搜档网
当前位置:搜档网 › k52006年高考第一轮复习数学:14.1 导数的概念与运算

k52006年高考第一轮复习数学:14.1 导数的概念与运算

k52006年高考第一轮复习数学:14.1   导数的概念与运算
k52006年高考第一轮复习数学:14.1   导数的概念与运算

知识就是力量
本文为自本人珍藏
版权所有 仅供参考
※第十四章
●网络体系总览
导 概 数 念 的 导 数
导数
的 性 导 求 函 单 数 法 数 调 的 的 导 应 函 极 数 用 数 值 的 函 最 数 大 的 值 小 与 值 最
●考点目标位定位 要求: (1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率 等) ,掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念. (2)熟记基本求导公式〔C,xm(m 为有理数) ,sinx,cosx,ex,ax,lnx,logax 的导数〕 ,掌握 两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. (3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条 件和充分条件(导数在极值点两侧异号) ,会求一些实际问题(一般指单峰函数)的最大值 和最小值. ●复习方略指南 深入理解和正确运用极限的概念、法则是本章学习的基础,能对简单的初等函数进行求 导是本章学习的重点,能把实际问题转化为求解最大(小)值的数学模型,应用导数知识去解 决它是提高分析问题、解决问题能力,学好数学的关键. 1.熟练记忆基本求导公式和函数的求导法则,是正确进行导数运算的基础. 2.掌握导数运算在判断函数的单调性、求函数的极大(小)值中的应用,尤其要重视导数 运算在解决实际问题中的最值问题时所起的作用.
14.1
●知识梳理
导数的概念与运算
1.导数的概念: (1)如果当Δ x→0 时,
?y 有极限,我们就说函数 y=f(x)在点 x0 处可 ?x
导 , 并 把 这 个 极 限 叫 做 f ( x ) 在 点 x0 处 的 导 数 , 记 作 f ′ ( x0 ) 即 f ′ ( x0 ) = ,
?x ?0
lim
f ( x0 ? ?x) ? f ( x0 ) ?y = lim . ?x ?x?0 ?x
(2)如果函数 f(x)在开区间(a,b)内每一点都可导,就说 f(x)在开区间(a,b)内 可导.这时对于开区间(a,b)内每一个确定的值 x0,都对应着一个确定的导数 f′(x0),这样 就在开区间(a,b)内构成一个新的函数,这一新函数叫做 f(x)在开区间(a,b)内的导函 数,记作 f′(x),即 f′(x)= lim
?x ?0
f ( x ? ?x) ? f ( x) ,导函数也简称导数. ?x
2.导数的几何意义:函数 y=f(x)在点 x0 处的导数的几何意义,就是曲线 y=f(x)在点 P(x0,f(x0) )处的切线的斜率. 3.几种常见的导数: - C′=0(C 为常数);(xn)′=nxn 1;(sinx)′=cosx;(cosx)′=-sinx;(ex)′=ex;

知识就是力量
(ax)′=axlna;(lnx)′=
1 1 ;(logax)′= logae. x x
4.导数的四则运算法则: 设 u、v 是可导函数,则 (u±v)′=u′±v′;(uv)′=u′v+uv′;(
u ?v ? uv ? u )′= (v≠0). v2 v
特别提示
f(x)在 x=x0 处的导数 f′(x0)的实质是“增量之比的极限” ,但在计算中取它的应用 含义:f′(x0)是函数 f(x)的导函数 f′(x)当 x=x0 时的函数值. ●点击双基 1.在曲线 y=x2+1 的图象上取一点(1,2)及邻近一点(1+Δ x,2+Δ y),则
?x 为 ?y
A.Δ x+
1 +2 ?x
B.Δ x-
C.Δ x+2
1 -2 ?x 1 D.2+Δ x- ?x
解析: 答案:C
? x (1 ? ?x) 2 ? 1 ? (1 ? 1) = =Δ x+2. ?x ?y
2.设函数 f(x)在 x=x0 处可导,则 lim
h?0
f ( x0 ? h) ? f ( x0 ) h
A.与 x0,h 都有关 B.仅与 x0 有关而与 h 无关 C.仅与 h 有关而与 x0 无关 D.与 x0、h 均无关 答案:B 3.设 f(x)=ax3+3x2+2,若 f′(-1)=4,则 a 的值等于 A.
19 3
B.
16 3
C.
13 3 10 . 3
D.
10 3
解析:f′(x)=3ax2+6x,f′(-1)=3a-6=4,所以 a=
答案:D 4.函数 y=x2 的曲线上点 A 处的切线与直线 3x-y+1=0 的夹角为 45°,则点 A 的坐标为 ___________. 解析:设点 A 的坐标为(x0,y0), 则 y′|x=x 0 =2x|x=x 0 =2x 0 =k1,又直线 3x-y+1=0 的斜率 k2=3. ∴tan45°=1=
3 ? 2 x0 | k 2 ? k1 | 1 1 =| |.解得 x0= 或 x0=-1.∴y0= 或 y0=1,即 A 点坐标 | 1 ? ? k 2 k1 | 1 ? 6 x 0 4 16
为(
1 1 , )或(-1,1). 4 16

知识就是力量
答案:(
1 1 , )或(-1,1) 4 16 f ( x0 ? k ) ? f ( x0 ) . 2k
●典例剖析 【例 1】 若 f′(x0)=2,求 lim
k ?0
剖析:根据导数的定义.
f [ x0 ? (?k )] ? f ( x0 ) (这时Δ x=-k). k ?0 ?k f ( x0 ? k ) ? f ( x0 ) ∴ lim k ?0 2k f ( x0 ? k ) ? f ( x0 ) 1 = lim [- 2 ] k ?0 2 ?k f ( x0 ? k ) ? f ( x0 ) 1 =- 2 lim 2 k ?0 ?k 1 =- f′(x0)=-1. 2 f ( x0 ? ?x) ? f ( x0 ) 评述:注意 f′(x0)= lim 中Δ x 的形式的变化,在上述变化中可以 ?x ?0 ?x 看到Δ x=-k,k→0 ? -k→0, f ( x0 ? 3k ) ? f ( x0 ) f ( x0 ? 3k ) ? f ( x0 ) ∴f′(x0)= lim ,还可以写成 f′(x0)= lim k ?0 k ?0 ? 3k ? 3k 1 或 f′(x0)= lim [f(x0+ )-f(x0) ]等. k ?? k
解:f′(x0)= lim 【例 2】 若 f(x)在 R 上可导, (1)求 f(-x)在 x=a 处的导数与 f(x)在 x=-a 处 的导数的关系; (2)证明:若 f(x)为偶函数,则 f′(x)为奇函数. 剖析:(1)需求 f(-x)在 x=a 处的导数与 f(x)在 x=-a 处的导数; (2)求 f′(x) , 然后判断其奇偶性. (1)解:设 f(-x)=g(x),则
g (a ? ?x) ? g (a) ?x f (?a ? ?x) ? f (?a) = lim ?x ?0 ?x f (?a ? ?x) ? f (?a) =- lim ? ?x ? 0 ? ?x
g′(a)= lim
?x ?0
=-f′(-a). ∴f(-x)在 x=a 处的导数与 f(x)在 x=-a 处的导数互为相反数. (2)证明:f′(-x)= lim
?x ?0
f (? x ? ?x) ? f (? x) ?x
f ( x ? ?x) ? f ( x) ? ?x f ( x ? ?x) ? f ( x) =- lim ?x ?0 ? ?x
= lim
?x ?0
=-f′(x). ∴f′(x)为奇函数.

知识就是力量
评述:用导数的定义求导数时,要注意Δ y 中自变量的变化量应与Δ x 一致.
深化拓展
(2)中若 f(x)为奇函数,f′(x)的奇偶性如何? 【例 3】 求下列函数的导数: (1)y=x2sinx; (2)y=ln(x+ 1 ? x 2 ); (3)y=
ex ?1 ; ex ?1
(4)y=
x ? cos x . x ? sin x
1 x ? 1? x
(1+
2 2
解:(1)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx. (2)y′= · (x+ 1 ? x 2 )′
=
1 x ? 1? x 1 1? x2
.
x 1? x2

=
(3)y′=
(e x ? 1)?(e x ? 1) ? (e x ? 1)(e x ? 1)? (e x ? 1) 2
=
? 2e x . (e x ? 1) 2
( x ? cos x) ?( x ? sin x) ? ( x ? cos x)( x ? sin x) ? ( x ? sin x) 2
(4)y′=
=
(1 ? sin x)( x ? sin x) ? ( x ? cos x)(1 ? cos x) ( x ? sin x) 2 ? x cos x ? x sin x ? sin x ? cos x ? 1 . ( x ? sin x) 2
=
思考讨论
函数 f(x)在点 x0 处是否可导与是否连续有什么关系? ●闯关训练 夯实基础 1.(2004 年全国Ⅱ,文 3)曲线 y=x3-3x2+1 在点(1,-1)处的切线方程为 A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5

知识就是力量
解析:y′=3x2-6x,∴y′|x=1=-3. ∴在(1,-1)处的切线方程为 y+1=-3(x-1). 答案:B 2.(2004 年全国Ⅳ,文 4)函数 y=(x+1)2(x-1)在 x=1 处的导数等于 A.1 B.2 C.3 D.4 2 3 2 解析:y′|x=1=[ +2x+1) (x (x-1) ]′|x=1=[x +x -x-1]′|xx=1=(3x2+2x-1)| x=1=4. 答案:D 3.(2004 年湖北,文 3)已知函数 f(x)在 x=1 处的导数为 3,则 f(x)的解析式可能为 A.f(x)=(x-1)2+3(x-1) B.f(x)=2(x-1) C.f(x)=2(x-1)2 D.f(x)=x-1 答案:A 4. (2004 年重庆,理 14) 曲线 y=2- (以弧度数作答)
1 2 1 x 与 y= x3-2 在交点处的切线夹角是__________. 2 4
? x2 ?y ? 2 ? ? 2 解析:由 ? 得 x3+2x2-16=0,(x-2) 2+4x+8)=0,∴x=2. (x 3 ?y ? x ? 2 ? 4 ?
∴两曲线只有一个交点.
1 2 x )′=-x,∴y′|x=2=-2. 2 x3 3 又 y′=( -2)′= x2,∴当 x=2 时,y′=3. 4 4 ∴两曲线在交点处的切线斜率分别为-2、3,
∵y′=(2- |
?2?3 π |=1.∴夹角为 . 1 ? ( ?2 ) ? 3 4
答案:
π 4
x ?1
5.设 f(x)在 x=1 处连续,且 f(1)=0, lim
f ( x) =2,求 f′(1). x ?1
f ( x) =2, x ?1 x ? 1 f (1 ? ?x) ? f (1) ∴f′(1)= lim ?x ?0 ?x f ( x) ? f (1) f ( x) = lim = lim =2. x ?1 x ?1 x ? 1 x ?1
解:∵f(1)=0, lim 6.设函数 y=ax +bx2+cx+d 的图象与 y 轴交点为 P 点,且曲线在 P 点处的切线方程为 12x-y-4=0.若函数在 x=2 处取得极值 0,试确定函数的解析式. 解:∵y=ax3+bx2+cx+d 的图象与 y 轴的交点为 P,∴P 的坐标为 P(0,d).又曲线在点 P 处的切线方程为 y=12x-4,P 点坐标适合方程,从而 d=-4.


知识就是力量
又切线斜率 k=12,故在 x=0 处的导数 y′|x=0=12,而 y′=3ax2+2bx+c,y′|x=0=c, 从而 c=12. 又函数在 x=2 处取得极值 0,所以 y′|x=2=0, f(2)=0,即 12a+4b+12=0, 8a+4b+20=0. 解得 a=2,b=-9. ∴所求函数解析式为 y=2x3-9x2+12x-4. 培养能力 - 7.已知函数 f(x)=e x(cosx+sinx),将满足 f′(x)=0 的所有正数 x 从小到大排成数列 {xn}. 求证:数列{f(xn) }为等比数列. -x - - 证明:f′(x)=-e (cosx+sinx)+e x(-sinx+cosx)=-2e xsinx, - 由 f′(x)=0,即-2e xsinx=0, -π 解得 x=nπ ,n∈Z.从而 xn=nπ (n=1,2,3?),f(xn)=(-1)ne n. 所以
f ( x n ?1 ) f ( xn )
=-e
-π
.
-π
所以数列{f(xn) }是公比 q=-e 的等比数列. 8.已知函数 f(x)=ln(ex+a) (a>0). - (1)求函数 y=f(x)的反函数 y=f 1(x)及 f(x)的导数 f′(x); - (2)假设对任意 x∈[ln(3a),ln(4a),不等式|m-f 1(x)|+ln(f′(x) ] )<0 成立, 求实数 m 的取值范围. 解:(1)由 y=f(x)=ln(ex+a) , y 得 x=ln(e -a) ,所以 -1 y=f (x)=ln(e x-a) (x>lna). f′(x)=[ln(ex+a) ]′=

ex . ex ? a
(2)由|m-f 1(x)|+ln(f′(x) )<0,得 x x ln(e -a)-ln(e +a)+x<m<ln(ex-a)+ln(ex+a)-x. 设 ? (x)=ln(ex-a)-ln(ex+a)+x, ? (x)=ln(ex-a)+ln(ex+a)-x,于是原不等式对 于 x ∈ [ ln ( 3n ) ,ln ( 4a )] 恒 成 立 . 等 价 于 ? ( x ) < m < ? ( x ) . (*) 由 ? ′(x)=
ex ex - x +1, ex ? a e ? a ex ex + x -1,注意到 0<ex-a<ex<ex+a. x e ?a e ?a
? ′(x)=
故有 ? ′(x)>0, ? ′(x)>0,从而 ? (x) ? (x)均在[ln(3a),ln(4a) 、 ]上单调递 增,因此不等式 (*) 成立当且仅当 ? (ln(4a) <m< ? (ln(3a) ,即 ln( ) )
8 12 a) <m<ln( a) . 3 5

知识就是力量
探究创新 9.利用导数求和: - (1)Sn=1+2x+3x2+?+nxn 1(x≠0,n∈N *). (2)Sn=C 1 +2C 2 +3C 3 +?+nC n (n∈N *). n n n n 解:(1)当 x=1 时,Sn=1+2+3+?+n= 当 x≠1 时,∵x+x2+x3+?+xn=
n (n+1), 2
x ? x n ?1 , 1? x

两边对 x 求导,得 Sn=1+2x+3x2+?+nxn 1=(
x ? x n ?1 1 ? (n ? 1) x n ? nx n ?1 )= . 1? x (1 ? x) 2
(2)∵(1+x)n=1+C 1 x+C 2 x2+?+C n xn, n n n 两边对 x 求导,得 n(1+x)n 1=C 1 +2C 2 x+3C 3 x2+?+nC n x n 1. n n n n 令 x=1,得 n22n 1=C 1 +2C 2 +3C 3 +?+nC n , n n n n 即 Sn=C 1 +2C 2 +3C 3 +?+nC n =n22n 1. n n n n ●思悟小结 1.求函数 y=f(x)在点 x0 处的导数通常有以下两种方法: (1)导数的定义,即求 lim
?x ?0
- - - -
f ( x0 ? ?x) ? f ( x0 ) 的值. ?x
(2)利用导函数的函数值,即先求函数 f(x)在开区间(a,b)内的导函数 f′(x),再 将 x0(x0∈(a,b) )代入导函数 f(x),得函数值 f′(x0). 2.求复合函数的导数的方法步骤: (1)分清复合函数的复合关系,选好中间变量. (2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量 求导数. (3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换 成自变量的函数. 3.本单元重点体现了极限思想、 函数思想及等价转化的思想, 在学习过程中应用心体会. ●教师下载中心 教学点睛 1.在该节教学中要重视对导数的概念、导数的几何意义的理解,注重对导数基本公式的 熟练运用. 2.可补充导数的另一种定义形式:f′(x0)= lim
x? x0
f ( x) ? f ( x 0 ) . x ? x0
拓展题例
?x 2 ? 1 【例题】 讨论函数 f(x)= ? ?x ? 1
( x ? 0), ( x ? 0)
在 x=0 处的可导性.

知识就是力量
解:函数 f(x)在 x=0 处是否可导,即 ∵ lim?
f (0 ? ?x) ? f (0) 当Δ x→0 时的极限是否存在. ?x
f (0 ? ?x) ? f (0) ?x ?0 ?x ?x ? 1 ? 1 = lim? =1, ?x ?0 ?x f (0 ? ?x) ? f (0) lim? ?x ?0 ?x 2 ( ?x ) ? 1 ? 1 = lim? =0, ?x ?0 ?x f (0 ? ?x) ? f (0) f (0 ? ?x) ? f (0) 又∵ lim? ≠ lim? , ?x ?0 ?x ?0 ?x ?x f (0 ? ?x) ? f (0) ∴ 当Δ x→0 时的极限不存在,因此 f(x)在 x=0 处不可导. ?x

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

k52006年高考第一轮复习数学:14.1 导数的概念与运算

知识就是力量
本文为自本人珍藏
版权所有 仅供参考
※第十四章
●网络体系总览
导 概 数 念 的 导 数
导数
的 性 导 求 函 单 数 法 数 调 的 的 导 应 函 极 数 用 数 值 的 函 最 数 大 的 值 小 与 值 最
●考点目标位定位 要求: (1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率 等) ,掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念. (2)熟记基本求导公式〔C,xm(m 为有理数) ,sinx,cosx,ex,ax,lnx,logax 的导数〕 ,掌握 两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. (3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条 件和充分条件(导数在极值点两侧异号) ,会求一些实际问题(一般指单峰函数)的最大值 和最小值. ●复习方略指南 深入理解和正确运用极限的概念、法则是本章学习的基础,能对简单的初等函数进行求 导是本章学习的重点,能把实际问题转化为求解最大(小)值的数学模型,应用导数知识去解 决它是提高分析问题、解决问题能力,学好数学的关键. 1.熟练记忆基本求导公式和函数的求导法则,是正确进行导数运算的基础. 2.掌握导数运算在判断函数的单调性、求函数的极大(小)值中的应用,尤其要重视导数 运算在解决实际问题中的最值问题时所起的作用.
14.1
●知识梳理
导数的概念与运算
1.导数的概念: (1)如果当Δ x→0 时,
?y 有极限,我们就说函数 y=f(x)在点 x0 处可 ?x
导 , 并 把 这 个 极 限 叫 做 f ( x ) 在 点 x0 处 的 导 数 , 记 作 f ′ ( x0 ) 即 f ′ ( x0 ) = ,
?x ?0
lim
f ( x0 ? ?x) ? f ( x0 ) ?y = lim . ?x ?x?0 ?x
(2)如果函数 f(x)在开区间(a,b)内每一点都可导,就说 f(x)在开区间(a,b)内 可导.这时对于开区间(a,b)内每一个确定的值 x0,都对应着一个确定的导数 f′(x0),这样 就在开区间(a,b)内构成一个新的函数,这一新函数叫做 f(x)在开区间(a,b)内的导函 数,记作 f′(x),即 f′(x)= lim
?x ?0
f ( x ? ?x) ? f ( x) ,导函数也简称导数. ?x
2.导数的几何意义:函数 y=f(x)在点 x0 处的导数的几何意义,就是曲线 y=f(x)在点 P(x0,f(x0) )处的切线的斜率. 3.几种常见的导数: - C′=0(C 为常数);(xn)′=nxn 1;(sinx)′=cosx;(cosx)′=-sinx;(ex)′=ex;

高三数学(理科)测试题(函数、导数、三角函数、解三角形)

高三数学《函数与导数、三角函数与解三角形》测试题(理科) 一、选择题 1.设2 :f x x →是集合A 到集合B 的映射,若{}1,2B =,则A B 为 ( ) A .? B .{1} C .?或{2} D .?或{1} 2.函数x x x f ln )(+=的零点所在的区间为( ) A .(-1,0) B .(0,1) C .(1,2) D .(1,e ) 3.若函数2 ()log (3)a f x x ax =-+在区间(,]2 a -∞上为减函数,则a 的取值范围是 ( ) A .(0,1) B .(1,+∞) C .(1,23) D .(0,1)∪(1,23) 4.若0()ln 0 x e x g x x x ?≤=? >?,则1 (())2g g = ( ) A .1 2 B .1 C .1 2e D .ln 2- — 5.已知3 2 ()f x ax bx cx d =+++的图象如图所示,则有 ( ) A .0b < B .01b << C .12b << D .2b > ] 6. 已知函数()f x 定义域为R ,则下列命题: ①若()y f x =为偶函数,则(2)y f x =+的图象关于y 轴对称. ②若(2)y f x =+为偶函数,则()y f x =关于直线2x =对称. ③若函数(21)y f x =+是偶函数,则(2)y f x =的图象关于直线1 2 x 对称. ④若(2)(2)f x f x -=-,则则()y f x =关于直线2x =对称. ⑤函数(2)y f x =-和(2)y f x =-的图象关于2x =对称. 其中正确的命题序号是 ( ) A.①②④ B.①③④ C.②③⑤ D.②③④ =(sin x +cos x )2-1是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 ` C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 x

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高三数学一轮复习导数导学案

课题: 导数、导数的计算及其应用 2课时 一、考点梳理: 1.导数、导数的计算 (1).导数的概念:一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =__________,称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=. (2).导函数: 记为f ′(x )或y ′. (3).导数的几何意义: 函数y =f (x )在x =x 0处的导数f ′(x 0)的几 何意义是曲线y =f (x )在x =x 0处的切线的斜率.相应地,切线方程为______________. ! (4).基本初等函数的导数公式 (5).导数的运算法则 (1)[f (x )±g (x )]′=__________;(2)[f (x )·g (x )]′=__________;(3)??? ?f x g x ′ =__________(g (x )≠0). (6).复合函数的导数: 2.导数与函数的单调性及极值、最值 (1)导数和函数单调性的关系: (1)对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的________;如果在某区间上f ′(x )<0,那么f (x )为该区间上的________. (2)若在(a ,b )的任意子区间内f ′(x )都不恒等于0,f ′(x )≥0?f (x )在(a ,b )上为____函数,若在(a ,b )上,f ′(x )≤0,?f (x )在(a ,b )上为____函数. [ (2)函数的极值与导数 (1)判断f (x 0)是极值的方法: 一般地,当函数f (x )在点x 0处连续时, ①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. (2)求可导函数极值的步骤 : ①____________ ;②________________ ;③_________________________. (3)求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤: (1)求函数y =f (x )在(a ,b )上的________; (2)将函数y =f (x )的各极值与______________比较,其中最大的一个是最大值,最小的一个是最小值. ` 二、基础自测: 1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于( ). A .4 B .4x C .4+2Δx D .4+2Δx 2 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) ; f ′(x )=________ f (x )=sin x f ′(x )=________ f (x )=cos x f ′(x )=________ f (x )=a x f ′(x )=________ f (x )=e x > f ′(x )=________ f (x )=lo g a x f ′(x )=________ f (x )=ln x f ′(x )=________

函数与导数大题部分-高考数学解题方法归纳总结专题训练

专题03 函数与导数大题部分 【训练目标】 1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法; 2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题; 3、 掌握指数和对数的运算性质,对数的换底公式; 4、 掌握指数函数和对数函数的图像与性质; 5、 掌握函数的零点存在定理,函数与方程的关系; 6、 熟练数形结合的数学思想在解决函数问题的运用; 7、 熟练掌握导数的计算,导数的几何意义求切线问题; 8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会根据单调性确定参数的取 值范围; 9、 会利用导数求函数的极值和最值,掌握构造函数的方法解决问题。 【温馨小提示】 本章内容既是高考的重点,又是难点,再备考过程中应该大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的方便。 【名校试题荟萃】 1、(2019届新余四中、上高二中高三第一次联考)已知函数 .,R n m ∈ (1)若函数()x f 在()()2,2f 处的切线与直线0=-y x 平行,求实数n 的值; (2)试讨论函数()x f 在区间[)+∞,1上最大值; (3)若1=n 时,函数()x f 恰有两个零点,求证:221>+x x 【答案】(1)6n =(2)1ln m n --(3)见解析 【解析】(1)由, ,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行, 故 2 14 n -=,解得6n =。 (2) ,由()0f x '<时,x n >;()0f x '>时,x n <,所以 ①当1n ≤时,()f x 在[)1,+∞上单调递减,故()f x 在[)1,+∞上的最大值为 ;

2020届高考数学导数的11个专题

目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (53) 导数专题四、零点问题 (77) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (170) 导数专题七、特殊值法判定超越函数的零点问题 (190) 导数专题八、避免分类讨论的参变分离和变换主元 (201) 导数专题九、公切线解决导数中零点问题 (214) 导数专题十、极值点偏移问题 (219) 导数专题十一、构造函数解决导数问题 (227)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参 变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较;

高考数学第一轮复习导数概念和几何意义

第1讲 变化率与导数、导数的运算 【2014年高考会这样考】 1.利用导数的几何意义求曲线在某点处的切线方程. 2.考查导数的有关计算,尤其是简单的函数求导. 【复习指导】 本讲复习时,应充分利用具体实际情景,理解导数的意义及几何意义,应能灵活运用导数公式及导数运算法则进行某些函数求导. 基础梳理 1.函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1 . 若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx . 2.函数y =f (x )在x =x 0处的导数 (1)定义 称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0Δy Δx = li m Δx →0f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0Δy Δx . (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数 称函数f ′(x )=li m Δx →0f (x +Δx )-f (x )Δx 为f (x )的导函数,导函数有时也记作y ′. 4.基本初等函数的导数公式 若f (x )=c ,则f ′(x )=0; 若f (x )=x α(α∈R ),则f ′(x )=αx α-1; 若f (x )=sin x ,则f ′(x )=cos x ;

最新高三数学全面练习题- 导数(含答案)

高三新数学第一轮复习单元测试(12)—导数 (理科加“积分、复数) 说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分;答题时间150分钟。 第Ⅰ卷 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求 的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分). 1.(理)设a、b、c、d∈R,则复数(a+b i)(c+d i)为实数的充要条件是() A.ad-bc=0 B.ac-bd=0 C.ac+bd=0 D.ad+bc=0 (文)曲线3 =-在点(-1,-3)处的切线方程是 y x x 4 () A.74 y x=-D.2 y x=- =+ C.4 y x =+B.72 y x

2.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a = ( ) A .2 B .3 C .4 D .5 3.(理)复数z 在复平面内对应的点为A, 将点A 绕坐标原点, 按逆 时针方向旋转2 π , 再向左平移一个单位, 向下平移一个单位, 得到B 点, 此时点B 与点A 恰好关于坐标原点对称, 则复数z 为 ( ) A .-1 B .1 C .i D .- i (文)如果函数()y f x =的图像与函数32y x '=-的图像关于坐标原点 对称,则()y f x = 的表达式为 ( ) A .23y x =- B . 23y x =+ C .23y x =-+ D .23y x =-- 4. 等于 ( ) A .i B .i - C i D i (文)函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( )

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高三数学一轮复习 导数的综合应用

导数的综合应用 一、选择题 1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是( B ) (A)m>-2(B)m≥-2 (C)m<2 (D)m≤2 解析:函数定义域为(0,+∞), 又f'(x)=2x+m+. 依题意有f'(x)=2x+m+≥0在(0,+∞)上恒成立, ∴m≥-恒成立,设g(x)=-, 则g(x)=-≤-2, 当且仅当x=时等号成立. 故m≥-2, 故选B. 2.(2013洛阳统考)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f'(x)>1,则不等式 e x·f(x)>e x+1的解集为( A ) (A){x|x>0} (B){x|x<0} (C){x|x<-1或x>1} (D){x|x<-1或0e x-e x=0, 所以g(x)=e x·f(x)-e x为R上的增函数. 又因为g(0)=e0·f(0)-e0=1, 所以原不等式转化为g(x)>g(0), 解得x>0. 故选A. 3.如图所示,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为( A )

解析:由导数的定义知,S'(t0)表示面积函数S(t0)在t0时刻的瞬时变化率.如图所示,正五角星薄片中首先露出水面的是区域Ⅰ,此时其面积S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S'(t)也应逐渐增大;当露出的是区域Ⅱ时,此时的S(t)应突然增大,然后增长速度减慢,但仍为增函数,故其瞬时变化率S'(t)也随之突然变大,再逐渐变小,但S'(t)>0(故可排除选项B);当五角星薄片全部露出水面后,S(t)的值不再变化,故其导数值S'(t)最终应等于0,符合上述特征的只有选项A. 4.已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f'(x)的图象如图所示.若两正 数a,b满足f(a+2b)<1,则的取值范围是( B ) (A)(B) (C)(-1,0) (D)(-∞,-1) 解析:因为f(x)是定义域为R的奇函数,f(-4)=-1,所以f(-4)=-f(4),所以f(4)=1,所以f(a+2b)

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

届高三数学第一轮复习导数

导 数 第3章 导数及其运用 §3.1导数概念及其几何意义 重难点:了解导数概念的实际背景,理解导数的几何意义. 考纲要求:①了解导数概念的实际背景. ②理解导数的几何意义. 经典例题:利用导数的定义求函数y=|x|(x ≠0)的导数. 当堂练习: 1、在函数的平均变化率的定义中,自变量的的增量x ?满足( ) 2 3 ) 4 5A C 6A .7A .f ′(x0)>0 B .f ′(x0)<0 C .f ′(x0)=0 D .f ′(x0)不存在 8.已知命题p :函数y=f(x)的导函数是常数函数;命题q :函数y=f(x)是一次函数,则命题p 是命题q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 9.设函数f(x)在x0处可导,则0 lim →h h h x f h x ) ()(00--+等于 A .f ′(x0) B .0 C .2f ′(x0) D .-2f ′(x0) 10.设f(x)=x(1+|x|),则f ′(0)等于

A .0 B .1 C .-1 D .不存在 11.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___. 12.两曲线y=x2+1与y=3-x2在交点处的两切线的夹角为___________. 13.设f(x)在点x 处可导,a 、b 为常数,则0 lim →?x x x b x f x a x f ??--?+) ()(=_____. 14.一球沿一斜面自由滚下,其运动方程是s=s(t)=t2(位移单位:m ,时间单位:s),求小球在t=5时的 瞬时速度________. 15.已知质点M 按规律s=2t2+3做直线运动(位移单位:cm ,时间单位:s), (1)当t=2,Δt=0.01时,求t s ??. 法则3 2()()v x v x ???? 经典例题:求曲线y=2 1x x +在原点处切线的倾斜角. 当堂练习: 1.函数f (x )=a4+5a2x2-x6的导数为 ( ) A.4a3+10ax2-x6 B.4a3+10a2x -6x5 C.10a2x -6x5 D.以上都不对 2.函数y=3x (x2+2)的导数是( ) A.3x2+6 B.6x2 C.9x2+6 D.6x2+6

高三数学《导数与函数的零点问题》测试题含答案

《导数与函数的零点问题》测试题含答案 一.选择题:本大题共12小题,第1到11小题为单选题,在每小题给出的四个选项中,只有一个是符合题目要求的,第12题为多选题,全部选对为正确. 1. 函数()326x f x x =+-的零点所在的区间是( ) A .()1,0- B .()0,1 C .()1,2 D .()2,3 2. 已知函数()328f x x x =+-的零点用二分法计算,附近的函数值参考数据如下表所示: 则方程3 280x x +-=的近似解可取为(精确度为0.01)( ) A .1.50 B .1.66 C .1.70 D .1.75 3. 函数12 ()()2 x f x x =+ 的零点个数为( ) A.3 B.2 C.1 D.0 4. 已知函数()ln(1)2f x x x =++-,在下列区间中,函数()f x 一定有零点的是( ) A .[]0,1 B .[]1,2 C .[]2,3 D .[]3,4 5. 已知函数()x e f x a x =-.若()f x 没有零点,则实数a 的取值范围是( ) A .[0,)e B .(0,1) C .(0,)e D .(0,1) 6. 若方程lg ||sin ||0x x -=则其解的个数为( ) A .3 B .4 C .6 D .5 7. 设函数()2 2,0log ,0x x f x x x ?+≤? =? >??,若关于x 的方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且 1234x x x x <<<,则()312234 1 x x x x x ++ ?的取值范围是( ) A .()3,-+∞ B .(]3,3- C .[)3,3- D .(),3-∞ 8. 已知定义在R 上的奇函数()f x 满足(1)(1)f x f x -=+,当[0,1)x ∈时,21 ()21 x x f x -=+,则当函数 1 ()()3 g x f x kx =--在[0,7]上有三个零点时,实数k 的取值范围是( )

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

相关主题