搜档网
当前位置:搜档网 › 染料敏化太阳能电池关键材料的制备与表征

染料敏化太阳能电池关键材料的制备与表征

染料敏化太阳能电池关键材料的制备与表征
染料敏化太阳能电池关键材料的制备与表征

实验一 染料敏化太阳能电池关键材料的制备与表征

在众多新能源中,太阳能因具有清洁、环保、无污染、取之不尽、用之不竭等诸多优点,被认为是未来最有希望的新能源之一。太阳能电池是通过光电效应或光化学效应直接把光能转化成电能的装置。太阳能电池产业,已成为世界主要国家抢占新一轮经济和科技发展制高点的重大战略之一。

在众多太阳能电池中,硅基太阳能电池技术最为成熟,但制作工艺复杂、价格昂贵、设备要求较高而不适合开展大学生实验。纳米二氧化钛(TiO 2)晶体太阳能电池是最近发展起来的一种新型太阳能电池,其优点在于其低廉的成本、简单的工艺以及相对稳定的性能。其光电效率稳定在10%以上,而制作成本仅为硅太阳能电池的1/5~1/10,寿命却能达到20年以上。但是TiO 2的禁带宽度为3.2eV ,只能吸收波长小于375nm 的紫外光。为了使其吸收红移至可见光区,增大对全光谱范围的响应,1991年,瑞士洛桑高等工业学院(EPFL )的Gratzel 研究小组开发了染料敏化太阳能电池(Dye

Sensitized Solar Cell ,简称DSSC ),它由

吸附了染料光敏化剂(过渡金属钌的有

机化合物)的纳米TiO 2多孔薄膜制成,

其光电转换效率可达7.1%。1993年,他

将光电转换效率提高到了10%,1998年,

该研究组进一步研制出全固态DSSC ,

使用固体有机空穴传输代替液体电解质,

单色光光电转化效率达到33%,引起了全世界的科学家对DSSC 的关注。近年来,染料敏化太阳能电池的研究主要集中在阳极材料的改性、染料的改进、电解质的研究、以及阴极对DSSC 的影响等方面。

“染料敏化太阳能电池的制备、组装及测试”实验涵盖材料制备实验(水热反应制备TiO 2纳米颗粒、热解法制备Pt 催化剂、丝网印刷技术制备光阳极薄膜、玻璃工操作、材料热处理等)、仪器分析实验(台阶仪测量薄膜厚度、X 射线衍射仪表征材料的结构与成分、扫描电子显微镜观测形貌、紫外-可见吸收光谱测试光谱吸收效果)等多种实验方法。由于实验步骤繁多、周期较长,因此根据其 图1 Gratzel 研究小组开发的

DSSC

特点分为两部分,第一部分为关键材料的制备与表征;第二部分为器件的组装与测试。本实验为第一部分。下图为实验室制备的DSSC 。

图2 实验室制备的使用不同染料敏化剂的DSSC

【实验目的】

(1)了解染料敏化太阳能电池的工作原理及性能特点。

(2)掌握染料敏化太阳能电池光阳极、对电极等关键材料的制备方法。

(3)掌握相关材料的表征方法。

【实验原理】

染料敏化太阳能电池的结构与工作原理:

染料敏化太阳能电池的结构是一种“三明治”结构,如图1所示,主要由以下几个部分组成:导电玻璃、染料光敏化剂、TiO 2半导体纳米晶薄膜、电解质和铂电极。其中吸附了染料的半导体纳米晶薄膜称为光阳极,铂电极称为对电极。

图3 DSSC 组成与结构示意图

N N N N N

N

Ru

COOH COOH HOOC

HOOC

COOH N N N N Ru COOH HOOC HOOC N C S N C

S N N

N Ru COOH

HOOC HOOC N N C S N C

S

光阳极:目前,DSSC常用的光阳极是纳米TiO2。TiO2是一种价格便宜,应用广泛,无污染,稳定且抗腐蚀性能良好的半导体材料。TiO2有锐钛矿型(Anatase)和金红石型(Rutile)两种不同晶型,其中锐钛矿型的TiO2带隙(3.2eV)略大于金红石型的能带隙(3.leV),且比表面积略大于金红石,对染料的吸附能力较好,因而光电转换性能较好。因此目前使用的都是锐钛矿型的TiO2。研究发现,锐钛矿在低温稳定,高温则转化为金红石,为了得到纯锐钛矿型的TiO2,退火温度为450℃。

染料敏化剂的特点和种类:用于DSSC电池的敏化剂染料应满足以下几点要求:①牢固吸附于半导体材料;②氧化态和激发态有较高的稳定性;③在可见区有较高的吸收;④有较长寿命的激发态;⑤足够负的激发态氧化还原势以使电子注入半导体导带;⑥对于基态和激发态氧化还原过程要有低的动力势垒,以便在初级电子转移步骤中自由能损失最小。目前使用的染料可分为4类:第一类为钌多吡啶有机金属配合物。这类染料在可见光区有较强的吸收,氧化还原性能可逆,氧化态稳定性高,是性能优越的光敏化染料。用这类染料敏化的DSSC太阳能电池保持着目前最高的转化效率,但成本较高。第二类为酞菁和菁类系列染料。酞菁分子中引入磺酸基、羧酸基等能与TiO2表面结合的基团后,可用做染料敏化剂。分子中的金属原子可为Zn、Cu、Fe、Ti和Co等金属原子。它的化学性质稳定,对太阳光有很高的吸收效率,自身也表现出很好的半导体性质,而且通过改变不同的金属可获得不同能级的染料分子,这些都有利于光电转化。第三类为天然染料。自然界经过长期的进化,演化出了许多性能优异的染料,广泛分布于各种植物中,提取方法简单。因此近几年来,很多研究者都在探索从天然染料或色素中筛选出适合于光电转化的染料。植物的叶子具有光-化学转化的功能,因此,从绿叶中提取的叶绿素具有一定的光敏活性。从植物的花中提取的花青素也有较好的光电性能,有望成为高效的染料敏化剂。天然染料突出的特点是成本低,所需的设备简单。第四类为固体染料。利用窄禁带半导体对可见光良好的吸收,可在TiO2纳米多孔膜表面镀一层窄禁带半导体膜。例如InAs和PbS,利用其半导体性质和TiO2纳米多孔膜的电荷传输性能,组成多结太阳能电池,但窄禁带半导体严重的光腐蚀阻碍了进一步应用。

电解质:电解质在电池中主要起传输电子和空穴的作用。目前DSSC电解质

通常为液体电解质,主要由I -/I 3-、(SCN)2-/SCN -、[Fe(CN)6]3-/[Fe(CN)6]4-等氧化还原电对构成。但液态电解质也存在一些缺点:①液态电解质的存在易导致吸附在TiO 2薄膜表面的染料解吸,影响电池的稳定性。②溶剂会挥发,可能与敏化染料作用导致染料发生光降解。③密封工艺复杂,密封剂也可能与电解质反应,因此所制得的太阳能电池不能存放很久。

光阴极:电池的阴极一般由镀了Pt 的导电玻璃构成。导电玻璃一般为ITO (掺In 的SnO 2膜)和FTO (掺F 的SnO 2膜)。导电玻璃的透光率要求在85%以上,其方块电阻为10~20Ω/cm 2,导电玻璃起着电子的传输和收集的作用。I 3-在光阴极上得到电子再生成I -离子,该反应越快越好,但由于I 3-在光阴极上还原的过电压较大,反应较慢。为了解决这个问题,可以在导电玻璃上镀上一层Pt ,降低电池中的暗反应速率,提高太阳光的利用效率。

DSSC 的工作原理是:电池中的TiO 2禁带宽度为3.2eV ,只能吸收紫外区域的太阳光,可见光不能将它激发,于是在TiO 2膜表面覆盖一层染料光敏剂来吸收更宽的可见光,当太阳光照射在染料

上,染料分子中的电子受激发跃迁至激

发态,由于激发态不稳定,并且染料与

TiO 2薄膜接触,于是电子注入到TiO 2

导带中,此时染料分子自身变为氧化态。

注入到TiO 2导带中的电子传输到导电

玻璃,通过外电路流向对电极,形成光

电流。处于氧化态的染料分子在阳极被

电解质溶液中的I -还原为基态,电解质

中的I 3-被从阴极进入的电子还原成I -,这样就完成一个光电化学反应循环。但是反应过程中,若电解质溶液中的I -在光阳极上被TiO 2导带中的电子还原,则外电路中的电子将减少,这就是类似硅电池中的“暗电流”。整个反应过程可用如下表示:

(1)染料D 受激发由基态跃迁到激发态D *:D + hv → D *

(2)激发态染料分子将电子注入到半导体导带中: D * → D + + e -

(3)I -还原氧化态染料分子: 3I - + 2D + → I 3- + 2D

图4 DSSC 结构与工作原理图

(4)I3-扩散到对电极上得到电子使I-再生:I3- +2e- 3I-

(5)氧化态染料与导带中的电子复合:D+ + e- → D

(6)半导体多孔膜中的电子与进入多孔膜中I3-复合:I3- + 2e- → 3I-

其中,反应(5)的反应速率越小,电子复合的机会越小,电子注入的效率就越高;反应(6)是造成电流损失的主要原因。

【仪器与试剂】

一、仪器设备

X-ray衍射仪、紫外-可见分光光度计、电化学工作站、超声波清洗器、恒温水浴槽、多功能万用表、电动搅拌器、高压反应釜、真空干燥箱、箱式电阻炉、红外线灯、吹风机、研钵、电解池、铂电极、饱和甘汞电极、石英比色皿、导电玻璃、三口烧瓶、量筒、烧杯、水浴锅、分液漏斗、容量瓶、玻璃刀、玻璃刻字笔、聚四氟乙烯镊子等。

二、试剂材料

N719染料、Z903染料、N3染料、磷酸盐缓冲液(PBS)、钛酸四丁酯、冰醋酸、异丙醇、乙基纤维素、硝酸、无水乙醇、乙二醇、乙腈、碘、碘化钾、丙酮、去离子水等。

【实验步骤】

实验流程:

图5 DSSC制备、组装、测试实验流程图

实验过程:

本次实验完成第一部分,关键材料的制备与表征,主要是光阳极的制备。

一、切割、清洗FTO导电玻璃

用万用表辨别FTO的导电面,从导电面下刀,切割FTO导电玻璃(建议尺寸为2cm×3cm)4块。首先用洗衣粉轻轻搓洗FTO,然后分别在去离子水、无水乙醇中超声清洗3~5min,用聚四氟乙烯镊子夹住吹干,备用。

图6 辨别FTO导电面并使用玻璃刀切割操作图

二、TiO2浆料的制备

将适量的乙基纤维素、纳米TiO2粉末、松油醇及乙醇超声混合均匀。减压蒸馏除去大部分的水和乙醇后,用三辊机研磨混合物,并挥发掉剩余的水和乙醇,直至获得适于丝网印刷的TiO2浆料。

三、多孔TiO2膜电极制备

采用丝网印刷技术在FTO表面印刷

TiO2浆料,静置除去表面缺陷,125℃干

图7 多孔TiO2膜电极制备示意图

燥后,测量TiO2薄膜的厚度。通过重复上述“印刷-静置-干燥”步骤,控制TiO2薄膜厚度。将TiO2薄膜进行125~500℃的分段升温热处理。冷却至室温后,即得到多孔TiO2膜电极。用XRD粉末衍射仪测定TiO2晶型结构。

四、染料敏化剂溶液的制备和表征

染料敏化剂采用N719(或Z907、N3),配制其乙醇溶液待用。测定敏化剂溶液的紫外-可见光吸收光谱,确定染料敏化剂的吸收波长范围。

五、染料敏化电极制备和循环伏安曲线测定

(1)敏化电极制备

经过煅烧后的多孔TiO2膜电极冷却到80℃左右,浸入上述染料敏化剂溶液中,浸泡12h后取出,用乙醇清洗后晾干,即获得染料敏化的TiO2电极(光阳极)。

图8 染色前与染色后的多孔TiO2膜电极

(2)电极循环伏安曲线测定

为考察染料敏化剂在纳米TiO2电极上的电化学行为和可逆性,以染料敏化后的TiO2电极为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,pH=6.86的磷酸盐缓冲液为支持电解质,测定0.2V~1.4V电位区间的敏化电极的循环伏安曲线,改变扫描速度确定敏化剂发生电化学反应的可逆性。

【数据记录与处理】

(1)实验各步骤现象照片、产物/样品照片、文字记录和分析。

(2)FTO导电薄膜的XRD图,煅烧后的多孔TiO2薄膜的XRD图。通过标准卡片比较TiO2的XRD图,分析所测定的材料的结构与晶型。

(3)通过分析TiO2薄膜的SEM图,观察TiO2薄膜、颗粒形貌、粒径、粒径分布,并将粒径结果与XRD结果对比分析。

(4)分析染料敏化剂的UV-vis吸收曲线,研究染料敏化剂的吸光范围,分析提高太阳能利用率的思路。

(5)染料敏化剂的CV曲线,分析确定敏化剂发生电化学反应的可逆性。

【补充资料】

(1)CHI760D电化学工作站使用说明。

(2)HP10-22可编程钛加热板使用说明。

(3)WFZ756紫外可见分光光度计使用说明。

(4)DX-2700X-ray衍射仪使用说明。

(5)有关染料敏化太阳能电池关键材料制备、表征、器件组装及性能测试的一篇文献。

染料敏化太阳能电池

染料敏化太阳能电池 物理科学与技术学院化学物理学交叉培养班张玲玲 2011213434 摘要染料敏化太阳电池主要是模仿光合作用原理,研制出来的一种新型太阳电池,其主要优势是原材料丰富、成本低、工艺技术相对简单,在大面积工业化生产中具有较大的优势,同时所有原材料和生产工艺都是无毒、无污染的,部分材料可以得到充分的回收,对保护人类环境具有重要的意义。本文主要从染料敏化太阳能电池的原理和电解质来进行介绍。 关键词染料敏化太阳能电池原理制备 一、染料敏化太阳能电池的基本结构 染料敏化太阳能电池主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、电极和导电基底等几部分组成。纳米多孔半导体薄膜通常为金属氧化物(TiO2、SnO2、ZnO等),聚集在有透明导电膜的玻璃板上作为染料敏化太阳能电池的负极。对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。敏化染料吸附在纳米多孔二氧化钛膜面上。正负极间填充的是含有氧化还原电对的电解质,最常用的是I3/I-。 图1染料敏化太阳能电池的基本结构 二、染料敏化太阳能电池的工作原理 当太阳光照射在染料敏化太阳能电池上,染料分子中基态电子被激发,激发态染料分子将电子注入到纳米多孔半导体的导带中,注入到导带中的电子迅速富集到导电玻璃面上,传向外电路,并最终回到对电极上。而由于染料的氧化还原

电位高于氧化还原电解质电对的电位,这时处于氧化态的染料分子随即被还原态的电解质还原。然后氧化态的电解质扩散到对电极上得到电子再生,如此循环,即产生电流。电池的最大电压由氧化物半导体的费米能级和氧化还原电解质电对的电位决定。 图2 染料敏化太阳能电池的工作原理示意图 2.1纳米晶多孔薄膜 作为太阳能电池半导体材料,首要条件为光照下性能稳定。考虑到只有禁带宽度Eg ﹥ 3eV 的宽带隙半导体才满足这一条件,因此可以用作DSC 半导体材料的禁带宽度必须大于3eV 。TiO2禁带宽度为3. 2eV ,是性能最优、使用最广泛的DSC 半导体电极材料。所有的太阳能电池都是依靠光电效应将光能转化为电能. 半导体的截止波长由下式计算: g E 1240g =λ 式中: Eg 为半导体禁带宽度,λg 为半导体的截止吸收波长. 则禁带宽度为3eV 半导体材料截止波长为413 nm ,而太阳光主要分布在可见光区域,而可见光光谱范围为390 ~770 nm ,因此基本不能被吸收. 为了使宽带隙半导体材料能够吸收可见光,必须通过某种方法将截止波长红移至红外区. 吸附于半导体表面的染料可以使半导体的吸收边强烈红移。 2.2染料分子

太阳能电池

太阳能电池及材料研究 引言 太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电 池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等

太阳能晶硅电池发展历程与其关键材料技术

太阳能晶硅电池发展历程及其关键材料技术 前言部分 21世纪以来,全球范围内的传统能源迅速短缺和环境污染日益严重,这两个问题成为了制约经济发展的主要问题。太阳能作为一种清洁、无污染的新能源,早已走进了人们的视野,太阳能发电及光伏产业近来受到了人们的高度重视。太阳能电池是利用光生伏特效应直接把太阳能转换成电能的一种器件。太阳能电池主要有块状太阳能电池和薄膜型太阳能电池两大类,其中硅太阳能电池又可分为单晶硅太阳能电池、多晶硅太阳能电池等。硅太阳能电池由于其转换效率比较高、性能稳定、原材料丰富等优点成为当今光伏产业中的重要支柱。太阳能电池以硅材料为主的主要原因: 对太阳能电池材料一般的要求: 1、半导体材料的禁带不能太宽; 2、要有较高的光电转换效率: 3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。 基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它材料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 本文就晶硅太阳能电池的发展历程及其关键材料技术展开介绍。

主题部分 太阳能电池发展历程 从发现光伏现象,太阳能电池已经有近170多年的发展历史。1839年法国人发现了光伏现象,38年后才研制出第一片硒太阳电池,仅有1%的转换效率,作为发电没能推广。1954年美国贝尔实验室的3位科学家才做出具有实用价值的单晶硅电池(%),几年后迅速提升到10%,这时主要用于卫星、航天器(价格太高,每瓦要近2000美圆)。 上世纪70年代后,由于化石能源危机(石油、煤炭),再生能源被各国重视,尤其是太阳能电池,此时的工艺、材料研究得到迅速发展,从1995年以后,太阳能电池以每年35%的年增长幅度高速发展。价格也大幅度降低(2—4美圆每瓦) 最近5年是世界光伏电池快速增长几年,平均年增长速度超过40%。 2004年全球太阳能电池产量1200MW,2005年产量达到1650MW,比2004年增加38%。转换效率常规生产单晶%、多晶%,实验室达%。 由于世界各国加大了对硅和生产工艺的研究,加上地球硅材料及其丰富,有人预计,太阳能发电21世纪中叶将占整个能源市场的20%-50%。 太阳能晶硅电池关键材料技术 ·晶体硅太阳能电池的基本原理 晶体硅的发电过程:P型晶体硅经过掺杂磷可得N型硅,形成P-N结,当光线照射到硅晶体的表面时,一部分光子被硅材料吸收,

染料敏化太阳能电池

新能源课程 染料敏化太阳能电池(DSSC)装置的制作教学实验报告 电气01 王平09041020 4/22 Monday

《染料敏化太阳能电池(DSSC)装置的制作》教学实验 一、研究背景: 随着工业发展和技术进步,人类对能源的需求与日俱增。因此开发新的绿色能源,减少对环境的冲击影响,是迫切需要研究的课题。绿色能源种类很多,本实验将针对染料敏化太阳能电池(DSSC)进行实验制作,以了解其设计原理及机制。 二、实验目的: 了解染料敏化太阳能电池(DSSC)发电原理,掌握DSSC基本制作方法和的电池性能测定;理解决定DSSC性能的材料方面的影响因素,实验比较不同燃料、不同光线对电池性能的效果。 三、实验技能: 学习研磨制样、材料的选择、万用电表的使用、涂布coating及组装、测试太阳能电池。 四、工作原理: 本实验所制备的染料敏化太阳能电池(DSSC),是一个电化学反应过程装置。由正极、负极、电解质液组成。其中正极为涂布有石墨的导电玻璃;负极为涂布有二氧化钛的导电玻璃;二氧化钛为多孔纳米结构,吸附有染料或光敏剂;电解液为含碘化合物,能够产生I2/I-,被填充在正、负极之间。 DSSC太阳能电池是由一系列电子传递过程完成光能-电能转换的。当光线照在负极侧,染料吸收光能发生电子跃迁,染料被氧化,电子经二氧化钛半导体传导,流动到负极的导电玻璃片进入外电路;电子到达正极后,电解液中的I2/I-氧化还原作用使得染料被还原到原始状态。这样构成电子回路,产生电。 五、实验准备: 1.材料: A.导电玻璃:具有高透过率、导电率,如ITO、FTO B.正极:导电能力强、有一定催化活性,如炭、铂 C.二氧化钛:具有催化能力,高活性、比表面积大、分散均匀

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

染料敏化太阳能电池学术发展简史

染料敏化太阳能电池学术发展简史 2016-05-07 13:13来源:内江洛伯尔材料科技有限公司作者:研发部 基于钌化合物的染料敏化太阳能电池 1839年,Becquerel发现氧化铜或卤化银涂在金属电极上会产生光电现象,证实了光电转换的可能。 1960年代,H.Gerischer,H.Tributsch,Meier及R.Memming发现染料吸附在半导体上并在一定条件下产生电流的现象,成为光电化学电池的重要基础。 1980年代, 光电转换研究的重点转向人工模拟光合作用,美国州立Arizona大学的Gust和Moore研究小组成功模拟了光合作用中光电子转换过程,并取得了一定的成绩。Fujihia等将有机多元分子用L B 膜组装成光电二极管,开拓了这方面的工作。 1970年代到90年代,R.Memming,H.Gerischer,Hauffe,H.Tributsh等人大量研究了各种染料敏化剂与半导体纳米晶间光敏化作用,研究主要集中在平板电极上,这类电极只有表面吸附单层染料,光电转换效率小于1%。 1991年,Graetzel M.于《Nature》上发表了关于染料敏化纳米晶体太阳能电池的文章以较低的成本得到了>7%的光电转化效率,开辟了太阳能电池发展史上一个崭新的时代,为利用太阳能提供了一条新的途径。 1993年,Graetzel M.等人再次研制出光电转换效率达10 %的染料敏化太阳能电池, 已接近传统的硅光伏电池的水平。 1997年,该电池的光电转换效率达到了10%-11%,短路电流达到18mA/cm2,开路电压达到720mV。 1998年,采用固体有机空穴传输材料替代液体电解质的全固态Gr?tzel电池研制成功,其单色光电转换效率达到33%,从而引起了全世界的关注。 2000年,东芝公司研究人员开发含碘/碘化物的有机融盐凝胶电解质的准固态染料敏化纳米晶太阳能电池,其光电能量转换率7.3 % 。 2001年, 澳大利亚STA 公司建立了世界上第一个中试规模的DSC 工厂。 2002 年, STA建立了迄今为止独一无二的面积为200m2 DSC 显示屋顶,集中体现了未来工业化的前景;PengWang等人用含 1-methyl-3-propylimidazoliumiodide 和poly(viylidenefloride

染料敏化太阳能电池关键材料的制备与表征

实验一 染料敏化太阳能电池关键材料的制备与表征 在众多新能源中,太阳能因具有清洁、环保、无污染、取之不尽、用之不竭等诸多优点,被认为是未来最有希望的新能源之一。太阳能电池是通过光电效应或光化学效应直接把光能转化成电能的装置。太阳能电池产业,已成为世界主要国家抢占新一轮经济和科技发展制高点的重大战略之一。 在众多太阳能电池中,硅基太阳能电池技术最为成熟,但制作工艺复杂、价格昂贵、设备要求较高而不适合开展大学生实验。纳米二氧化钛(TiO 2)晶体太阳能电池是最近发展起来的一种新型太阳能电池,其优点在于其低廉的成本、简单的工艺以及相对稳定的性能。其光电效率稳定在10%以上,而制作成本仅为硅太阳能电池的1/5~1/10,寿命却能达到20年以上。但是TiO 2的禁带宽度为3.2eV ,只能吸收波长小于375nm 的紫外光。为了使其吸收红移至可见光区,增大对全光谱范围的响应,1991年,瑞士洛桑高等工业学院(EPFL )的Gratzel 研究小组开发了染料敏化太阳能电池(Dye Sensitized Solar Cell ,简称DSSC ),它由 吸附了染料光敏化剂(过渡金属钌的有 机化合物)的纳米TiO 2多孔薄膜制成, 其光电转换效率可达7.1%。1993年,他 将光电转换效率提高到了10%,1998年, 该研究组进一步研制出全固态DSSC , 使用固体有机空穴传输代替液体电解质, 单色光光电转化效率达到33%,引起了全世界的科学家对DSSC 的关注。近年来,染料敏化太阳能电池的研究主要集中在阳极材料的改性、染料的改进、电解质的研究、以及阴极对DSSC 的影响等方面。 “染料敏化太阳能电池的制备、组装及测试”实验涵盖材料制备实验(水热反应制备TiO 2纳米颗粒、热解法制备Pt 催化剂、丝网印刷技术制备光阳极薄膜、玻璃工操作、材料热处理等)、仪器分析实验(台阶仪测量薄膜厚度、X 射线衍射仪表征材料的结构与成分、扫描电子显微镜观测形貌、紫外-可见吸收光谱测试光谱吸收效果)等多种实验方法。由于实验步骤繁多、周期较长,因此根据其 图1 Gratzel 研究小组开发的 DSSC

染料敏化太阳能电池关键材料的制备与表征

实验一染料敏化太阳能电池关键材料的制备与表征 在众多新能源中,太阳能因具有清洁、环保、无污染、取之不尽、用之不竭等诸多优点,被认为是未来最有希望的新能源之一。太阳能电池是通过光电效应或光化学效应直接把光能转化成电能的装置。太阳能电池产业,已成为世界主要国家抢占新一轮经济和科技发展制高点的重大战略之一。 在众多太阳能电池中,硅基太阳能电池技术最为成熟,但制作工艺复杂、价格昂贵、设备要求较高而不适合开展大学生实验。纳米二氧化钛(TiO2)晶体太阳能电池是最近发展起来的一种新型太阳能电池,其优点在于其低廉的成本、简单的工艺以及相对稳定的性能。其光电效率稳定在10%以上,而制作成本仅为硅太阳能电池的1/5~1/10,寿命却能达到20年以上。但是TiO2的禁带宽度为3.2eV,只能吸收波长小于375nm的紫外 光。为了使其吸收红移至可见光区,增 大对全光谱围的响应,1991年,瑞士洛 桑高等工业学院(EPFL)的Gratzel研 究小组开发了染料敏化太阳能电池(Dye 图1 Gratzel研究小组开发的DSSC Sensitized Solar Cell,简称DSSC), 它由吸附了染料光敏化剂(过渡金属钌的有机化合物)的纳米TiO2多孔薄膜制成,其光电转换效率可达7.1%。1993年,他将光电转换效率提高到了10%,1998年,该研究组进一步研制出全固态DSSC,使用固体有机空穴传输代替液体电解质,单色光光电转化效率达到33%,引起了全世界的科学家对DSSC的关注。近年来,染料敏化太阳能电池的研究主要集中在阳极材料的改性、染料的改进、电

解质的研究、以及阴极对DSSC 的影响等方面。 “染料敏化太阳能电池的制备、组装及测试”实验涵盖材料制备实验(水热反应制备TiO 2纳米颗粒、热解法制备Pt 催化剂、丝网印刷技术制备光阳极薄膜、 玻璃工操作、材料热处理等)、仪器分析实验(台阶仪测量薄膜厚度、X 射线衍 射仪表征材料的结构与成分、扫描电子显微镜观测形貌、紫外-可见吸收光谱测试光谱吸收效果)等多种实验方法。由于实验步骤繁多、周期较长,因此根据其特点分为两部分,第一部分为关键材料的制备与表征;第二部分为器件的组装与测试。本实验为第一部分。下图为实验室制备的DSSC 。 N N N N N N Ru COOH COOH COOH HOOC HOOC COOH N N N N Ru COOH HOOC HOOC COOH N C S N C S N N N Ru COOH HOOC HOOC N C S N C S N C S 图2 实验室制备的使用不同染料敏化剂的DSSC 【实验目的】 (1)了解染料敏化太阳能电池的工作原理及性能特点。 (2)掌握染料敏化太阳能电池光阳极、对电极等关键材料的制备方法。 (3)掌握相关材料的表征方法。 【实验原理】 染料敏化太阳能电池的结构与工作原理: 染料敏化太阳能电池的结构是一种“治”结构,如图1所示,主要由以下几个部分组成:导电玻璃、染料光敏化剂、TiO 2半导体纳米晶薄膜、电解质和铂电

染料敏化太阳能电池的结构与工作原理

染料敏化太阳能电池的结构与工作原理 染料敏化太阳能电池主要由表面吸附了染料敏化剂的半导体电极、电解质、Pt 对电极组成,其 结构如图1-1。 图1-1 染料敏化太阳能电池结构图 当有入射光时,染料敏化剂首先被激发,处于激发态的染料敏化剂将电子注入半导体的导带。氧化态的染料敏化剂被中继电解质所还原,中继分子扩散至对电极充电。这样,开路时两极产生光 电势,经负载闭路则在外电路产生相应的光电流(图1-2)。 图1-2 染料敏化太阳能电池工作原理图 通过超快光谱实验可得出染料敏化太阳能电池各个反应步骤速率常数的数量级[12]: ①染料(S)受光激发由基态跃迁到激发态(S*): S + hυ→S* ②激发态染料分子将电子注入到半导体的导带中: S* →S+ + e-(CB),k inj = 1010~1012s-1 ③I-离子还原氧化态染料可以使染料再生: 3I- + 2S+ →I3 - + 2S,k3 = 108s-1 ④导带中的电子与氧化态染料之间的复合:

S+ + e-(CB) →S,k b = 106s-1 ⑤导带中的电子在纳米晶网络中传输到后接触面(back contact ,BC)后而流入到外电 路中: e-(CB) →e-(BC),k5 = 103~100s-1 ⑥纳米晶膜中传输的电子与进入TiO2 膜的孔中的I3 -离子复合: I3 - + 2e-(CB) →3I-,J0 = 10-11~10-9A cm-2 ⑦I3 -离子扩散到对电极上得到电子使I-离子再生: I3 - + 2e-(CE) →3I-,J0 = 10-2~10-1A cm-2 激发态的寿命越长,越有利于电子的注入,而激发态的寿命越短,激发态分子有可能来不及将 电子注入到半导体的导带中就已经通过非辐射衰减而返回到基态。②、④两步为决定电子注入效率 的关键步骤。电子注入速率常数(k inj)与逆反应速率常数(k b)之比越大(一般大于三个数量级), 电子复合的机会越小,电子注入的效率就越高。I-离子还原氧化态染料可以使染料再生,从而使染料 不断地将电子注入到二氧化钛的导带中。步骤⑥是造成电流损失的一个主要原因,因此电子在纳米 晶网络中的传输速度(k5)越大,电子与I3 -离子复合的交换电流密度(J0)越小,电流损失就越小。步骤 ③生成的I3 -离子扩散到对电极上得到电子变成离子I-(步骤⑦),从而使I-离子再生并完成电流循环。 DSC的结构组成:主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、对电极和导电基底等几部分组成。纳米多孔半导体薄膜通常为金属氧化物(TiO2、SnO2、ZnO等),聚集在有透明导电膜的玻璃板上作为DSC的负极。对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。敏化染料吸附在纳米多孔二氧化钛膜面上。正负极间填充的是含有氧化还原电对的电解质,最常用的是I3/I-。 DSC工作原理如下图所示: ⑴染料分子受太阳光照射后由基态跃迁至激发态; ⑵处于激发态的染料分子将电子注入到半导体的导带中; ⑶电子扩散至导电基底,后流入外电路中; ⑷处于氧化态的染料被还原态的电解质还原再生; ⑸氧化态的电解质在对电极接受电子后被还原,从而完成一个循环; ⑹和⑺分别为注入到TiO2 导带中的电子和氧化态染料间的复合及导带上的电子和氧化态的电解质间的复合

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

染料敏化太阳电池

染料敏化太阳电池主要是模仿光合作用原理,研制出来的一种新型太阳电池,其主要优势是:原材料丰富、成本低、工艺技术相对简单,在大面积工业化生产中具有较大的优势,同时所有原材料和生产工艺都是无毒、无污染的,部分材料可以得到充分的回收,对保护人类环境具有重要的意义。自从1991年瑞士洛桑高工(EPFL)M. Grtzel教授领导的研究小组在该技术上去的突破以来,欧、美、日等发达国家投 染料敏化太阳能电池的研究历史可以追溯到19世纪早期的照相术。1837年,Daguerre制出了世界上第一张照片。两年后,Fox Talbot将卤化银用于照片制作,但是由于卤化银的禁带宽度较大,无法响应长波可见光,所以相片质量并没有得到很大的提高。1883年,德国光电化学专家Vogel 发现有机染料能使卤化银乳状液对更长的波长敏感,这是对染料敏化效应的最早报导。使用有机染料分子可以扩展卤化银照相软片对可见光的响应范围到红光甚至红外波段,这使得“全色”宽谱黑白胶片乃至现在的彩色胶片成为可能。1887年,Moser将这种染料敏化效应用到卤化银电极上,从而将染料敏化的概念从照相术领域延伸到光电化学领域。1964年,Namba 和Hishiki发现同一种染料对照相术和光电化学都很有效。这是染料敏化领域的重要事件,只是当时不能确定其机理,即不确定敏化到底是通过电子的转移还是通过能量的转移来实现的。直到20世纪60年代,德国的Tributsch发现了染料吸附在半导体上并在一定条件下产生电流的机理,才使人们认识到光照下电子从染料的基态跃迁到激发态后继而注入半导体的导带的光电子转移是造成上述现象的根本原因。这为光电化学电池的研究奠定了基础。但是由于当时的光电化学电池采用的是致密半导体膜,染料只能在膜的表面单层吸附,而单层染料只能吸收很少的太阳光,多层染料又阻碍了电子的传输,因此光电转换效率很低,达不到应用水平。后来人们制备了分散的颗粒或表面积很大的电极来增加染料的吸附量,但一直没有取得非常理想的效果。1988年,Grätzel小组用基于Ru的染料敏化粗糙因子为200的多晶二氧化钛薄膜,用Br2/Br-氧化还原电对制备了太阳能电池,在单色光下取得了12 %的转化效率,这在当时是最好的结果了。直到1991年,Grätzel在O’Regan的启发下,应用了O’Regan制备的比表面积很大的纳米TiO2颗粒,使电池的效率一举达到7.1 %,取得了染料敏化太阳能电池领域的重大突破。应当说,纳米技术促进了染料敏化 结构组成 主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、对电极和导电基底等几部分组成。纳米多孔半导体薄膜通常为金属氧化物(TiO2、SnO2、ZnO等),聚集在有透明导电膜的玻璃板上作为DSC的负极。对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。敏化染料吸附在纳米多孔二氧化钛膜面上。正负极间

钙钛矿太阳能电池材料

背景 在能源紧缺的现代社会,为了维持人类的可持续发展,科学家们一直致力于新能源的研究,其中至少在几十亿年内都取之不尽的太阳能便成了热门的研究对象。 太阳能电池大家都不陌生,它通过光电效应或者光化学效应直接把光能转化成电能。钙钛矿材料我们也很熟悉,就是一类有着与钛酸钙(CaTiO3)相同晶体结构的材料,其结构式一般为ABX3,其中A和B是两种阳离子,X是阴离子。 但钙钛矿太阳能电池却是一个比较新的概念。 2009年日本桐荫横滨大学的宫坂力教授将碘化铅甲胺和溴化铅甲胺应用于染料敏化太阳能电池,获得了最高%的光电转化效率,此为钙钛矿光伏技术的起点 但它直到2014年左右才被人们重视起来。是因为在短短几年间其效率一直在显著提升,这是NREL上实验室最高电池效率的图,我们可以看出钙钛矿材料的效率上升速率远远超过了其他同类型材料。钙钛矿材料被认为是最有可能取代硅晶材料作为太阳能电池的材料 概述 钙钛矿太阳电池一般采用有机无机混合结晶材料——如有机金属三卤化物CH3NH3PbX3(X=Cl, Br, I)作为光吸收材料。该材料具有合适的能带结构,其禁带宽度为,因与太阳光谱匹配而具有良好的光吸收性能,很薄的厚度就能够吸收几乎全部的可见光并用于光电转换。 如图所示,这是钙钛矿太阳能电池的一般结构结构,由上到下分别为玻璃、FTO、电子传输层(ETM)、钙钛矿光敏层、空穴传输层(HTM)和金属电极。其中电子传输层常常用TiO2 钙钛矿电池一个显著的特点是IV曲线(伏安曲线)的滞后(I-V hysteresis)(通常叫滞后现象或迟滞现象),一般从反向扫描(开路电压-短路电流)得到的曲线比正向扫描(短路电流-开路电压)看起来好很多。现在对钙钛矿的这种现象还没有一个很好的解释,目前比较合理的解释是:钙钛矿材料具有很强的铁电性能(ferroelectricity)以及巨大的介电常数,导致电池的低频电容很大,比其他任何一种光伏电池都显著。 文献

染料敏化太阳能电池-化学与物理电源基础实验讲义1

天然染料敏化TiO2太阳能电池的制备及光电性能测试 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。纳米TiO2晶体化学能太阳能电池是最近发展起来的,优点在于其廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到20年以上。但是TiO2的禁带宽度为3.2eV,只能吸收波长小于375nm的紫外光,为了使其吸收红移至可见光区,增大对全光谱范围的响应,1991年,瑞士洛桑高等工业学院(EPFL) Gratzel研究小组开发了染料敏化太阳能电池(Dye Sensitized Solar Cell,简称DSSC),它是由吸附染料光敏化剂(过渡金属钌的有机化合物染料)的纳米二氧化钛(TiO2)多孔薄膜制成的新型光化学电池。其光电转换效率达7.1%。1993年,他再次报道了光电转换效率达10%的TiO2染料电池,1998年,该研究组进一步研制出全固态DSSC,使用固体有机空穴传输代替液体电解质,单色光光电转化效率达到33%,从而引起了全世界的科学家对染料敏化太阳能电池的关注。近年来,染料敏化太阳能电池的研究主要集中在阳极材料的改性、染料的改进、电解质的研究、以及阴极对染料敏化太阳能电池的影响等。本实验主要研究不同的染料敏化剂和不同的敏化方法对TiO2太阳能电池光电转换效应的影响。 【实验目的】 (1)了解染料敏化纳米TiO2太阳能电池的工作原理及性能特点。 (2)掌握合成纳米TiO2溶胶的方法、染料敏化太阳能电池光阳极的制备方法以及电池的组装方法。 (3)掌握评价染料敏化太阳能电池性能的方法。 【实验原理】 一、DSSC结构和工作原理 DSSC结构:染料敏化太阳能电池的结构是一种“三明治”结构, 如图1所示,主要由以下几个部分组成: 导电玻璃、染料光敏化剂、多孔结构的TiO2半导体纳米晶薄膜、电解质和铂电极。其中吸附了染料的半导体纳米晶薄膜称为光阳极,铂电极叫做对电极或光阴极。 DSSC电池的工作原理:电池中的TiO2禁带宽度为3.2 eV,只能吸收紫外区域的太阳光,可见光不能将它激发,于是在TiO2膜表面覆盖一层染料光敏剂来吸收更宽的可见光,当太阳光照射在染料上,染料分子中的电子受激发跃迁至激发态,由于激发态不稳定,并且染料与TiO2薄膜接触,电子于是注入到TiO2导带中,此时染料分子自身变为氧化态。注入到TiO2导带中的电子进入导带底,最终通过外电路流向对电极,形成光电流。处于氧化态的染料分子在阳极被电解质溶液中的I-还原为基态,电解质中的I3-被从阴极进入的电子还原成I-,这样就完成一个光电化学反应循环。但是反应过程中,若电解质溶液中的I-在光阳极上被TiO2导带中的电子还原,则外电路中的电子将减少,这就是类似硅电池中的“暗电流”。整个反应过程可用如下表示: (l) 染料D受激发由基态跃迁到激发态D*: D + hv→ D* (2) 激发态染料分子将电子注入到半导体导带中:D*→ D+ + e- (3) I-还原氧化态染料分子:3I- + 2D+→ I3- + 2D (4) I3-扩散到对电极上得到电子使I-再生:I3- +2e- → 3I- (5) 氧化态染料与导带中的电子复合:D+ + e- → D (6) 半导体多孔膜中的电子与进入多孔膜中I3-复合:I3- +2e-→ 3I- 其中,反应(5)的反应速率越小,电子复合的机会越小,电子注入的效率就越高;反应(6)是造成电流损失的主要原因。 光阳极 目前,DSSC常用的光阳极是纳米TiO2。TiO2是一种价格便宜,应用广泛,无污染,稳定且抗腐蚀性能良好的半导体材料。TiO2有锐钛矿型(Anatase)和金红石型(Rutile)两种不同晶型,其中锐钛矿型的TiO2带隙(3.2eV)略大于金红石型的能带隙(3.l eV),且比表面积略大于金红石,对染料的吸附能力较好,因而光

太阳能晶硅电池发展历程及其关键材料技术

太阳能晶硅电池发展历程及其关键材料技术 2.1前言部分 21世纪以来,全球范围内的传统能源迅速短缺和环境污染日益严重,这两个问题成为了制约经济发展的主要问题。太阳能作为一种清洁、无污染的新能源,早已走进了人们的视野,太阳能发电及光伏产业近来受到了人们的高度重视。太阳能电池是利用光生伏特效应直接把太阳能转换成电能的一种器件。太阳能电池主要有块状太阳能电池和薄膜型太阳能电池两大类,其中硅太阳能电池又可分为单晶硅太阳能电池、多晶硅太阳能电池等。硅太阳能电池由于其转换效率比较高、性能稳定、原材料丰富等优点成为当今光伏产业中的重要支柱。太阳能电池以硅材料为主的主要原因: 对太阳能电池材料一般的要求: 1、半导体材料的禁带不能太宽; 2、要有较高的光电转换效率: 3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。 基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它材料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 本文就晶硅太阳能电池的发展历程及其关键材料技术展开介绍。

2.2主题部分 2.2.1太阳能电池发展历程 从发现光伏现象,太阳能电池已经有近170多年的发展历史。1839年法国人发现了光伏现象,38年后才研制出第一片硒太阳电池,仅有1%的转换效率,作为发电没能推广。1954年美国贝尔实验室的3位科学家才做出具有实用价值的单晶硅电池(4.5%),几年后迅速提升到10%,这时主要用于卫星、航天器(价格太高,每瓦要近2000美圆)。 上世纪70年代后,由于化石能源危机(石油、煤炭),再生能源被各国重视,尤其是太阳能电池,此时的工艺、材料研究得到迅速发展,从1995年以后,太阳能电池以每年35%的年增长幅度高速发展。价格也大幅度降低(2—4美圆每瓦) 最近5年是世界光伏电池快速增长几年,平均年增长速度超过40%。 2004年全球太阳能电池产量1200MW,2005年产量达到1650MW,比2004年增加38%。转换效率常规生产单晶15.5%、多晶14.5%,实验室达24.8%。 由于世界各国加大了对硅和生产工艺的研究,加上地球硅材料及其丰富,有人预计,太阳能发电21世纪中叶将占整个能源市场的20%-50%。 2.2.2太阳能晶硅电池关键材料技术 ·晶体硅太阳能电池的基本原理

太阳能电池及材料研究和发展现状

第19卷第5期2006年9月 浙江万里学院学报 JournalofZhejiangWanliUniversity V01.19No.5 Sep.2006太阳能电池及材料研究和发展现状 汪建军,刘金霞 (浙江万里学院,宁波315101) 摘要:文章介绍了不同材料的太阳能电池,如单晶硅、多晶硅、多晶硅薄膜、非晶硅薄膜、CulnSe2、 CdTe、染料敏化等太阳电池主要制各工艺、典型结构与特性.简要说明不同电池商品化生产情况及光伏产业 发展趋势. 关键词:太阳能电池;高效电池;光伏产业 中图分类号:TK512文献标识码:A文章编号:1671--2250(2006)05一0073—05 收稿日期:2006--01一ll 作者简介:汪建军,浙江万里学院基础学院实验师;刘金霞,浙江万里学院基础学院副教授. 太阳能是人类取之不尽,用之不竭的可再生能源,它不产生任何环境污染,是清洁能源.太阳光辐射能转化电能是近些年来发展最快,最具活力的研究,人们研制和开发了不同类型的太阳能电池.太阳能电池其独特优势,超过风能、水能、地热能、核能等资源,有望成为未来电力供应主要支柱.制造太阳能电池材料的禁带宽度&应在1.1eV.1.7eV之间,以1.5eV左右为佳,最好采用直接迁移型半导体,较高的光电转换效率(以下简称“效率”),材料性能稳定,对环境不产生污染,易大面积制造和工业化生产.1954年美国贝尔实验室研制了世界上第一块实用半导体太阳能电池,不久后用于人造卫星.经近半个世纪努力,人们为太阳电池的研究、发展与产业化做出巨大努力.硅太阳电池于1958年首先在航天器上得到应用.在随后lO多年里,空间应用不断扩大,工艺不断改进.20世纪70年代初,硅太阳电池开始在地面应用,到70年代末地面用太阳电池产量已经超过空间电池产量,并促使成本不断降低.80年代初,硅太阳电池进入快速发展,开发的电池效率大幅度提高,商业化生产成本进一步降低,应用不断扩大.20世纪80年代中至今,薄膜太阳能电池研究迅速发展,薄膜电池被认为大幅度降低成本的根本出路,成为今后太阳能电池研究的热点和主流,并逐步向商业化生产过渡. 1不同材料太阳电池分类及特性简介 太阳能电池按材料可分为品体硅太阳电池、硅基薄膜太阳电池、化合物半导体薄膜太阳电池和光电化学太阳电池等几大类.开发太阳能电池的两个关键问题就是:提高效率和降低成本. 1.1晶体硅太阳电池晶体硅太阳电池是PV(Photovoltaic)市场上的主导产品,优点是技术、工艺最成熟,电池转换效率高,性能稳定,是过去20多年太阳电池研究、开发和生产主体材料.缺点是生产成本高.在硅电池研究中人们探索各种各样的电池结构和技术来改进电池性能,进一步提高效率.如发射极钝化、背面局部扩散、激光刻槽埋栅和双层减反射膜等,高效电池在这些实验和理论基础上发展起来的….1.2硅基薄膜太阳电池多晶硅(ploy.Si)薄膜和非晶硅(a.Si)薄膜太阳电池可以大幅度降低太阳电池价格.多晶硅薄膜电池优点是可在廉价的衬底材料上制备,其成本远低于晶体硅电池,效率相对较高,不久将会在PV市场上占据主导地位.非晶硅是硅和氢(约10%)的一种合金,具有以下优点:它对阳光的吸收系数高,活性层只有llam厚,材料的需求量大大减少,沉积温度低(约200℃),可直接沉积在玻璃、不锈钢和塑料膜等廉价的衬底材料上,生产成本低,单片电池面积大,便于工业化大规模生产.缺点是由于非晶硅材料光学禁带宽度为1.7eV,对太阳辐射光谱的长波区域不敏感,限制了非晶硅电池的效率,且其效率会随着光照时间的延续而衰减(即光致衰退),使电池性能不稳定.

染料敏化太阳能电池

染料敏化太阳能电池 摘要:与硅基太阳能电池相比,染料敏化太阳能电池(DSSC)具有成本低、制备工艺简单、理论光电转化效率高、制备过程无毒无污染等优点,因而迅速成为该领域的研究热点,目前染料敏化太阳能电池的最高转化效率已达到12%以上,被认为是实现下一代光伏器件大规模利用的主要候选者,是极具研发潜力的太阳能电池之一。 关键词:太阳能电池,染料敏化,光阳极 前言 染料敏化太阳能电池被人们称为神奇的人造树叶,因此以天然植物色素作为光敏剂的太阳能电池一直都被各国所关注。染料敏化太阳能电池是1991年由瑞士科学家O’Regan与Gr?ztel首先发明的,并发表在Nature上,其报道了光电转化效率达7.1%的染料敏化太阳能电池。染料敏化太阳能电池具有原材料丰富、成本低、制作工艺简单及生产过程都是无毒无害等优点,成为最有发展前景的太阳能电池之一。染料敏化剂是染料敏化太阳能电池的重要组成部分,它通过吸收太阳光将基态的电子激发到激发态中产生光电子,然后再注入半导体的导带上。因此,染料敏化剂的好坏对染料敏化太阳能电池的光电性能起着决定性的作用。目前,已开发的染料敏化剂主要有金属配合物染料和纯有机染料。染料敏化太阳能电池是仿照光合作用原理研制出来的,因此天然染料作为纯有机染料的一部分,从染料敏化太阳能电池研究初期就引起各国专家的注意。1997年,Gr?ztel从黑莓中提取天然染料作为敏化剂敏化太阳能电池,得到的光电转化效率为0.56%。为了提高天然染料敏化太阳能电池的光电转化效率,研究者们在天然染料分子的基础上进行了改性,经过不断努力,Hara等合成了光电转化效率7.6%由香豆素衍生染料敏化太阳能电池,使天然染料敏化太阳能电池的光电性能得到了很大提高,更增加了人们研究天然染料的信心。天然染料原材料丰富分布广泛种类繁多,可以直接从天然的植物中提取,制备过程简单无污染,大大降低了染料敏化太阳能电池的生产成本[1]。 一、染料敏化太阳能电池(DSSC)的结构与原理 DSSC的基本结构如图1所示,主要包括:TCO透明导电玻璃(光阳极)、TiO2纳米晶粒薄膜、光敏染料、电解液以及对电极。当太阳光照射在染料敏化太阳能电池上,染料分子中基态电子被激发,激发态染料分子将电子注入到纳米多孔半导体的导带中,注入到导带中的电子迅速富集到导电玻璃面上,传向外电路,并最终回到对电极上。而由于染料的氧化还原电位高于氧化还原电解质电对的电

染料敏化太阳能电池实验报告(共9篇)

染料敏化太阳能电池实验报告(共9篇) 染料敏化太阳能电池实验 天然染料敏化TiO2太阳能电池的制备及光电性能测试姓名:蓝永琛班级:新能源材料与器件学号:20112500041 一、实验目的 1. 了解染料敏化纳米TiO2太阳能电池的工作原理及性能特点。 2. 掌握合成纳米TiO2溶胶的方法、染料敏化太阳能电池光阳极的制备方法 以及电池的组装方法。 3. 掌握评价染料敏化太阳能电池性能的方法。 二、实验原理 略 三、仪器与试剂 一、仪器设备 可控强度调光仪、紫外-可见分光光度计、超声波清洗器、恒温水浴槽、多功能万用表、电动搅拌器、马弗炉、红外线灯、研钵、三室电解池、铂片电极、饱和甘汞电极、石英比色皿、导电玻璃、镀铂导电玻璃、锡纸、生料带、三口烧瓶(500mL)、分液漏斗、布氏漏斗、抽虑瓶、容量瓶、烧杯、镊子等。 二、试剂材料 钛酸四丁酯、异丙醇、硝酸、无水乙醇、乙二醇、乙腈、碘、碘化钾、TBP、丙酮、石油醚、绿色叶片、红色花瓣、去离子水

四、实验步骤 一、TiO2溶胶制备 目前合成纳米TiO2的方法有多种,如溶胶-凝胶法、水热法、沉淀法、电化 学沉积法等。本实验采用溶胶-凝胶法。 (1)在500mL的三口烧瓶中加入1:100(体积比)的硝酸溶液约100mL,将三口烧瓶置于60-70oC的恒温水浴中恒温。 (2)在无水环境中,将5mL钛酸丁酯加入含有2mL异丙醇的分液漏斗中,将混合液充分震荡后缓慢滴入(约1滴/秒)上述三口烧瓶中的硝酸溶液中,并不断搅拌,直至获得透明的TiO2溶胶。 二、TiO2电极制备 取4片ITO导电玻璃经无水乙醇、去离子水冲洗、干燥,分别将其插入溶胶中浸泡提拉数次,直至形成均匀液膜。取出平置、自然晾干,再红外灯下烘干。最后在450oC下于马弗炉中煅烧30min 得到锐态矿型TiO2修饰电极。可用XRD粉 末衍射仪测定TiO2晶型结构。 三、染料敏化剂的制备和表征 (1) 叶绿素的提取 采集新鲜绿色幼叶,洗净晾干,去主脉,称取5g剪碎放入研钵,加入少量石油醚充分研磨,然后转入烧杯,再加入约20mL石油醚,超声提取15min后过滤,弃去滤液。将滤渣自然风干后转入研钵中,再以同样的方法用20mL丙酮提取,过滤后收集滤液,即得到

相关主题