通过以上章节的介绍,我们已经得到了各个测试频率下压电换能器的电导和电纳值,绘制出了导纳圆图,但这还是不够的。由压电换能器等效电路的各个参数的计算公式可以看出,我们还需要得到导纳圆的圆心和半径的值。为此,就需要对所得到的离散点进行圆曲线拟合。

拟合圆的方法有很多种,常用的有平均值法、加权平均法和最小二乘法。

平均值法的思想是分别计算各个离散点的横、纵坐标的平均值,作为圆心的横、纵坐标,将圆心到各个离散点的距离的平均值作为半径。这种方法计算简单,适用于离散点分布较均匀的情况,但对于分布不均的情况,所计算的圆心位置会偏向离散点分布较密集的一侧,半径的计算值也会偏小,误差较大。加权平均法是对平均值法的改进,它在计算圆心坐标时加入一个与两相邻点间弧长相关的系数,降低了离散点分布不均的影响,减小了误差。但是,由于两相邻点间的弧长是无法精确得到的(实际中采用两点间的距离来代替的),所以其误差仍较大。相比之下,最小二乘法具有较高的精度。在查阅相关文献之后,本文采取一种带 约束的最小二乘法进行导纳圆的拟合

设计算出的电导和电纳值的离散点为:

N i y x i i ,...,2,1)

,(=

要得到的圆心坐标记为:),(000y x P 半径为 r 。则构造一个目标函数:

{}N i y x y x r y y x x d i i ,...,2,1),(),(,)(2)(00=∈--+-=

(2-33)

从而,问题转化为寻找合适的0x ,0y 和 r ,使得目标函数的模值取得最小。由于上式中含有根号,不便于处理和计算,对其进行变形得到:

])()[(21

22020r y y x x r d --+-=

=)22(2122

2220000r y x yy x x y x r -++--+ (2-34) 式(2-34)和式(2-33)对圆的几何特征参数的估计是一致的。 令)(21,,,212

0202021r y x r c b b B y x X r a -+=??

????=??????==

则式(2-34)可表示为:

c X B X aX X F

d T T T ++==)(

同时有:142

22

1=-+ac b b (2-35)

则a

c

a B

r a

b

a b y x -

=

--=2

2

21004),2,2(),( (2-36) 进一步,对于所有的离散点序列有:

∑∑==+==N

i i i i i N

i i M y x y x d D 1

22

2

2

1

])1,,,[( (2-37)

T c b b a M ),,,(21=

为了避免求解时得到没有意义的结果T

M )0,0,0,0(=,将式(2-35)作为约束条件,式(2-35)可写成如下矩阵形式:

1000

2

010*********==??

???

????

???--CM M M M T T

再构造矩阵??????

?????

???+++=111222222

2211

2121N

N N N

y x y x y x y x y x y x B 引入 Lagrange 因子λ 并求导,可得

?????==1

CM M CM

BM B T

T

λ (2-38) 通过求解上式可得四个广义特征向量,由式(2-37)选择使得 D 取得最小值的那个向量,再由式(2-36)即可计算出圆心坐标和半径。图 2-12 为采用快速离散傅里叶变换法得到的导纳圆的拟合图。

图 2-12 导纳圆拟合图 2.6 本章小结

本章首先介绍了压电陶瓷换能器的特性及其主要的性能参数,并根据其谐振特性,通过机电类比的方法得出其等效电路。接着根据电路原理的知识,在某一谐振频率附近对压电陶瓷换能器的等效电路进行了分析计算,从理论上得出其电导和电纳构成一个圆的形式,并给出了等效电路中五个参数及另外两个常到的性能参数(谐振频率和机械品质因数)的计算公式。随后介绍了压电陶瓷换能器的测量原理,并得出其电导和电纳的大小仅取决于加在它两端的正弦信号的幅值比和相位差。由于硬件系统只是实现对两路正弦信号的 A/D 转换值的采集,所以在本章的最后一部分介绍了几种常用的提取正弦信号幅值和相位信息的数字处理方法,并对各种方法的特点及误差来源进行了简要的分析。最后一部分介绍了采用带约束的 最小二乘法对测得的谐振频率附近的电导和电纳值进行曲线拟合,得到圆心坐标和半径大小,最终由公式得出等效电路五个参数的值。

压电陶瓷微位移器件性能分析

压电陶瓷微位移器件性能分析 我国1426所在80年代研制出的WTDS-I型电致伸缩微位移器在国内许多研究部门得到应用,但生产单位没有及时对该器件的迟滞、蠕变、温度特性,尤其是动态特性进行必要的研究。作者根据本文的研究需要,对国内应用该产品的情况进行了大量调研和实验研究,从而获得了一些有关该产品性能的情况,现介绍如下: 一、迟滞及蠕变特性 图5.9是作者测得的WTDS-I电致伸缩微位移器的电压 位移实验曲线。从实验中发现,在高压段,微位移器出现蠕变现象,即在一定电压下,位移达到一定值后随时间缓慢变化,在较长的时间内达到稳定值,这一现象是微位移器内部电介质在电场作用下的极化驰豫造成的。图5.10是在300伏时,微位移器位移随时间的变化曲线。 二、温度特性 原航空航天部303所对WTDS-I型电致伸缩微位移器的温度特性进行了测试。图5.11是在一定电压下,微位移器的伸长量与温度的关系曲线,当温度低于0℃或超过20℃时,伸长量变小。 三、压力特性 在作者的要求下1426所对WTDS-I型电致伸缩微位移器的压力特性作了实验,图5.12是实验曲线,该曲线表示在某一电压下器件伸长量(不包括器件因受力而产生的压缩量)与压力的关系,△S表示在某一压力下的伸长量,S0表示空载时的伸长量,303所也做了这一实验,其结果相同。从图中可以看出:压力对位移量的影响不大。 四、刚度特性 刚度是指器件本身抵抗外力而产生变形的能力。哈尔滨工业大学机械系对WTDS-IB型电致伸缩微位移器件作了这方面的实验。图5.13是刚度特性曲线,在不加电压的情况下,得到的器件压缩量与压力的关系。压缩量—力回归关系式为: S = 0.155F + 2.96 其中S—器件的压缩量(μm) , F—施加外力 (N) 其相关系数为:r = 0.988 刚度为: 6.45(N/μm) 从图5.13中可以看出:在载荷较小时压缩量随载荷的加大而增加较快,而在载荷较大时压缩量随载荷的加大而增加较慢,且基本呈直线关系增加。这主要是 由于器件的叠堆结构造成的,叠堆是由多 片压电陶瓷薄片粘接而成,各薄片间的接 触刚度较差,随外力的增加,由于接触变 形使接触面积增大,刚度提高,因而出现 了如图5.13所示的压缩量与载荷的关系曲 线。 图5.14为在不同压力下的电压—位移曲线。从图中可以看出,微位器的位移随载荷的增加而减小,但电压—位移关系曲线的基本形状不变。

压电超声波换能器原理

超声波换能器 一种能把高频电能转化为机械能的装置。由材料的压电效应将电信号转换为机械振动。超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而自身消耗很少的一部分功率。 超声波换能器,要解决的技术问题是设计一种作用距离大、频带宽的超声波换能器。 换能器由外壳、匹配层、压电陶瓷圆盘换能器、背衬、引出电缆和Cymbal阵列接收器组成。压电陶瓷圆盘换能器采用厚度方向极化的PZT-5压电材料制成,Cymbal阵列接收器由8~16只Cymbal换能器、两个金属圆环和橡胶垫圈组成。本发明的作用距离大于35m,频带宽度达到10kHz,能检测高速移动的远距离目标。 压电陶瓷超声换能器工作原理 压电陶瓷是一种功能性陶瓷,所谓功能性陶瓷就是对光,电,等物理量比较敏感的陶瓷。压电陶瓷对光和压力比较敏感,对压电陶瓷施加一个外力,压电陶瓷表面会产生电荷,这就是压电陶瓷的正压电效应,是一个将机械能转化为电能的过程;对压电陶瓷外加一个电场,压电陶瓷会发生微小的形变,这就是压电陶瓷的逆压电效应,是一个将电能转化为机械能的过程。利用逆压电效应,可以把高频电压转化为高频率的振动,从而产生了超声波。 超声波换能器是将电能转换成机械能(超声波)的器件,其中最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。这种夹心换能器在负荷变化时产生稳定的超声波,是获得功率超声波驱动源的最基本最主要的方法。[1] 将非电能量转换成电能量,不需要外电源,称换能器,也称有源传感器,换能器是超声波设备的核心器件,其特性参数决定整个设备的性能。 现在用的超声波换能器,除了磁致伸缩结构以外就是常用的用前后盖板夹紧压电陶瓷的“朗之万”换能器,超声波就是通过换能器将高频电能转换为机械振动。换能器的特性取决与选材和制作工艺,同样尺寸外形的换能器的性能和使用寿命是千差万别的。 我们主要生产大功率超声波换能器,应用与超声波塑料焊接机、超声波金属焊接机、各种手持式超声波工具、连续工作的超声波乳化均质器、雾化器、超声波雕刻机等超声波焊接设备。磁致伸缩 磁致伸缩有镍片换能器和铁氧体换能器。 铁氧体换能器的电声转换效率比较低,使用一、二年后效率下降,甚至几乎丧失电声转换能力。 镍片换能器的工艺复杂,价格昂贵,所以很少使用。 压电晶体 最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。 压电效应将电信号转换为机械振动。这种换能器电声转换效率高,原材料价格便宜,制作方便,也不容易老化。 常用的材料有石英晶体、钛酸钡和锆钛酸铅。 石英晶体的伸缩量太小,3000V电压才产生0.01um以下的变形。 钛酸钡的压电效应比石英晶体大20-30倍,但效率和机械强度不如石英晶体。 锆钛酸铅具有二者的优点,可用作超声波清洗,探伤和小功率超声波加工的换能器。 压电换能器的应用十分广泛,它按应用的行业分为工业、农业、交通运输、生活、医疗及军事等。 按实现的作用分为超声波加工、超声波清洗、超声波探测以及超声波雾化等。 编辑本段外形分类

压电陶瓷的特性及应用举例

压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应 压电效应可分为正压电效应和逆压电效应。正压电效应是指压电陶瓷受到特定方向外力的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,又缓慢恢复到不带电的状态;逆压电效应是指在对压电陶瓷的极化方向上施加电压,压电陶瓷会随之发生形变位移,电场撤去后,形变会随之消失。

Δ纳米级分辨率 压电陶瓷的形变量非常小,一般都小于1%,虽然形变量非常小,但可通过改变电场强度非常精确地控制形变量。 压电陶瓷是高精度致动器,它的分辨率可达原子尺度。在实际使用中,压电陶瓷的分辨 率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力 压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,对于小尺寸的压电陶瓷,出力 通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。

Δ响应时间快

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

(工艺技术)压电陶瓷的压电原理与制作工艺

压电陶瓷的压电原理与制作工艺 1.压电陶瓷的用途 随着高新技术的不断发展,对材料提出了一系列新的要求。而压电陶瓷作为一种新型的功能材料占有重要的地位,其应用也日益广泛。压电陶瓷的主要应用领域举例如表1所示。

2.压电陶瓷的压电原理 2.1 压电现象与压电效应 在压电陶瓷打火瓷柱垂直于电极面上施加压力,它会产生形变,同时还会产生高压放电。在压电蜂鸣器电极上施加声频交变电压信号,它会产生形变,同时还会发出声响。归纳这些类似现象,可得到正、逆压电效应的概念,即:压电陶瓷因受力形变而产生电的效应,称为正压电效应。压电陶瓷因加电压而产生形变的效应,称为逆压电效应。2.2 压电陶瓷的内部结构 材料学知识告诉我们,任何材料的性质是由其内部结构决定的,因而要了解压电陶瓷的压电原理,明白压电效应产生的原因,首先必须知道压电陶瓷的内部结构。 2.2.1 压电陶瓷是多晶体 用现代仪器分析表征压电陶瓷结构,可以得到以下几点认识: (1)压电陶瓷由一颗颗小晶粒无规则“镶嵌”而成,如图1所示。 图1 BSPT压电陶瓷样品断面SEM照片 (2)每个小晶粒微观上是由原子或离子有规则排列成晶格,可看为一粒小单晶,如图2所示。 图2 原子在空间规则排列而成晶格示意图 (3)每个小晶粒内还具有铁电畴组织,如图3所示。

图3 PZT陶瓷中电畴结构的电子显微镜照片 (4)整体看来,晶粒与晶粒的晶格方向不一定相同,排列是混乱而无规则的,如图4所示。这样的结构,我们称其为多晶体。 图4 压电陶瓷晶粒的晶格取向示意图 2.2.2 压电陶瓷的晶胞结构与自发极化 (1)晶胞结构 目前应用最广泛的压电陶瓷是钙钛矿(CaTiO3)型结构,如PbTiO3、BaTiO3、K x Na1-x NbO3、Pb(Zr x Ti1-x)O3等。 该类材料的化学通式为ABO3。式中A的电价数为1或2,B的电价为4或5价。其晶胞(晶格中的结构单元)结构如图5所示。 图5 钙钛矿型的晶胞结构

压电陶瓷的特性及应用举例

. 压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应正压电效应是指压电陶瓷受到特定方向外力压电效应可分为正压电效应和逆压电效应。又缓慢恢复到不带电的的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,压电陶瓷会随之发生形变位移,逆压电效应是指在对压电陶瓷的极化方向上施加电压,状态;电场撤去后,形变会随之消失。'. .

Δ纳米级分辨率,虽然形变量非常小,但可通过改变电场强1%压电陶瓷的形变量非常小,一般都小于度非常精确地控制形变量。压电陶瓷的分辨它的分辨率可达原子尺度。压电陶瓷是高精度致动器,在实际使用中,率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力出力对于小尺寸的压电陶瓷,压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。'. . Δ响应时间快

电的时间,。达毫秒至亚毫秒量级。最快响应时间取决于压电陶瓷的谐振频率,一般为谐振时间的1/3 压电陶瓷被广泛应用于阀门与快门技术中。 Δ迟滞即压电陶瓷升压曲线和降尽管压电陶瓷具有非常高的分辨率,但它也表现出迟滞现象,上升曲线和下降曲线上的位移值有明显的位移在同一个电压值下,压曲线之间存在位移差。驱动电压越小则位移差也会相应越小,差,且这个位移差会随着电压变化范围的改变而改变,15%10%压电陶瓷的迟滞一般在给定电压对应位移值的-左右。'. . Δ蠕变而是位移值不是稳定在一固定值上,蠕变是指当施加在压电陶瓷的电压值不再变化时,内蠕变量约为10s随着时间缓慢变化,在一定时间之后才会达到稳定值,如右图所示。一般 1%~2%。伸长量的

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为CR I I C R ωδ1tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: 机械品质因数可根据等效电路计算而得 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。 S=dE 两式中的压电应变常数 d 在数值上是相同的,即E S D d ==σ 另一个常用的压电常数是压电电压常数 g ,它表示应力与所产生的电场的关系,或应变与所引起的电位移的关系。常数 g 与 d 之间有如下关系: εd g = 式中ε为介电系数。在声波测井仪器中,压电换能器希望具有较高的压电应变常数和压电电压常数,以便能发射较大能量的声波并且具有较高的接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电的方法把能量加到压电材料上时,由于压电效应和逆压电效应,机械能(或电能)中的一部分要转换成电能(或机械能)。这种转换的强弱用机电耦合系数 k 来表示,它是

实验十二 压电陶瓷压电性能测定

实验十二压电陶瓷压电性能测定 实验名称:压电陶瓷压电性能测定 实验项目性质:普通实验 所涉及课程:电子材料 计划学时:2学时 一、实验目的 1.了解压电常数的概念和意义; 2.掌握压电陶瓷压电常数的测定方法。 3.学会操作ZJ-3AN型准静态d33测量仪。 二、实验内容 1. 实验老师介绍使用压电常数测量仪测试d33的原理与步骤; 2. 测试压电陶瓷的压电常数。 三、实验(设计)仪器设备和材料清单 ZJ-3AN型准静态d33测量仪、压电陶瓷晶片等。 四、实验原理 压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,是一种具有压电效应的材料。 当在某一特定方向对晶体施加应力时,在与应力垂直方向两端表面能出现数量相等、符号相反的束缚电荷,这一现象被称为“正压电效应”。 逆压电效应:当一块具有压电效应的晶体置于外电场中,由于晶体的电极化造成的正负电荷中心位移,导致晶体形变,形变量与电场强度成正比。 压电常数是反映力学量(应力或应变)与电学量(电位移或电场)间相互耦合的线性响应系数。通常用d ij 表示,下标中第一个数字代表电场方向或电极面的垂直方向,第二个数字代表应力或应变方向。 五、实验步骤 (1)用两根多芯电缆把测量头和仪器本体连接好,接通电源。 (2)把Φ20尼龙片插入测量头的上下探头之间,调节手轮,使尼龙片刚好压住为止。(3)把仪器后面板上的“显示选择”开关置于“d33”一侧,此时面板右上方绿灯亮。(4)把仪器后面板上的“量程选择”开关置于“×1”档。 (5)按下“快速模式”,仪器通电预热10分钟后,调节“调零”旋钮使面板表指示在“0”与“-0”之间跳动。调零即完成,撤掉尼龙片开始测量。 (6)依次接入待测元件,表头显示d33结果及正负极性,记录。 (7)取三次测量的平均值。 六、实验报告要求

压电陶瓷实验报告

压电陶瓷微位移性能测量实验报告 一、实验目的: 1、了解压电陶瓷的性能参数; 2、了解电容测微仪的工作原理,掌握电容测微仪的标定方法; 3、掌握压电陶瓷微位移测量方法; 二、实验仪器: 电容测微仪一台:型号JDC-2000测微台架一台:型号BCT-5C,斜度1:50直流调压器一台:电压量程(0~300V)标定平铁板一块压电陶瓷管一根 三、实验原理: (一)利用测微台架标定电容测微仪 在测微台架的台架上放置一金属平板,将电容测微仪探头用测微台架夹紧,使探头的端面与平板平行,见图1,移动测微台架的旋钮,分别读出测微仪移动示值和电容测微仪的示值。这样得到一组数据即可对电容测微仪进行标定。 图1 电容侧微仪标定原理图 (二)用标定后的电容测微仪测量压电陶瓷管的线性度 在电容测微仪的线性区(对应机械标定仪的某个位置),通过可调直流电源按一定间隔改变直流电压(见图2),分别对压电陶瓷加压,使之分别产生轴向变形(见图3)和弯曲变形(见图4),从而得到压电陶瓷的伸长与偏转量与施加其上的电压的关系。

图2 可调高压电源图3 测压电陶瓷轴向伸缩图4测压电陶瓷侧向弯曲 四、实验步骤 (一)标定电容测微仪的线性度 1、实验前,了解实验原理及其实验注意事项,并检查实验仪器是否齐全。 2、使用仪器前,将传感器端面与被测物(标定平铁板)表面用汽油认真清洗干净,以清洗掉杂质及灰尘微粒;而后将电源线和传感器与电缆分别连接好并拧紧。 3、将标定平铁板安放在测微台架的台架上,而后用夹具将电容传感器探头夹紧,接着上下调整探头使探头与标定平铁板距离接近测量区。 4、为便于进行数据分析,可将测微台架示值调至某一合适值,并将电容测微仪示值调零,而后进行实验;实验采用一人细调(等间距)测微台架,另一人记录的方式,为了标定线性区,测定线性误差,调值采用先等间距调至140μm,再等间距调回的方法。(为了节约时间,调值范围为0~140μm,调值间距为5μm,共计读29个数。)5、实验完成后,调整测微台架使探头远离标定平板到合适位置,取下标定平板(并估算找出电容测微仪的线性工作区,我们找的较为好的线性工作区是0~100μm)以进行压电陶瓷的性能及其微位移测量的实验。 (二)、压电陶瓷加电时的性能及其微位移测量 测压电陶瓷轴向伸缩: 1、将压电陶瓷的中线(Z)接至变压器的U+端,两边的两个接线头均接至变压器的地接口端(GND)。 2、将压电陶瓷小心垂直轻放在测微台架的台架上(如图3),并将探头靠近压电陶瓷至电容测微仪线性工作区(注:应先粗调而后细调以使电容测微仪示值在6~94μm以内,

压电陶瓷特性

压电陶瓷正压电效应:当压电陶瓷在外力作用下发生形变时,在它的某些相对应的面上产生导号电荷,这种没有电场的作用。只是由于形变而产生电荷的现象称为正压电效应。压电陶瓷逆压电效应:当压电陶瓷施加电场时,不仅产生了极化。同时还产生了形变,这种由电场产生的形变的现象称为逆压电效应。 压电陶瓷迟滞特性:压电陶瓷的开压和降升曲线之间存在移差值称为迟滞特性现象。压电陶瓷蠕变特性:在一定电压下,压电陶瓷的位移快速达到一定值后。位移继续随时间变化而缓慢变化,在一定时间后达到稳定的特性称为蠕变特性。 压电陶瓷温度特性:压电陶瓷受温度的影响而产生的变化的特性,就叫做温度特性。 压电陶瓷工作电压:压电陶瓷在达到标称位移量时所需要的电压,叫做工作电压,又称额定电压。 压电陶瓷最大电压:压电陶瓷最大能承受的电压,叫做最大电压。 压电陶瓷标称位移:压电陶瓷在工作电压下而产生的位移变化范围。叫做标称位移。 压电陶瓷最大位移:压电陶瓷在最大电压下而产生的位移变化范围。叫做最大位移。 压电陶瓷最大推力:压电陶瓷轴向的最大输出力。叫做最大推力。我们可以通过机械封装式压电陶瓷来了解最大推力。 压电陶瓷刚度:压电陶瓷力与位移的关系。叫做刚度。我们可以通过低压驱动OEM式压电陶瓷来了解刚度。 压电陶瓷静电容量:压电陶瓷本身的电容量。叫做静电容量我们可以通过XP-84X 系列机械封装式压电陶瓷来了解静电容量参数。 压电陶瓷响应频率:压电陶瓷最快的变化速度。叫做响应频率我们可以通过查看机械封装式压电陶瓷来知道压电陶瓷的响应频率。 压电陶瓷叠层型陶瓷:将同一规格的压电陶瓷片粘贴在一起,实现机械上串联,电气上并联的压电陶瓷。特点是在输出力不损失的情况下,增大位移输出,这就是叠层型陶瓷,单路电源就可控制。 压电陶瓷封装陶瓷:将压电陶瓷固化在机械结构内,从而提高压电陶瓷的可靠性和稳定性和可安装性。 压电陶瓷开环陶瓷:无位置传感器的封装压电陶瓷。 压电陶瓷闭环陶瓷:有位置传感器的封装压电陶瓷。 压电陶瓷预载力:通过机械结构预先给压电陶瓷施加的固定压力。叫做预载力。 压电陶瓷位移分辨率:压电陶瓷的灵敏度。叫做位移分辨率。 压电陶瓷响应速度:是压电陶瓷位移的变化速度.叫做响应速度。 压电陶瓷标准配置:对于封装开环/闭环压电陶瓷在出厂时,对它的机械封装接口、电缆、连接器类型和长度的默认配置。 标准配置机械接口:封装陶瓷的机械接口或称为移动端部分。该部分可由用户选择或定制。 压电陶瓷电连接:封装陶瓷的电极和位置传感器的引出线缆和连接器类型 压电陶瓷扩展功能:封装陶瓷在不改变外形的情况下,增加的位置传感器、低温修正等技术。 压电陶瓷特殊定制:用户可根据自己的需要向我公司提出要求,包括压电陶瓷的技术指标、机械封装、安装方式、电气接口等,我公司会尽量在最短的时间内向用户提供最优质的产品,保证产品使用性能和产品的稳定性。

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。 (一)压电陶瓷得主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。 (2)压电陶瓷得主要参数 1、介质损耗 介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。

图1 交流电路中电压电流矢量图(有损耗时) 2、机械品质因数 机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。机械品质因数越大,能量得损耗越小。产生能量损耗得原因在于材料得内部摩擦。机械品质因数得定义为: 机械品质因数可根据等效电路计算而得 式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。与其它参数之间得关系将在后续详细推导。 不同得压电器件对压电陶瓷材料得值得要求不同,在大多数得场合下(包括声波测井得压电陶瓷探头),压电陶瓷器件要求压电陶瓷得值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外得电荷。其产生得电荷与施加得应力成比例,对于压力与张力来说,其符号就是相反得,电位移D(单位面积得电荷)与应力得关系表达式为: 式中Q 为产生得电荷(C),A 为电极得面积(m2),d 为压电应变常数(C/N)。在逆压电效应中,施加电场 E 时将成比例地产生应变S,所产生得应变S 就是膨胀还就是收缩,取决于样品得极化方向。 S=dE 两式中得压电应变常数d 在数值上就是相同得,即 另一个常用得压电常数就是压电电压常数g,它表示应力与所产生得电场得关系,或应变与所引起得电位移得关系。常数g 与 d 之间有如下关系: 式中为介电系数。在声波测井仪器中,压电换能器希望具有较高得压电应变常数与压电电压常数,以便能发射较大能量得声波并且具有较高得接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电得方法把能量加到压电材料上时,由于压电效应与逆压电效应,机械能(或电能)中得一部分要转换成电能(或机械能)。这种转换得强弱用机电耦合系数k 来表示,它就是一个量纲为一得量。机电耦合系数就是综合反映压电材料性能得参数,它表示压

压电陶瓷片的原理及特性

压电陶瓷片的原理及特性 压电效应具有可逆性:若在压电陶瓷片上施以音频电压,就能产生机械振动,发出声响;反之,压电陶瓷片受到机械振动(或压力)时,片上就产生一定数量的电荷Q,从电极上可输出电压信号。 目前比较常见的锗钛酸铅压电陶瓷片(PZT),是用锆、钛、铅的氧化物配制后烧结而成的。鉴于人耳对频率约为3kHz的音响最敏感,所以通常将压电陶瓷片的谐振频率f0设计在3kHz左右。考虑到在低频下工作,仅用一片压电陶瓷片难以满足频率要求,—般采用双膜片结构,其外形与符号如图1所示。它是把直径为d的压电陶瓷片与直径为D的金属振动片复合而成的。D一般为 15~40mm,复合振动片的总厚度为h。 当压电材料—定时,谐振频率与h成正比,与(D/2)2成反比。谐振频率fo 与复合振动片的直径D呈指数关系,如图2(a)所示。显然D愈大,低频特性愈

好。压电陶瓷片作传声器使用时,工作频率约为300Hz~5kHz。压电陶瓷片的阻抗Z取决于d/D之比,由图2(b)可见,阻抗随d/D比值的增大而降低。>压电陶瓷片的驱动 压电陶瓷片有两种驱动方式。第一种是自激振荡式驱动。其电路原理是通过晶体管放大器提供正反馈,构成压电晶体振荡器,使压电陶瓷片工作在谐振频率fo上而发声。此时压电陶瓷片呈低阻抗,输出音量受输入电流控制,因此亦称为电流驱动型。 第二种为他激振荡式驱动,利用方波(或短形波)振荡器来激励发声。这时压电陶瓷片一般工作于fo之外的频率上,因此阻抗较高,输入电流较小,它居于电压驱动式。其优点是音域较宽。音色较好。>压电陶瓷片的测试方法 1、电压测试法 在业余条件下,可以用万用表的电压挡来检查压电陶瓷片的质量好坏,具体方法是:将万用表拨至2.5V直流电压档,左手拇指与食指轻轻握住压电陶瓷片的两面,右手持两支表笔,红表笔接金属片,黑表笔横放在陶瓷表面上,如图1所示。然后左手拇指与食指稍用力压紧一下,随即放松,压电陶瓷片上就先后产生两个极性相反的电压倍号,使指针先是向右捏一下,接着返回零位,又向左摆一下。摆动幅度约为0.1~0.15V。在压力相同的情况下,摆幅愈大,压电陶瓷片的灵敏度愈高。若表针不动,说明压电陶瓷片内部漏电或者破损。 交换两支表笔位置后重新试验,指针摆动顺序应为:向左摆->回零->向右摆->回零。 在意事项: ①如果用交流电压档,就观察不到指针摆动情况,这是由于所产生的电压信号变化较缓慢的缘故。 ②检查之前,首先用R×1k或R×10k档测量绝缘电阻,应为无穷大,否则证明漏电,压电陶瓷片受强烈震动而出现裂纹后,可用电烙铁在裂纹处薄薄地徐上一层焊锡,—般能继续使用。 ③检查时用力不宜过大、过猛,更不得弯折压电陶瓷片;勿使表笔头划伤陶瓷片,以免损坏片子。 ④若在压电陶片上一直加恒定的压力,由于电荷不断泄漏,指针摆动一下就会慢慢地回零。

压电陶瓷变压器基本工作原理及特点.

独石(多层)压电陶瓷变压器基本工作原理及特点 在现代,压电陶瓷 制品对我们并不陌 生。 正压电效应的应用主要用于燃气点火器,如燃气灶.燃气打火机等的点火系统。基本工作原理为:由外力压缩一个弹簧,压到顶点后释放,弹簧力推动一个重锤打击压电陶瓷柱产生一数千伏的高压火花,点燃可燃气体。 逆压电效应的应用主要用于压电蜂鸣器,例如音乐贺卡、门铃.寻呼机.移动电话机振铃等。基本工作原理为:当在压电陶瓷片上施加一交变电场时,压电陶瓷片产生一相对应的形变即振动,当振动频率在音频波段内时就会发出对应的音响。 应用此特性配合机械谐振原理还大量用于制造谐振器、选频器、延迟线、滤波器等电子组件。 压电陶瓷变压器的基本构成则是将一压电蜂鸣器的应用与一压电点火器的应用组合起来,组成压电谐振子。在蜂鸣器的一端(称为驱动端)输入一个与压电变压器谐振频率一致的正弦交变电压,压电谐

振子产生振动,传导至点火器的一端(称为发电端),产生连续的正弦波电压,视乎于压电变压器的结构特征,可以是输入低电压、输出高电压(升压型),也可以是输入高电压、输出低电压(降压型)。若在高频驱动电压上通过调制解调器加入低频调制,则可实现信号传输。 压电陶瓷变压器的基本结构形式如图(一)所示 压电陶瓷是一种脆性材料,为保障其机械强度,压电变压器必须有一定的厚度,上述变压器的驱动电压就受到了相当的限制。为此独石(多层)压电陶瓷变压器项目应运而生。独石(多层)压电陶瓷变压器的基本结构形式如图(二)所示。

采用了独石(多层)结构后每一单层厚度和层数均可调,驱动电压不再受到限制,因而可以使压电变压器无论处在何种驱动电压下都能工作在最佳状态。 此项目的核心技术为亚微米低温烧结压电陶瓷材料、内电极共烧技术,极化处理技术及结构设计。 独石(多层)压电陶瓷变压器制备的工艺流程为

压电陶瓷振动的干涉测量实验报告.pdf

一、实验目 的与实验仪 器 1.实验目的 (1)了解压电陶瓷的性能参数;? (2)了解电容测微仪的工作原理,掌握电容测微仪的标定方法; ? (3)、掌握压电陶瓷微位移测量方法。 2.实验仪器 压电陶瓷材料(一端装有激光反射镜,可在迈克尔逊干涉仪中充当反射镜)、光学 防震平台、半导体激光器、双踪示波器、分束镜、反射镜、二维可调扩束镜、白屏、驱动电源、光电探头、信号线等。二、实验原理 1. 压电效应 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释。晶体在机械力作用 下,总的电偶极矩(极化)发生变化,从而呈现压电现象,因此压电陶瓷的压电性与极化、形变等有密切关系。 1) 正压电效应:压电晶体在外力作用下发生形变时,正、负电荷中心发生相对位移,在某些相对应的面上产生异号电荷,出现极化强度。对于各向异性晶体,对晶体施加应力时,晶体将在X ,Y ,Z 三个方向出现与应力成正比的极化强度,即: E = g ·T (g 为压电应力常数), 2) 逆压电效应:当给压电晶体施加一电场 E 时,不仅产生了极化,同时还产生形变,这种由电场产生形变的现象称为逆压电效应,又称电致伸缩效应。这是由于晶体受电场作用时,在晶体内部产生了应力(压电应力),通过应力作用产生压电应变。存在如下关系: S = d ·U (d 为压电应变常数) 对于正和逆压电效应来讲,g 和d 在数值上是相同的。 2. 迈克耳逊干涉仪的应用 迈克耳逊干涉仪可以测量微小长度。上图是迈克耳逊干涉仪的原理图。分光镜的第 二表面上涂有半透射膜,能将入射光分成两束,一束透射,一束反射。分光镜与光束中心线成45°倾斜角。M 1和M 2为互相垂直并与分束镜都成45°角的平面反射镜,其中反射镜M 1后附有压电陶瓷材料。 由激光器发出的光经分光镜后,光束被分成两路,反射光射向反射镜M 1(附压电陶瓷),透射光射向测量镜M 2(固定),两路光分别经M 1、M 2反射后,分别经分光镜反射和透射后又会合,经扩束镜到达白屏,产生干涉条纹。M 1和M 2与分光镜中心的距离差决定两束光的光程差。因而通过给压电陶瓷加电压使M 1随之振动,干涉条纹就发生变化。由于干涉条纹变化一级,相当于测量镜M 1移动了λ/2,所以通过测出条纹的变化数就可计算出压电陶瓷的伸缩量。 三、实验步骤 1)将驱动电源分别与光探头,压电陶瓷附件和示波器相连,其中压电陶瓷附件接驱动电压 插口,光电探头接光探头插口,驱动电压波形和光探头波形插口分别接入示波器CH1 和CH2; 压电陶瓷振动的干涉测量实验报告

压电晶体与压电陶瓷的结构、性能与应用Word版

压电晶体与压电陶瓷的结构、性能与应用 摘要:压电晶体与压电陶瓷作为典型的功能材料,具有能实现机械能与电能之间互相转换的工作特性,在电子材料领域占据相当大的比重。本文从压电效应入手,阐述了压电晶体与压电陶瓷的结构原理以及性能特点。针对压电晶体与压电陶瓷在生产实践中的应用情况,综述了其近年来的研究进展,并系统介绍了其在各个领域的应用情况和发展趋势。 关键词:压电晶体压电陶瓷压电效应结构性能应用发展 引言 1880年皮埃尔?居里和雅克?居里兄弟在研究热电现象和晶体对称性的时候,在α石英晶体上最先发现了压电效应。1881年,居里兄弟用实验证实了压电晶体在外加电场作用下会发生形变。1894年,德国物理学家沃德马?沃伊特,推论出只有无对称中心的20中点群的晶体才可能具有压电效应。[1] 石英是压电晶体的代表,利用石英的压电效应可以制成振荡器和滤波器等频率控制元件。在第一次世界大战中,居里的继承人朗之万,为了探测德国的潜水艇,用石英制成了水下超声探测器,从而揭开了压电应用史的光辉篇章。 除了石英晶体外,酒石酸钾钠、BaTiO3陶瓷也付诸应用。1947年美国的罗伯特在BaTiO3陶瓷上加高压进行极化处理,获得了压电陶瓷的压电性。随后,美国和日本都积极开展应用BaTiO3压电陶瓷制作超声换能器、音频换能器、压力传感器等计测器件以及滤波器和谐振器等压电器件的研究,这种广泛的应用研究进行到上世纪50年代中期。 1955年美国的B.贾菲等人发现了比BaTiO3的压电性优越的PbZrO3-PbTiO3二元系压电陶瓷,即PZT压电陶瓷,大大加快了应用压电陶瓷的速度,使压电的应用出现了一个崭新的局面。BaTiO3时代难以实用化的一些应用,特别是压电陶瓷滤波器和谐振器以及机械滤波器等,随着PZT压电陶瓷的出现而迅速地实用化了。采用压电材料的SAW滤波器、延迟线和振荡器等SAW器件,上世纪70年代末也已实用化。上世纪70年代初引起人们注意的有机聚合物压电材料(PVDF),现在也已基本成熟,并已达到了生产规模。如今,随着应用范围的不断扩大以及制备技术的提升,更多高性能的环保型压电材料也正在研究中。 一、压电晶体与压电陶瓷的结构及原理 压电效应包含正压电效应与逆压电效应,当某些电介质在一定方向上受到外力的作用而发生变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷,当作用力的方向改变时,电荷的极性也随之改变,并且受力所产生的电荷量与外力的大小成正比,而当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应;相反,当在电介质的极化方向上施加交变电场,这些电介质也会发生机械变形,电场去掉后,电介质的机械变形随之消失,这种现象称为逆压电效应。正压电效应是把机械能转换为电能,而逆压电效应是把电能转换为机械能。 1.1压电效应原理

压电陶瓷变压器及其应用

压电陶瓷变压器及其应用 压电陶瓷变压器是用铁电陶瓷材料经烧结和高压极化等工艺制成的一种新型电子变压器,其结构和工作原理与电磁绕线式等传统变压器是截然不同的。 人们对压电陶瓷变压器的研究始于20世纪50年代中后期。美国的Rosen于1956年阐述了压电陶瓷变压器的基本原理,并制备出长条形单片压电陶瓷变压器。由于当时的这种变压器采用的是压电性能差和居里温度低的钛酸钡(BaTiO3)材料,功率太小,成本也太高,并且工艺不成熟,因而未能引起人们的重视。在20世纪60年代到70年代初,关于压电陶瓷材料的研究取得了一些进展,在70年代压电陶瓷变压器发展成为一种新型的电子陶瓷变压器,并在80年代被推广应用到电视机、雷达终端显示器等的高压电源领域。这一时期,人们对与压电陶瓷变压器相关的最熟悉的产品就是压电陶瓷蜂鸣器和点火棒。进入90年代中期后,随着信息产业的迅猛发展及电子产品朝轻、薄、短、小方向发展的趋势,使得压电陶瓷变压器技术与产业得到长足进步和发展。 1、压电陶瓷变压器的结构与工作原理 压电变压器的工作原理基于压电材料的压电效应。压电效应是法国的P?Curie和J?Curie兄弟在1880年研究铁电性和晶体对称性的关系时发现的一种物理现象。除了单晶体外,压电陶瓷多晶体和某些非晶固体等也具有压电效应。 压电效应分正和逆两种类型。 正压电效应是指在压电体上加一个机械应力时,会使压电体极化并在一定的表面形成电荷的效应。压电陶瓷棒就是利用正压电效应工作的,给压电棒加上机械压力,在点火棒两端即有高压产生。 逆压电效应是指在压电体上有一个外加电场时,晶体会发生形变和振动,这一现象就是逆压电效应。压电陶瓷蜂鸣器就是利用逆压电效应工作的,给压电陶瓷片加上电压信号,将会使陶瓷片振动并发出声音。 压电陶瓷变压器是利用同一压电陶瓷并同时利用正压电效应和逆压电效应来工作的,即完成电能——机械能和机械能——电能的两次能量转换。 压电陶瓷变压器所使用的压电陶瓷材料除了BaTiO3外,还有PZT系压电陶瓷、三元系压电陶瓷(如铌镁钴钛酸铅系、铌锌锆钛酸铅系、碲锰锆钛酸铅系、锑锰锆钛铅酸系等)及四元系压电陶瓷[如Pb(Sn1/3 Nb2/3)A (Zn1/3 Nb2/3)B TiCZrdO3)等]。 最简单同时也是最为常用的压电陶瓷变压器是长条形单片压电陶瓷变压器(即Rosen型压电变压器),其结构如图1所示。

相关主题