搜档网
当前位置:搜档网 › 焊接强度计算知识.

焊接强度计算知识.

焊接强度计算知识.
焊接强度计算知识.

各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。

例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。

36 什么是工作焊缝?什么是联系焊缝?

焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,其应力称为工作应力。另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称

为联系焊缝,见图30c、图30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度,只计算工作焊缝的强度。

37 举例说明对接接头爱拉(压)时的静载强度计算。

全焊透对接接头的各种受力情况见图31。图中F为接头所受的拉(压)力,Q为切力,M1为平面内弯矩,M2为垂平面弯矩。

受拉时的强度计算公式为

F

σt=───≤〔σ′t 〕

Lδ1

F

受压时的强度计算公式为σα=───≤〔σ′α 〕

Lδ1

式中F——接头所受的拉力或压力(N);

L——焊缝长度(cm);

δ1——接头中较薄板的厚度(cm);

σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠

〔σ′t 〕——焊缝受拉时的许用应力(N/cm2)

〔σ′α〕——焊缝受压时的许用应力(N/cm2)

计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。

解:查表得〔σ′t 〕=14200 N/cm2。

根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为

F 28400

σt=─── =───── =1136N/cm2<14200N/cm2

Lδ1 50×0.5

∴该对接接头焊缝强度满足要求,结构工作安全。

38 举例说明对接接头受剪切时的静载强度计算。

受剪切时的强度计算公式为

Q

τ= ───≤〔τ′〕

Lδ1

式中Q——接头所受的切力(N);

L——焊缝长度(cm);

δ1——接头中较薄板的厚度(cm);

τ——接头焊缝中所承受的切应力(N/cm2);

〔τ′〕——焊缝许用切应力(N/cm2)

计算例题两块板厚为10mm的钢板对接焊,焊缝受29300N的拉力,材料为Q235-A钢,试设计焊缝的长度(钢板宽度)。

解:查表得〔τ′〕=9800 N/cm2。

根据已知条件,在上述公式中,Q=29300N,δ1=10mm=1cm,代入计算为

Q 28400

L≥ ────── =────── =2.99cm = 29.9mm

δ1〔τ′〕1×9800

取L = 30mm。即当焊缝长度(板宽)为30mm时,该对接接头焊缝强度能满足要求。

39 举例说明对接接头受弯矩时的静载强度计算。

受水平板面内弯矩的强度计算公式为

6M1

σ=────≤〔σ′t 〕

δ1 L2

受垂直板面内弯矩的强度计算公式为

6M2

σ=────≤〔σ′t 〕

δ12L

式中M1——水平板面内弯矩(N/cm2);

M2——垂直板面弯矩(N/cm2);

L ——焊缝长度(cm);

δ1——接头中较薄板的厚度(cm);

σ——接头受弯矩作用时焊缝中所承受的应力(N/cm2);

〔σ′t 〕——焊缝受弯时的许用应力(N/cm2)。

计算例题两块厚度相同钢板的对接接头,材料为16MnR钢,钢板宽度为30mm,受垂直板面弯矩300000N·cm,试计算焊缝所需的厚度(板厚)。

解:查表得〔σ′t 〕=20100 N/cm2。

根据已知条件,在上述公式中,M2=300000N·cm,L=300mm=30cm,代入计算为

取δ1=18mm,即当焊缝厚度(板厚)为18mm时,该对接接头焊缝强度能满足要求。

40 举例说明搭接接头受拉(压)时的静载强度计算。

各种搭接接头的受力情况,见图32。

三种焊缝的计算公式为

⑴正面搭接焊缝受拉(压)的计算公式为

F

τ=────≤〔τ′〕

1.4KL

⑵侧面搭接焊缝受拉(压)的计算公式为

F

τ=────≤〔τ′〕

1.4KL

⑶联合搭接焊缝受拉(压)的计算公式为

F

τ=────≤〔τ′〕

0.7KΣL

式中F——搭接接头受的拉(压)力(N);

K——焊脚尺寸(cm);

L——焊缝长度(cm);

ΣL——正、侧面焊缝总长(cm);

τ——搭接接头角焊缝受的切应力(N/cm2);

〔τ′〕——焊缝金属许用切应力(N/cm2);

计算例题将100mm×10mm的角钢用角焊缝搭接在一块钢板上见图33。受拉伸时要求与角钢等强度,试计算接头的合理尺寸K和L应该是多少?

解:从材料手册查得角钢断面积S=19.2cm2;许用应力〔σ〕=16000 N/cm2,焊缝许用应力〔τ′〕=10000 N/cm2。

角钢的允许载荷为

〔F〕=S〔σ〕=19.2×16000=307200N

假定接头上各段焊缝中的切应力都达到焊缝许用切应力值,即て=〔τ′〕。若取K=10mm,采用手弧焊,则所需的焊缝总长为

〔F〕 307200

ΣL =─────── =─────────=43.9cm

0.7K〔て′〕 0.7×1×10000

角钢一端的正面角焊缝L3=100mm,则两侧焊缝总长度为339mm。根据材料手册查得角钢的拉力作用线位置e=28.2mm,按杠杆原理,则侧面角焊缝L2应承受全部侧面角焊缝载荷的28.3%。

28.3

∴L2 =339 × ─── =96mm

100

另外一侧的侧面角焊缝长度L1应该为

100-28.3

L1 =339 × ────── =243mm

100

取L1=250mm,L2=100mm。

41 举例说明搭接接头受弯矩时的静载强度计算。

搭接接头受弯矩的情况,见图34a。计算公式为

式中M——作用在接头上的外加弯矩(N/cm2);

K——焊脚尺寸(cm);

H——搭接板宽度(cm);

〔τ′〕——焊脚的许用切应力(N/cm2))。

计算例题由三面焊缝组成的悬臂搭接接头(图34),当焊缝总长为500mm,K=10mm 时,在梁的端头作用一弯矩M=2800000N·cm,试验计算接头是否安全?已知焊缝作用切应力〔τ′〕=10000 N/cm2。

42 举例说明搭接接头受偏心载荷时的静载强度计算。

如果搭接接头承受的载荷是垂直X轴方向的偏心载荷F见图35,此时焊缝中既有由弯矩M=FL引起的切应力τM(由来1公式计算),又是有由切力Q=F引起的切应力τQ为

计算例题一偏心受载的搭接接头(图35),已知焊缝长h=400mm,l0=100mm,焊脚尺寸K=10mm,外加载荷F=30000N,梁长L=100cm,试校核焊缝强度。焊缝的许用切应力〔τ′〕=10000N/cm2。

解:分别计算τM 、τQ:

43 举例说明T形接头受平行于焊缝载荷时的静载强度计算。

接头及其受载荷的情况,见图36a。

如果接头开坡口并焊透,其强度按对接接头计算,焊缝金属截面等于母材截面(S=δh)。如果接头开I形坡口,此时产生最大切应力的危险点在焊缝的最上端,该点同时作用有两个切应力:一个是由M=FL引起的τM;另一个是由Q=F引起的τQ。τM、τQ的

44 什么是焊接结构的疲劳断裂?

疲劳断裂的过程由三个阶段所组成:

1)在承受重复载荷的结构的应力集中部位产生疲劳裂纹(此时结构所受应力低于弹性极限)。

2)疲劳裂纹稳定扩展。

3)结构断裂。

据统计,由于疲劳而失效的金属结构,约占失效结构的90%。

焊接结构较其它结构(如铆接结构)更容易产生疲劳断裂,这是因为:1)铆接结构的疲劳裂纹发展遇到钉孔或板层间隔会受阻,焊接结构由于其整体性,一旦产生裂纹,裂纹扩展不受阻止,直至整个构件断裂。2)焊接连接不可避免地存在着产生应力集中的夹渣、气孔、咬边等缺陷。3)焊缝区存在着很大的残余拉应力。几个典型的焊接结构疲劳断裂事例见图37。

图37a为直升飞机起落架的疲劳断裂。裂纹从应力集中很高的角接板尖端开始,该机飞行着陆2118交后发生破坏,属于低周疲劳。

图37b为载重汽车底架纵梁的疲劳断裂。该梁板厚5mm,承受反复的弯曲应力,在角钢和纵梁的焊接处,因应力集中很高而产生疲劳裂纹而破坏,此时该车已运行30000km。

45 试述焊接接头形式对疲劳极限的影响。

焊接结构中,在接头部位由于具有不同的应力集中,将对接头的疲劳极限产生程度不同的不利影响。

⑴对接接头对接接头从焊缝至母材的形状变化不大,应力集中比其它接头要小,所以在所有的接头形式中具有最高的疲劳极限。但是过大的余高会增加应力集中,使疲劳极限下降。

⑵T形接头这种接头由于在焊缝向基本金属过渡处有明显的截面变化,应力集中系数比对接接头的应力集中系数高,因此其疲劳极限远低于对接接头。

提高T形接头疲劳极限的根本措施是开坡口焊接和加工焊缝过渡区使之圆滑过渡。

⑶搭接接头这是一种疲劳极限最低的接头形式,特别是在原来对接接头的基础上,增加盖板来进行“加强”,其结果适得其反,这种盖板非但没有起到“加强”作用,反而使原来疲劳极限较高的对接接头被大大地削弱了。

46 试述焊接缺陷对疲劳极限的影响。

焊接缺陷对焊接接头的疲劳极限产生重大的不利影响,这种不利影响与焊接缺陷的种类、尺寸、方向和位置有关。

片状缺陷(如裂纹、未熔合、未焊透)比带圆角的缺陷(如气孔、点状夹渣)影响大。表面缺陷比内部缺陷影响大。与作用力方向垂直的片状缺陷的影响比其它方向大。位于残余拉应力区内的缺陷的影响比在残余应力区内的大;位于应力集中区内的缺陷(如焊趾裂纹)的影响比在均匀应力区中同样缺陷影响大。咬边和未焊透在不同位置、不同载荷下对接头疲劳极限的影响,见图38,其中A组的影响最大,B组的影响较小。

47 如何选用合理的结构形式来提高接头的疲劳极限?

选用应力集中较小的结构形式是提高疲劳极限的重要措施,几种设计方案的正误比较,见图

39

48 如何利用电弧整形的方法来提高接头的疲劳极限?

电弧整形的方法,是用钨极氩弧在焊接接头焊缝与母材之间的过渡区重熔一次,使焊缝与基本金属能平滑地过渡,同时减少该部位的微小非金属夹杂物,使接头部位的疲劳极限得以提

高,见图40。电弧整形提高接头疲劳极限的效果,见表10。

表11 常用提高焊接接头疲劳极限的方法

方法,技术说明,适用范围及优点,缺点,改善,几何,形状,方法,电弧气刨后补焊法,砂轮修磨法,钻孔法,锥形砂轮磨光法, TIG重熔法

用碳弧气刨吹掉熔化金属后再补焊

用100cm直径砂轮,60~150级硅砂

孔径一般为12~25mm

用锥形砂轮打磨焊趾磨去基材0.5mm。用30~200级硅砂轮分3次连续磨光。

用TIG焊不填充焊丝重熔焊趾,能消除6mm深的缺陷。

适用于有很大的内部缺陷

适用于对接焊缝余高,快速、容易

适用于侧面节点板和个别有裂纹的细节

费用低,不要求特别的设备。

适用于角焊缝

这是打磨法中最有效的方法

适用于在车间制造的小机械部件和横向焊缝

对高强钢,当裂纹起始寿命较大时,改善效果更大

费用高,焊补可能产生新的缺陷

不能磨掉所有缺陷

仅用于穿透裂纹,延长其疲劳寿命

消耗多,耗用高,难于确保质量

要求焊缝表面清洁,引起焊缝表面硬化残余应力方法

射水冷却法,点加热法,多丝锤击法,喷丸锤击法,单点锤击法,局部加压法,初始超载法,热应力消除法

将焊缝加热至500℃保持3min,然后射水使表面快速冷却

在距焊缝一定位置加热至280℃,引起局部屈服

用~ф2钢丝组成束状锤头,对焊趾表面进行冷作加工,压缩空气压力为500~100kMa 喷铁或玻璃对焊趾表面进行冷作加工

用直径6~12mm球形锤头对焊趾进行冷加工,可用电锤或气压锤。

在距焊缝一定位置局部加压至屈服(2~3倍压应力)

用拉伸法预先加载使焊缝区局部屈服

在炉内加热至600℃,缓冷24h以上,加热速度为每10mm板厚1h

不需知道裂纹起始位置,不需严格控制温度

适用于大板

适用于中等严重的缺口

适用于平板和轻微缺口

适用于较严重的缺口,无损耗

适用于铝合金

适用于薄板

适用于小构件的纵向角焊缝

高温(500℃),限制冷却位置。不适用于大接头和小接头。

过热可能引起冷却时的马氏体变化

必须知道开裂位置,对横向焊缝无效

引起较小的缺口,未建立质量控制技术

要求有操作经验,仅适于水平位置

要求有操作经验不适用于很大结构

大构件常常不成功,冷却速度慢

涂装方法,均分负载层,油漆,镀锌,阴极防护

塑料、油漆、钎焊、逐层涂装,易检查

适用于腐蚀环境

适用于发生应力腐蚀裂纹和裂纹扩展速率大于10-5mm周的严重腐蚀环境

表面清洁,易凝固开裂

50 什么是延性断裂?什么是脆性断裂?

根据金属材料断裂前塑性变形的大小,断裂可分为延性断裂和脆性断裂两种形式。

⑴延性断裂断裂过程是:金属材料在载荷作用下,首先产生弹性变形。当载荷继续增加到某一数值,材料即发生屈服,产生塑性变形。继续加大载荷,金属将进一步变形,继而发生微裂口或微空隙,这些微裂口或微空隙一经形成,便在随后的加载过程中逐步汇合起来,形成宏观裂纹。宏观裂纹发展到一定尺寸后,扩展而导致最后断裂。

⑵脆性断裂在应力低于材料的设计应力和没有显著的塑性变形情况下,金属结构发生瞬时、突然破坏的断裂(裂纹扩展速度可高达1500~200m/s)称为脆性断裂。

脆性断裂的裂口平整,与正应力垂直,没有可以觉察到的塑性变形,断口有金属光泽。

51 试述应力状态对焊接结构产生脆性断裂的影响。

当物体受外载时,在主平面上作用有最大正应力σmax(另一个与之相垂直的平面上作用有最小正应力σmin)与主平面成45°的平面上作用有最大切应力てmax。如果在てmax达到

屈服点前,σmax先达到抗拉强度,则结构发生脆性断裂;反之,如てmax先达到屈服点,则发生塑性变形及形成延性断裂。

实验证明,当材料处于单向或双向拉应力作用下,呈现塑性;在三向拉应力作用下,呈现脆性。三向拉应力可能由三向载荷产生,但更多的情况下是由于几何不连续性所引起。虽然此时整个结构处于单向、双向拉应力状态下,但其局部地区由于设计不佳、工艺不当或产生焊接缺陷(如裂纹),往往会出现形成局部三向应力状态的缺口效应,见图41。在三向拉应力的作用下,材料的屈服点较单向应力时提高,结果在缺口根部形成很高的局部应力而材料尚不发生屈服,使材料的塑性下降,脆性增加,成为脆断的发源地。因此,焊接结构的脆断事故一般都起源于具有严重应力集中效应的缺口处。

52 试述温度对焊接结构产生脆性断裂的影响?什么是脆性转变温度?

如果把一组开有相同缺口的试样在不同温度下进行试验,则随着温度的降低,其破坏方式会发生变化,即从塑性破坏变为脆性破坏,见图42。当温度降到某一临界值时,将出现塑性到脆性断裂的转变,这个温度称之为脆性转变温度。脆性转变温度高,材料的脆性倾向严重。应当注意,同一材料采用不同试验方法,将会得到不同的脆性转变温度值。

53 试述加载速度对焊接结构产生脆性断裂的影响。

随着加载速度的增加,材料的屈服点提高,因而促使材料向脆性转变,其作用相当于降低温度,使材料的脆性转变温度升高,见图43。

应当指出,在同样加载速率下,当结构中有缺口时,应变速率可呈现出加倍的不利影响。因为此时有应力集中的影响,应变速率比无缺口高得多,从而大大地降低了材料的局部塑性。因此,结构钢一旦开始脆性断裂,就很容易产生扩展现象。当缺口根部小范围金属材料发生断裂时,在新裂纹前端的材料立即突然受到高应力和高应变载荷,即一旦缺口根部开裂,就有高的应变速率,而不管其原始加载条件是动载还是静载,此时随着裂纹加速扩展,应变速率更急剧增加,致使结构最后破坏。

54 试述材料状态对焊接结构产生脆性断裂的影响。

动载焊接结构设计Ⅲ(疲劳强度寿命计算)

****动载焊接结构的设计 1、 焊接结构疲劳强度设计的一般原则 设计过程可分为以下三个步骤: ⑴ 考虑实用性,进行功能设计 根据结构未来的工作情况,合理地提出结构的承载能力、强度、刚度、耐蚀度、使用寿命等比较具体的要求。考虑安全性,这些要求不能太低;考虑经济性,这些要求也不能过高。 ⑵ 进行方案设计 根据上述要求,选择确定结构材料、结构构造形式、传动形式、自动化程度、控制方式、生产制造工艺等综合设计方案,它们互相联系,又互相制约; ⑶ 进行具体的施工图设计 绘图前,进行必要的计算,以便确定结构的重要尺寸。我们要讲的是如何合理选择动载焊接结构、焊接接头的结构形式和怎样进行必要的计算。 设计动载焊接结构必须特别强调两点:① “动载”,对应力集中非常敏感;②焊接接头属于刚性连接形式,对应力集中也比较敏感。而且“焊接结构”难免有焊接残余应力、变形、焊接缺陷等,存在应力集中现象。 因此,设计动载焊接结构时,必须注意以下几点: ⑴ 承受拉伸、弯曲、扭转的构件,截面面积变化时,尽量保持平顺、圆滑的过渡,尽量防止或减小构件截面刚度突然变化,避免造成较大的附加应力和应力集中。 ⑵ 对接、角接、丁字、十字接头等,均应优先采用对接焊缝,少用角焊缝; ⑶ 单面搭接接头角焊缝的焊根、焊趾处,既有偏心弯矩的作用,又有严重的应力集中,承受疲劳载荷的能力很低,必须尽量避免采用这种接头形式; ⑷ 承受疲劳载荷的角焊缝(未焊透的对焊缝,也看作角焊缝),危险点在应力集中比较严重的焊缝根部或焊趾处。应采用如下措施:① 开坡口,加大熔深,减小焊缝根部的应力集中;② 将焊趾处加工成圆滑过渡的形状,减小焊趾的应力集中; ⑸ 处于拉应力场中的焊趾、焊缝端部或其它严重的应力集中处(如裂纹),应设置缓和槽、孔,以便降低应力集中的影响。 总之,应采取一切措施,排除或减小应力集中的影响。 2、疲劳强度的许用应力设计法 我国钢结构标准,原设计规范基本金属及连接的疲劳计算中,采用疲劳许用应力。 ⑴ 许用应力的确定 先通过实验测定材料、结构的疲劳强度或疲劳极限,再按存活率(一般结构97.7%,特重要结构99.99%)和疲劳循环次数(如2×106次)确定疲劳强度r σ;疲劳强度的许用应力 [] n r p r σσ= 式中: n - 安全系数; ⑵ 设计原则 最大疲劳工作应力m ax σ≤许用应力[] p r σ ⑶ 缺点 ① 没有考虑疲劳载荷的累积效应; ② 没有考虑过载峰对疲劳寿命的影响; ③ 没有考虑千变万化的不确定因素。过去把这些不确定因素的影响,涵盖在安全系数里,加以考虑。电站两例 3、 焊接结构的疲劳寿命设计 ⒊1 疲劳裂纹的亚临界扩展 一个初始裂纹0a 的构件,只有载荷应力达到临界值C σ时(图1),亦即当裂纹尖端 图1 亚临界裂纹扩展与 临界尺寸

焊接强度计算知识.

各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,其应力称为工作应力。另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称

为联系焊缝,见图30c、图30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度,只计算工作焊缝的强度。 37 举例说明对接接头爱拉(压)时的静载强度计算。 全焊透对接接头的各种受力情况见图31。图中F为接头所受的拉(压)力,Q为切力,M1为平面内弯矩,M2为垂平面弯矩。 受拉时的强度计算公式为 F σt=───≤〔σ′t 〕 Lδ1 F 受压时的强度计算公式为σα=───≤〔σ′α 〕 Lδ1 式中F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm);

σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠ 〔σ′t 〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α〕——焊缝受压时的许用应力(N/cm2) 计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。 解:查表得〔σ′t 〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为 F 28400 σt=─── =───── =1136N/cm2<14200N/cm2 Lδ1 50×0.5 ∴该对接接头焊缝强度满足要求,结构工作安全。 38 举例说明对接接头受剪切时的静载强度计算。 受剪切时的强度计算公式为 Q τ= ───≤〔τ′〕 Lδ1 式中Q——接头所受的切力(N); L——焊缝长度(cm);

焊接计算公式总结

角焊缝计算 基本公式 )63(22 -≤+??? ? ??w f f f f f τβσ )73(-≤= ∑w f f e w f f h l N βσ )83(-≤= ∑w f e w f f h l N τ 1承受轴心力作用时角焊缝连接计算(双盖板拼接) 侧面角焊缝 )83(-≤= ∑w f e w f f h l N τ 三面围焊角焊缝 )73(-≤= ∑w f f e w f f h l N βσ e w w f f h l f N ∑'='β w f e w f f h l N N ≤' -= ∑τ

角钢与节点板用侧面角焊缝连接 ) 153() 143(2 221 11-≤= -≤=∑∑w f e w f w f e w f f h l N f h l N ατατ 角钢与节点板用三面角焊缝连接 )193(33-=∑w f f e f bh N β ) 213(2) 203(23 22311--=-- =N N k N N N k N

) 63(22 -≤+??? ? ??= =∑∑w f f f f w e y f w e x f f l h N l h N τβστσ 4承受弯矩、轴心力或剪力联合作用的角焊缝连接计算

承受弯矩与剪力联合作用的角焊缝连接计界 ∑= -+?=-+?=w e VAy y x x TAy y x y TAx l h V I I r T I I r T τττ) 273()263( w f TAx f VAy TAy f ≤+??? ? ??+22 τβττ 对接焊缝计算 对接焊缝计算与构件截面的强度计算相同请自己总结

焊接强度及结构

焊接工艺问答(强度及结构) 焊接工艺问答(强度及结构)
各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对 强度无影响。 其强度 强度 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图 29。继续加载,焊缝 的两端点达到屈服点 σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到 σs,故应力随加载继续上升,到达屈服点 的区域逐渐扩大,应力分布曲线变平,最后各点都达到 σs。如再加载,直至使焊缝全长同时达到强度 强度极限,最后导致破坏。 强度
什么是工作焊缝?什么是联系焊缝? 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用, 一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图 30a、图 30b,其应力称为工作应力。另一种焊缝与被连接的元件是 并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝, 见图 30c、图 30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度 强度,只计算工作焊缝的强度 强度。 强度 强度 举例说明对接接头爱拉(压)时的静载强度计算。 时的静载强度计算。 37 举例说明对接接头爱拉 时的静载强度计算 全焊透对接接头的各种受力情况 见图 31。图中 F 为接头所受的拉(压)力,Q 为切力,M1 为平面内弯矩, M2 为垂平面弯矩。

受拉时的强度 强度计算公式为 强度
F σt= ─── Lδ1 ≤〔σ′t 〕
F 强度计算公式为 σα= ─── ≤〔σ′α 〕 受压时的强度 强度 Lδ1
式中
F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm); σ——接头受拉(σt) 或受压(σα)时焊缝中所承受的应力(N/cm2)㈠
〔σ′t 〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α 〕——焊缝受压时的许用应力(N/cm2) 强度。 计算例题 两块板厚为 5mm、宽为 500mm 的钢板对接焊在一起,两端受 28400N 的拉力,材料为 Q235-A 钢,试校核其焊缝强度 强度 解:查表得〔σ′t 〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为 F 28400
σt= ─── = ───── = 1136N/cm2<14200N/cm2 Lδ1 50×0.5

该对接接头焊缝强度 强度满足要求,结构工作安全。 强度
举例说明对接接头受剪切时的静载强度计算。 强度计算 38 举例说明对接接头受剪切时的静载强度计算。 强度计算公式为 受剪切时的强度 强度

焊缝强度(计算书)

完全焊透的对接焊缝和T形连接焊缝设计计算书 Ⅰ.设计依据: 《钢结构设计手册上册》(第三版) 《钢结构设计规范》 GB 50017-2003 Ⅱ.计算公式和相关参数的选取方法 一、焊缝质量等级的确定方法: 焊缝应根据结构的重要性、荷载特性、焊缝形式、工作环境以及应力状态等情况,按下述原则分别选用不同的质星等级: 1在需要进行疲劳计算的构件中,凡对接焊缝均应焊透,其质缝等级为:1)作用力垂直于焊缝长度方向的横向对接焊缝或T形对接与角接组合焊缝,受拉时应为一级,受压时应为二级; 2)作用力平行于焊缝长度方向的纵向对接焊缝应为二级。 2不需要计算疲劳的构件中,凡要求与母材等强的对接焊缝应予焊透,其质量等级当受拉时应不低于二级,受压时宜为二级。 3重级工作制和起重量Q≥50t的中级工作制吊车梁的腹板与上翼缘之间以及吊车衔架上弦杆与节点板之间的T形接头焊缝均要求焊透,焊缝形式一般为对接与角接的组合焊缝.其质量等级不应低于二级。 4不要求焊透的T形接头采用的角焊缝或部分焊透的对接与角接组合焊缝,以及搭接连接采用的角焊缝,其质量等级为: 1)对直接承受动力荷载且需要验算疲劳的结构和吊车起重量等于或大于50 t的中级工作制吊一车梁,焊缝的外观质量标准应符合二级; 2)对其他结构,焊缝的外观质量标准可为三级。 ——(GB50017—2003 7.1.1) 二、焊缝连接计算公式 1、完全焊透的对接接头和T形接头焊缝计算公式 1)在对接接头和T形接头中,垂直于轴心拉力或轴心压力的对接焊缝或对接与角接组合焊缝,其强度应按下式计算:

拉应力或压应力:c t w f f tl 或≤=σ ( GB 50017-2003 7.1.2 -1) 参数:N ——轴心拉力和轴心压力(N ); w l ——焊缝计算长度,为设计长度减2t (有引弧板时可不减)(mm ); t ——对接接头中连接件的较小厚度;T 形接头中为腹板的厚度(mm ); w c w t f f 、——对接焊缝的抗拉、抗压强度设计值(查表2-5可得) (N/mm 2 ); 2)在对接接头和T 形接头中,承受弯矩和剪力共同作用的对接焊缝或对接与角接组合焊缝,其正应力和剪应力应分别进行计算。但在同时受有较大正应力和剪应力处(例如梁腹板横向对接焊缝的端部),应按下式计算折算应力: w t f 1.13221≤+τσ (GB55017—2003 7.1.1.2-2) 注:1当承受轴心力的板件用斜焊缝对接,焊缝与作用力间的夹角θ符合,当tg θ≤1.5时焊缝的强度可不计算. 2 当对接焊缝和T 形对接焊缝与角接组合焊缝无法采用引弧板和引出板施焊时每条焊缝的长度计算时应减去2t 附表1-1 焊缝的强度设计值

焊接线能量的范围与计算方法

焊接线能量的范围与计算方法 q = IU/υ式中:I电弧电压V υ线能量 J/cm 例如,板厚12mm,进行双面开Ⅰ形坡口埋弧焊,焊丝 ф4mm,I=650A,U=38V,υ=0、9cm/s。,则焊接线能量q为: q= IU/υ=65038/0、9 =27444 J/cm 线能量综合了焊接电流、电弧电压和焊接速度三大焊接工艺参数对焊接热循环的影响。线能量增大时,热影响区的宽度增大,加热到高温的区域增宽,在高温的停留时间增长,同时冷却速度减慢,决定焊接线能量的主要参数就是焊接速度,焊接电流,和电弧电压,所以从这个意义上讲,只要你确定了合理的焊接规范参数,就已经确定了合理的焊接线能量,所以并没有一个专门的定量的的焊接线能量的测定,除非有特别要求,工程技术上也不可能给一个线能量的具体数值来控制,而是由焊接规范控制的,不过焊接线能量可以通过电流和电压和焊速来计算。但是没一种焊接方法,还有根据实际应用情况线能量都不同,所以这种计算必要性不大,只要你利用合理的焊接规范,一般就没什么问题个人认为理论上应该乘以热效率系数,但是从工程上来说这些都不是实用的东西焊接线能量熔焊时,由焊接热源输入给单位长度焊缝的能量。焊接线能量的计算过程如下:有效热功率:P=ηPo=ηUI其中:Po电弧功率(J/s)U电弧电压(V)I焊接电流(A)η 功率有效系数,焊条电弧焊为0、74~0、

87、埋弧焊为0、77~0、 90、交流钨极氩弧焊为0、68~0、 85、直流钨极氩弧焊为0、78~0、85。无特别说明时,取中间值。焊接线能量:E=P/v其中:v焊接速度(cm/min)列: Q345E板焊接线能量经验数值小于等于39J/cm。当今,他们在计算熔焊热输入时,不管电极是摆动还是不摆动,都使用同一公式,这是不适宜的。在摆动焊时,焊道宽、焊速慢,用传统公式计算出的线能量就会比实际值大。建议在计算摆动焊接的线能量时添加折减系数;或者,重新定义热输入。

焊缝计算公式

一、箱形柱的现场拼接焊缝(等壁厚箱形柱对接) C=4tan +?+βt b A1=βtan 212t ? ;A2=e C ??3 2 ;A3=b t ? A=A1+A2+A3=3 22tan 2e C t b t ?+?+?β 二、箱形柱的现场拼接焊缝(不等壁厚箱形柱对接) C=4tan 1+?+βt b A=ββcot 2 1 32tan 212211b e C t b t +?+?+?

三、人孔补强板与柱的现场焊接 C=()4tan 2+-+βt b A =()Ce t b t 3 2tan 221 2+-+?β 四、 工字形梁翼缘的现场焊接 C=42 tan )(2+-+β p t b =?-+15tan )2(214t A=e C t t b ?+??????-?+?3 2 2tan ) 2(2 1 22 β =e C t t ?+-+3 2 2tan )2(10β

L1=(t-2)/3×tan60°+2 L2=2(t-2)/3×tan45°+2 C1= 442 2 1 +?? ? ??+t L C2= 442 2 2+?? ? ??+t L A1=t ×b A2=? ???? ??-?60tan 32212 t A3=4 211t L ?? A4=e C ??134 A5=? ??? ? ??-?45tan 3)2(2212 t A6=4212t L ?? A7=e C ??234 A= A1+ A2+ A3+ A4+ A5+ A6+ A7

C=42 tan 222+?-? +β t b =()62 tan 2+?-β t A=e b t b t ???+?? ????? ????? ??-??+?C 32 22tan 22142β =()e t t ??+-+C 3 42tan 221 22β 七、 工字型柱翼缘的现场焊接 C=()4tan 2+-+βt b =βtan )2(9-+t A = e C t t b ?+-+?32 tan )2(212β =Ce t t 32tan )2(2152+-+β

钢构焊缝计算(受力)

钢结构的焊接连接 钢结构的连接方法可分为焊缝连接、螺栓连接和铆钉连接三种。焊接连接是现代钢结构最主要的连接方法。它的优点是:(1)焊件间可直接相连,构造简单,制作加工方便;(2)不削弱截面,用料经济;(3)连接的密闭性好,结构刚度大;(4)可实现自动化操作,提高焊接结构的质量。缺点是:(1)在焊缝附近的热影响区内,钢材的材质变脆;(2)焊接残余应力和变形使受压构件承载力降低;(3)焊接结构对裂纹很敏感,低温时冷脆的问题较为突出。 一、焊缝的形式 1.角焊缝 图 1 直角角焊缝截面 图 2 斜角角焊缝截面 角焊缝按其截面形式可分为直角角焊缝和斜角角焊缝。两焊脚边的夹角为90°的焊缝称为直角角焊缝,直角边边长h f 称为角焊缝的焊脚尺寸,h e =0.7h f 为直角角焊缝的计算厚度。斜角角焊缝常用于钢漏斗和钢管结构中。对于夹角大于135°或小于60°的斜角角焊缝,不宜用作受力焊缝(钢管结构除外)。 2.对接焊缝 对接焊缝的焊件常需加工成坡口,故又叫坡口焊缝。焊缝金属填充在坡口内,所以对接焊缝是被连接件的组成部分。 坡口形式与焊件厚度有关。当焊件厚度很小(手工焊≤t 6mm ,埋弧焊≤t 10mm )时,可用直边缝。对于一般厚度(t=10~20mm )的焊件可采用具有斜坡口的单边V 形或V 形焊缝。斜坡口和离缝c 共同组成一个焊条能够运转的施焊空间,使焊缝易于焊透;钝边p 有托

住熔化金属的作用。对于较厚的焊件(t>20mm),则采用U形、K形和X形坡口。对于V形缝和U形缝需对焊缝根部进行补焊。对接焊缝坡口形式的选用,应根据板厚和施工条件按现行标准《建筑结构焊接规程》的要求进行。 凡T形,十字形或角接接头的对接焊缝称之为对接与角接组合焊缝。 图3 对接焊缝的坡口形式 3.焊缝质量检验 《钢结构工程施工质量验收规范》规定焊缝按其检验方法和质量要求分为一级、二级和三级。三级焊缝只要求对全部焊缝作外观检查且符合三级质量标准;一级、二级焊缝则除外观检查外,还要求一定数量的超声波检验并符合相应级别的质量标准。焊缝质量的外观检验检查外观缺陷和几何尺寸,内部无损检验检查内部缺陷。 二、直角角焊缝的构造与计算 角焊缝按其与作用力的关系可分为正面角焊缝、侧面角焊缝和斜焊缝。正面角焊缝的焊缝长度方向与作用力垂直,侧面角焊缝的焊缝长度方向与作用力平行,斜焊缝的焊缝长度方向与作用力倾斜,由正面角焊缝、侧面角焊缝和斜焊缝组成的混合,通常称作围焊缝。 侧面角焊缝主要承受剪力,塑性较好,强度较低。应力沿焊缝长度方向的分布不均匀,呈两端大而中间小的状态。焊缝越长,应力分布不均匀性越显著。 正面角焊缝受力复杂,其破坏强度高于侧面角焊缝,但塑性变形能力差。斜焊缝的受力性能和强度值介于正面角焊缝和侧面角焊缝之间。 1.角焊缝的构造要求 (1)最小焊脚尺寸 t(1) h f≥1.5 2 式中t2—较厚焊件厚度,单位为mm。

焊接计算

焊接工艺问答(强度及结构) 2008-01-10文字选择: 各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,

其应力称为工作应力。另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝,见图30c、图30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度,只计算工作焊缝的强度。 37 举例说明对接接头爱拉(压)时的静载强度计算。 全焊透对接接头的各种受力情况见图31。图中F为接头所受的拉(压)力,Q为切力,M1为平面内弯矩,M2为垂平面弯矩。 受拉时的强度计算公式为 F σt=───≤〔σ′t 〕 Lδ1 F 受压时的强度计算公式为σα=───≤〔σ′α 〕

Lδ1 式中F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm); σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠ 〔σ′t 〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α〕——焊缝受压时的许用应力(N/cm2) 计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。 解:查表得〔σ′t 〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为 F 28400 σt=─── =───── =1136N/cm2<14200N/cm2 Lδ1 50×0.5 ∴该对接接头焊缝强度满足要求,结构工作安全。 38 举例说明对接接头受剪切时的静载强度计算。

焊接结构疲劳强度相关知识

焊接结构疲劳强度相关知识 1.焊接结构疲劳失效的原因 焊接结构疲劳失效的原因主要有以下几个方面:①客观上讲,焊接接头的静载承受能力一般并不低于母材;而承受交变动载荷时,其承受能力却远低于母材,而且与焊接接头类型和焊接结构形式有密切的关系。这是引起一些结构因焊接接头的疲劳而过早失效的一个主要的因素;②早期的焊接结构设计以静载强度设计为主,没有考虑抗疲劳设计,或者是焊接结构疲劳设计规范并不完善,以至于出现了许多现在看来设计不合理的焊接接头;③工程设计技术人员对焊接结构抗疲劳性能的特点了解不够,所设计的焊接结构往往照搬其它金属结构的疲劳设计准则与结构形式;④焊接结构日益广泛,而在设计和制造过程中人为盲目追求结构的低成本、轻量化,导致焊接结构的设计载荷越来越大;⑤焊接结构有往高速重载方向发展的趋势,对焊接结构承受动载能力的要求越来越高,而对焊接结构疲劳强度方面的科研水平相对滞后。 2 影响焊接结构疲劳强度的主要因素 2.1 静载强度对焊接结构疲劳强度的影响 在钢铁材料的研究中,人们总是希望材料具有较高的比强度,即以较轻的自身重量去承担较大的负载重量,因为相同重量的结构可以具有极大的承载能力;或是同样的承载能力可以减轻自身的重量。所以高强钢应运而生,也具有较高的疲劳强度,基本金属的疲劳强度总是随着静载强度的增加而提高。 但是对于焊接结构来说,情况就不一样了,因为焊接接头的疲劳

强度与母材静强度、焊缝金属静强度、热影响区的组织性能以及焊缝金属强度匹配没有多大的关系,也就是说只要焊接接头的细节一样,高强钢和低碳钢的疲劳强度是一样的,具有同样的S-N曲线,这个规律适合对接接头、角接接头和焊接梁等各种接头型式。Maddox研究了屈服点在386—636MPa之间的碳锰钢和用6种焊条施焊的焊缝金属和热影响区的疲劳裂纹扩展情况,结果表明:材料的力学性能对裂纹扩展速率有一定影响,但影响并不大。在设计承受交变载荷的焊接结构时,试图通过选用较高强度的钢种来满足工程需要是没有意义的。只有在应力比大于+0.5的情况下,静强度条件起主要作用时,焊接接头母材才应采用高强钢。 造成上述结果的原因是由于在接头焊趾部位沿溶合线存在有类似咬边的熔渣楔块缺陷,其厚度在0.075mm-0.5mm,尖端半经小于0.015mm。该尖锐缺陷是疲劳裂纹开始的地方,相当于疲劳裂纹形成阶段,因而接头在一定应力幅值下的疲劳寿命,主要由疲劳裂纹的扩展阶段决定。这些缺陷的出现使得所有钢材的相同类型焊接接头具有同样的疲劳强度,而与母材及焊接材料的静强度关系不大。 2.2 应力集中对疲劳强度的影响 2.2.1 接头类型的影响 焊接接头的形式主要有:对接接头、十字接头、T形接头和搭接接头,在接头部位由于传力线受到干扰,因而发生应力集中现象。 对接接头的力线干扰较小,因而应力集中系数较小,其疲劳强度也将高于其他接头形式。但实验表明,对接接头的疲劳强度在很大范围内变化,这是因为有一系列因素影响对接接头的疲劳性能的缘故。如试样的尺寸、坡口形式、焊接方法、焊条类型、焊接位置、焊缝形状、焊后的焊缝加工、焊后的热处理等均会对其发生影响。具有永久

焊接知识问答(焊接强度及焊接结构)

焊接知识问答(焊接强度及焊接结构) 各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,其应力称为工作应力。另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝,见图30c、图30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度,

只计算工作焊缝的强度。 37 举例说明对接接头爱拉(压)时的静载强度计算。 全焊透对接接头的各种受力情况见图31。图中F为接头所受的拉(压)力,Q为切力,M 1为平面内弯矩,M2为垂平面弯矩。 受拉时的强度计算公式为 F σt=───≤〔σ′t〕 Lδ1 F 受压时的强度计算公式为σα=───≤〔σ′α 〕 Lδ1 式中F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm); σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠ 〔σ′t〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α〕——焊缝受压时的许用应力(N/cm2) 计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。 解:查表得〔σ′t〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计

焊接相关计算

焊接的有关计算 第一章 基本概念的有关计算 一、焊条药皮质量系数 概念:焊条药皮质量系数即焊条与药芯(不包括无药皮的夹持端)的质量比。 b l m K 100%m = ? 式中:Kb ——药皮质量系数(%); m o ——药皮质量(Kg ); m l ——焊芯质量(Kg )。 二、焊条药皮厚度分类 (1)薄药皮焊条 1.2≤焊条直径焊芯直径 (2)厚药皮焊条 1.2 1.5<≤焊条直径焊芯直径 (3)特厚药皮焊条 1.8<焊条直径 焊芯直径 三、熔敷系数 熔敷系数指熔焊过程中,单位电流、单位时间内,焊芯(或焊丝)熔敷在焊件上的金属量。 H o l p m It m m It αα= -= 式中:H α——熔敷系数(g/Ah ); m ——熔敷焊缝金属质量(g ); I ——焊接电流(A ); t ——焊接时间(h )。 四、熔化系数 熔化系数指熔焊过程中,单位电流,单位时间内,焊芯(或焊丝)的熔化量。 o l p m m It α-= 式中 :p α——熔化系数(g/Ah ); o m ——焊芯原质量(g ); l m ——焊后剩下焊芯质量(g ); 五、熔化速度 熔化速度指熔焊过程中,熔化电极在单位时间内熔化的长度或质量。

O p L L v t -= 式中 p v —— 熔化速度(mm/min ); O L ——焊条原长(mm ) ; L ——余下焊条头长度(mm ); T ——焊接时间(min )。 例:某焊条长320mm ,经过5min 的焊接,剩下40mm 的焊条头,求该焊条的熔化速度。 解:O p L L v t -= =(320mm-40mm )/5min=56mm/min 答:该焊条的熔化速度为56mm/min 。 六、熔敷速度 熔敷速度指熔焊过程中,单位时间内熔敷在焊件上的金属量。 p m m v t -= 式中:p v ——熔敷速度(kg/h ); M ——焊后焊件的质量(kg ); 0m ——焊前焊件的质量(kg ) ; t ——焊接时间(h )。 七、热输入 热输入指熔焊时,由焊接能源输入给单位长度焊缝上的热能。 q U I /v η= 式中:q ——热输入(J/mm ); U ——电弧电压(V ); I ——焊接电流(A ); V ——焊接速度(mm/s ); η——热效率(焊条电弧焊η=0.7~0.8;埋弧焊η=0.8~0.95;TIG 焊η=0.5)。 例1:用焊条电弧焊焊接Q390(原15MnTi )钢时,为防止和减小焊接热影响区的过热区脆化倾向,要求焊接时热输入不超过30kj/cm 。如果选择焊接电流为180A,电弧电压为28V ,试计算焊接速度应为多少? 已知:I=180A ;q=30kJ/cm ;U=28V 求:v=? 解:由 q UI/v η= 取η=0.7 得:v=UI/q=0.728180/30000cm/s=0.118cm/s η?? 答:应选用的焊接速度为0.118cm/s 。 例2:已知某钢材焊接过程中焊条电弧焊的电弧电压为26V ,焊接电流为200A ,焊接速度为0.2cm/s ,试求其焊接热输入(η取0.8)。 已知:I=200A ;v=0.2cm/s ;U=26V ;η=0.8

焊接变形计算公式

焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 为了给设计人员提供一定的参考,贴几个公式: 1、单V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值 e= x=板厚 2、script id=text173432>双V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值

e= x=板厚 3、 4、

5、 6、

1、预热处理是为了防止裂纹,同时兼有一定改善接头性能的作用,但是预热也恶化劳动条件,延长生产周期,增加制造成本。过高预热温度反会使接头韧性下降。 预热温度确定取决于钢材的化学成分、焊件结构形状、约束度、环境温度和焊后热处理等。随着钢材碳当量、板厚、结构约束度增大和环境温度下降,焊前预热温度也需相应提高。焊后进行热处理的可以不预热或降低预热温度。 Q345焊接的预热温度板厚≤40mm,可不预热; 板厚>40mm,预热温度≥100度(以上为理论参考)2、焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。具体经验公式见附件! 3、低合金钢接头焊接区的清理是一项不可忽视的工作,是建立低氢环境的主要环节之一。 若直接在焊件切割边缘和切割坡口上的焊接接头,则焊前必须清理干净切割面得氧化皮盒熔化金属的毛刺,必要时可用砂轮打磨。

钢结构计算题(焊接、螺栓连接、稳定性)

Q235 用。由于翼缘处的剪应力很小,假定剪力全部由腹板的竖向焊缝均匀承受,而弯矩由整个T 形焊缝截面承受。分别计算a 点与b 点的弯矩应力、腹板焊缝的剪应力及b 点的折算应力,按照各自应满足的强度条件,可以得到相应情况下焊缝能承受的力F i ,最后,取其最小的F 值即为所求。 1.确定对接焊缝计算截面的几何特性 (1)确定中和轴的位置 ()()()()80 10 102401020160)10115(1010240510201601≈?-+?-+??-+??-= y mm 160802402=-=y mm (2)焊缝计算截面的几何特性 ()6232 31068.22)160115(230101014012 151602301014023010121mm I x ?=-??+??++-??+??= 腹板焊缝计算截面的面积: 230010230=?=w A mm 2 2.确定焊缝所能承受的最大荷载设计值F 。 将力F 向焊缝截面形心简化得: F Fe M 160==(KN·mm) F V =(KN )

查表得:215=w c f N/mm 2,185=w t f N/mm 2,125=w v f N/mm 2 点a 的拉应力M a σ,且要求M a σ≤w t f 18552.010 226880101604 31===???==w t x M a f F F I My σ N/mm 2 解得:278≈F KN 点b 的压应力M b σ,且要求M b σ≤w c f 215129.110 2268160101604 32===???==w c x M b f F F I My σ N/mm 2 解得:5.190≈F KN 由F V =产生的剪应力V τ,且要求V τ≤w V f 125435.010 23102 3===??=w V V f F F τ N/mm 2 解得:7.290≈F KN 点b 的折算应力,且要求起步大于1.1w t f () ()()w t V M b f F F 1.1435.03129.132 22 2=?+= +τσ 解得:168≈F KN

(完整word版)试计算如图所示钢板与柱翼缘的连接角焊缝的强度

1. 试计算如图所示钢板与柱翼缘的连接角焊缝的强度。已知N=390kN (设计值),与焊缝之间的夹 ) 10200(87.022l h w e f -?? 23 /6.91)10200(87.02101952mm N l h N w e y f =-???==τ 满足)(1601596.91)22 .17.158()(2222MPa f MPa w f f f f =<=+=+τβσ 14. 求图示钢梁所能承受的最大均布荷载设计值(含自重),已知梁截面为热轧普通工字钢I45a,其截面特性为 A=102cm 2 I X =32240cm 4 w x =1430cm 3 I y =855cm 4 w y =114cm 3 材料为Q235,强度设计值?=215 N/mm 2 ,梁两端不能扭转,跨中无侧向支撑点,挠度不起控制作用,截面无削弱。整体稳定系数?b =0.44. m kN mm N l W f q W f ql M f W M x b x b x b maz /36.13/36.13900010143044.0215888 1 2322max ==????==??==?=???

即 kN N n n f A N n 5.728728500915.0121510325.01211==?-??=-= II-II 截面净截面面积为 2 2201221146.294.1]15.235.75.4)13(52[])1(2[cm t d n e a n e A II n =??-+-+?=-+-+=kN N n n f A N II n 1.760760100915.012151046.295.0121==?-??=-= III-III 截面净截面面积为 2098.284.1)15.2225()(cm t d n b A III III n =??-=-= 因前面I -I 截面已有n 1个螺栓传走了(n 1/n )N 的力,故有f A N n n n n III n III ≤--)5.01(1

焊接相关计算

焊接的有关计算 第一章基本概念的有关计算 一、焊条药皮质量系数 概念:焊条药皮质量系数即焊条与药芯(不包括无药皮的夹持端)的质量比。 式中:Kb——药皮质量系数(%); ——药皮质量(Kg); m o ——焊芯质量(Kg)。 m l 二、焊条药皮厚度分类 (1)薄药皮焊条 (2)厚药皮焊条 (3)特厚药皮焊条 三、熔敷系数 熔敷系数指熔焊过程中,单位电流、单位时间内,焊芯(或焊丝)熔敷在焊件上的金属量。 ——熔敷系数(g/Ah); 式中: H m——熔敷焊缝金属质量(g); I——焊接电流(A);

t ——焊接时间(h )。 四、熔化系数 熔化系数指熔焊过程中,单位电流,单位时间内,焊芯(或焊丝)的熔化量。 式中 :p α——熔化系数(g/Ah ); o m ——焊芯原质量(g ); l m ——焊后剩下焊芯质量(g ); 五、熔化速度 熔化速度指熔焊过程中,熔化电极在单位时间内熔化的长度或质量。 式中 p v —— 熔化速度(mm/min ); O L ——焊条原长(mm ); L ——余下焊条头长度(mm ); T ——焊接时间(min )。 例:某焊条长320mm ,经过5min 的焊接,剩下40mm 的焊条头,求该焊条的熔化速度。 解:O p L L v t -= =(320mm-40mm )/5min=56mm/min 答:该焊条的熔化速度为56mm/min 。 六、熔敷速度

熔敷速度指熔焊过程中,单位时间内熔敷在焊件上的金属量。 v——熔敷速度(kg/h); 式中: p M——焊后焊件的质量(kg); m——焊前焊件的质量(kg); t——焊接时间(h)。 七、热输入 热输入指熔焊时,由焊接能源输入给单位长度焊缝上的热能。 式中:q——热输入(J/mm); U——电弧电压(V); I——焊接电流(A); V——焊接速度(mm/s); η——热效率(焊条电弧焊η=~;埋弧焊η=~;TIG焊η=)。 例1:用焊条电弧焊焊接Q390(原15MnTi)钢时,为防止和减小焊接热影响区的过热区脆化倾向,要求焊接时热输入不超过30kj/cm。如果选择焊接电流为180A,电弧电压为28V,试计算焊接速度应为多少? 已知:I=180A;q=30kJ/cm;U=28V 求:v=?

角焊缝强度计算

角焊缝强度计算 锅炉角焊缝强度计算方法JB/T 6734-1993中华人民共和国机械行业标准JB/C 6734-1993锅炉角焊缝强度计算方法主题内容与适用范围本标准规定了锅炉角焊缝强度计算方法本标准适用于额定蒸汽压力大于 2.5MYa 固定式蒸汽锅炉锅筒集箱和管道」_各种骨接头连接焊缝和焊接到锅炉受压元件土受力构件的连接焊缝以及在制造安装与运输过程中所用受力构件的连接焊缝.2 名词术语及符号说明2.1 名词术语2.1.1 对接接头两焊件端面相对平行的接头2.1.2 角接接头两焊件端面问构成大于 300小于 135夹角的接头2.1.3r 形接头一焊件之端面与另一焊件表面构 成直角或近似直角的接头_飞2.1.4 搭接接头两焊件部分重叠构成的接头2.1.5 圆钢连接接头两圆形焊件表面连接或一圆形焊件与一非国形焊件连接的接头2.1.6 对接焊缝在焊件的坡口面间或一焊件的坡口面与另一焊件表面间焊接的焊缝.2.1.7 角焊缝沿两直交或近直交焊件的交线所焊接的焊缝2.1.8 正面角焊缝焊缝轴线与 焊件受力方向相垂直的角焊缝见图 2-12.1.9 侧面角焊缝焊缝轴线与焊件受力方向相平行的角焊缝见图 2-22.1.10 纵向焊缝沿焊件长度方向分布的焊缝.2.1.11 横向焊缝垂直于焊件长度方向的焊缝.机械工业部 1993-08-21 批准 1993-10-01 实施19622.1.12 环形焊缝沿筒形焊件分布的头尾相接的封闭焊缝.图 2-1 正面角焊缝图 2-2 侧面角焊缝2.1.13 承载焊缝焊件上用作承受荷载的焊缝2.1.14 非承载焊缝焊件上不 CL 接承受荷载只起连接作用的焊缝习惯上称联系焊缝.2.1.15 坡口深度焊件开坡口时焊件端部沿焊件厚度方向加_r 掉的尺寸2.1.16 焊脚尺寸在角 焊缝横截面中画出的最大直角三角形中直角边的长度.2.1.17 焊缝计算厚度设计焊缝时使用的焊缝厚度.2.1.18 焊缝计算长度计算焊缝强度时使用的焊缝长度.封闭焊缝的计算长度取实际长度不封闭焊缝的计算长度对每条焊缝取其实际长度减去 l Omm2.1.19 焊缝计算厚度截面积焊缝计算厚度与焊缝计算长度的乘积.2.1.20 全焊

焊接结构强度计算题jieda

1、如图搭接接头上板厚10mm ,下板厚15mm ,已知许用应力[σ][τ]分别为15000N/cm2和10000N/cm2,构件受力Q 为60000N ,采用等腰角焊缝。根据焊缝和载荷的几何关系确定搭接焊缝的类型及单边焊缝长度,并判定该长度下焊缝结构是否合理。 答:不等厚板搭接接头,角焊缝焊脚尺寸以薄板计算,本题中取10mm ,焊缝为搭接接头上的侧面角焊缝。 设单边焊缝长度为L ,搭接焊缝为双缝结构,焊缝总长度为2L ,角焊缝按照许用切应力计算。 则有][7.027.0ττ≤??==∑kL Q kL Q ,计算所得L 至少大于42.8mm,取整为43mm 。 按照规定侧面角焊缝的长度不大于50K ,因此根据计算判定,结构合格。 2、一丁字接头,如下图,已知焊缝金属的许用切应力[τ']=100MPa ,试设计角焊缝的焊角尺寸K ,并求焊缝最大承载能力。 τm = (3PL)/0.7Kh 2

已知:P=75kN,L=200mm,h=300mm,代入上式得: τm =(3×75000×200)/0.7×K ×3002=500/0.7K τQ=F/(1.4Kh),将数代入公式: τQ =75000/(1.4K ×300)=250/(1.4K ×300 ) =250/(1.4×K) 3、分析下图构件的焊缝的类型,若要保证结构安全,则焊缝间距有什么要求?若已知该结构的许用应力[σ][τ]分别16000N 为/cm2和10000N/ cm2,构件受力P 为75000N ,单条焊缝长度为50mm ,板料厚度均为10mm ,试通过计算判定其使用时是否安全。 答:焊缝间距不小于4倍板厚 (1)角焊缝按照切应力进行校核。 当]'[7.0ττ≤?=∑K L Q ,则结构安全。 式中Q =75000N ,δ=10mm , L=50mm,设焊脚尺寸K 与板厚δ相同,K =10mm ; 代入上式得: τ=75000/(2×50×0.7×10)=1071N/cm 2<]'[τ=10000N/cm 2 因此,判定结构不合格。(1分) 4、如图一偏心受载的搭接接头,已知焊缝长h=400mm ,l 0=100mm ,采用等腰焊缝,焊角尺寸K=10mm ,外加载荷F=30000N ,梁长L=100cm ,焊缝的许用切应

相关主题