搜档网
当前位置:搜档网 › 神经网络在人脸识别中的应用

神经网络在人脸识别中的应用

神经网络在人脸识别中的应用
神经网络在人脸识别中的应用

神经网络在人脸识别中的应用

1.引言

早在上世纪60年代末, 人脸识别即引起了研究者的强烈兴趣.但早期的人脸识别一般都需要人的某些先验知识, 无法摆脱人的干预。进入上世纪9O年代, 由于高速度、高性能计算机的出现,人脸识别的方法有了重大突破, 进入了真正的机器自动识别阶段, 人脸识别研究得到了前所未有的重视。人脸识别方法有很多种: (1)特征脸方法。这种方法起源于图像描述技术,采用特征脸识别方法有良好的稳定性、位移不变性、特征向量与图像的高度成比例变化以及转置不变性。不足之处是受表情变化、光照角度强度变化和视角变化等严重影响, 鲁棒性较差。(2)隐马尔可夫模型方法(HiddenMarkovMode1)是用于描述信号统计特征的一组统计模型。HMM的基本理论是由Baum和Welch等人在20世纪6O年代末70年代初建立, 在语音识别中应用较多。

(3)弹性图匹配方法。弹性图匹配方法是一种基于动态连接结构的方法。它将人脸用格状的稀疏图表示。

(4)神经网络方法。人工神经网络是由多个神经元按照一定的排列顺序构成的, 是一个非线性动力学系统, 其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单, 功能有限, 但由大量冲经元所构成的网络系统却能够实现复杂丰富的功能。神经网络系统除了具有集体运算的能力和自适应的学习能力外, 还有根强的容错性和鲁棒性.善于联想、综合和推广。神经网络模型各种各样。它们是从不同的角度对生物神经系统不同层次的描述和模拟。有代表性的网络模型有感知器、多层映射BP网络、RBF网络等。目前, 在人工神经网络的实际应用中,绝大部分的神经网络模型都是采用BP网络及其变化形式, 它也是前向网络的核心部分, 是人工神经网络最精华的部分。2BP神经网络的人脸识别BP神经网络用于人脸识别一般应先对输入图像实行图像预处理,然后进行特征提取,接下来就是BP网络训练,最后用训练好的网络进行识别,获得识别结果。

2.基于特征脸和BP 神经网络的人脸识别方法

2.1特征脸分析

这种方法是根据图像的统计特征进行正交变换( K-L 变换) [3] , 以去除样

本间的相关性, 然后根据特征值的大小选择特征向量( 主分量) , 由于这些特

征向量的图像类似人脸, 所以称为特征脸[4, 5] 。下面就这种方法作简要介绍。

X∈RN 为表示一幅图像的随机向量, 这里N是图像的大小, X 由图像的行或列连

接而成的向量。假设有p 个人, 每个人有r1 ( 1≤i≤P) 个人脸样本图像, 样

本集为{ Xji } , Xji表示第j个人的第i个样本。那么每个人样本均值向量为

mi ( 1≤ i≤p) ; 总体样本均值向量为m; 类间散布矩阵为

Sb 是N×N的大矩阵, 一般由奇异值分解定理[ 8] 得到其特征向量矩阵U 及样本集的特征系数向量矩阵C。其中

U 的秩总是小于p 的, 它的每一列就是一特征脸( 向量) ,一般有p - 1个。每一张人脸都可以投影到这p - 1个特征脸张成的子空间中, 得到一个特征系数向量, C 就是样本在子空间中投影得到的系数, 每一列ci 就代表mi 在特征脸空间投影的特征系数向量, 它有p - 1 行, 即投影得到的p - 1 特征系数。如图1是本文实验一张人脸的具体展开, 第一项为平均脸, 其他是按特征值大小排序的特征脸, 常称为主元。

在最近邻识别中, 将输入的人脸图像连接成一维向量, 向特征脸张成的子空间投影, 然后在子空间中, 如果与ci 的距离最近, 就判别为第i 类。

2.2神经网络实现分类器

基于BP算法的前向多层神经网络以其算法、概念及基本理论都很简单, 但有很强的学习能力, 已经在实际问题中有了大量成功的应用[ 10] , 简称其为BP 神经网络。本文用最小均方误差小于0.0001的学习, 这样神经网络学习的实质就是进行后验概率估计; 分类时实质就是采用最大后验概率分类方法[10, 12] 。下面简要对它们的关系作推导。

神经网络实现的映射F: Rd →RM, 这样期望最小均方误差E[ y - F( x) ] 2 最小, 这里F( x) = E( y/x) , y 是期望的输出yj =( 0, ?,0, 1, 0, ?, 0) T, 如果x∈( 第j 类) 。F( x) = E( y/x) , 这样对给定第j 类的输入x, 对应的输出为

Fj( x) = E[ yj /x] = 1 ×P( ( yj = 1) /x) + 0 ×P( ( y = 0) /x) =P( ( yj = 1 ) /x) = P( ωj /x)

本文中, 神经网络的输入是特征脸分析得到的39 个特征,输出是40 个人的每个人的后验概率。训练时, 如果是第j 个人, 让输出的向量的第j 元素为1, 其他全为0。换句话说, 让第j 类的概率为1。分类识别时, 取最大的输出作为结果, 即最大后验概率作为输出。

3.实验及结果分析

本文的实验是在ORL 人脸数据库上进行的, 有40 人, 每人有10 张人脸样本。实验中, 每人随机选择五张图片作为样本集, 剩下的作为测试集, 然后交叉实验, 让第一次的测试集作为样本集, 第一次的样本集用来测试。

特征脸识别用最近邻判别方法, 为了较客观的反映它的识别率, 选择了四种常用的相似性度量方式[ 9] 。对于识别率本文采取人脸识别中常用的累积识别率的办法。由于神经网络结构的不同, 会带来识别率较大的差别; 并且由于网络权值初始化的随机性, 每一次的结果不会完全一样。所以统计了几种不同隐层神经元数目的平均识别率。在实验中, 发现多于三层的网络结构无益于识别率的提高, 所以采用常见的三层结构,39个输入层, 40个输出层。而隐层的数目不能少于20个, 当少于20个时, 识别率将会变得很差; 当多于100个时, 识别率增加不明显, 有时反而会下降。

从表1, 表2 可以看到, 在最近邻识别的几种方法中, 马氏距离取得了较好的效果。BP网络的隐层神经元数目在一个较大的范围内, 都取得了令人满意的识别率, 比最近邻的识别率要好。当隐层神经元数目是样本的一半左右时, 取得了更高的识别率。在交叉实验的比较中, 发现第二组的识别率明显好于第一组, 这是因为人脸识别问题可以看作回归问题, 而回归问题中, 样本显得特别重要, 样本只是一定程度上反映问题的真实模型, 好的样本能较好地逼近真实模型。在实际问题中, 当样本没有选择余地时, 就会出现偏差和方差两难问题[ 10 ~12] 。

表1 识别率比较

表2 样本集和测试集交换后识别率比较

4.结论

人脸识别是一个困难的研究课题, 目前还处于探索阶段。本文利用特征脸的方法提取特征, 利用BP 神经网络学习能力强、分类能力强的优点, 实现分类器。为了与经典的最近邻分类器更好地比较, 选择了四种相似度测量方法。用神经网络实现分类器时, 较多地研究了网络结构的构造。实验结果表明,如果网络的结构合理, 识别率比最近邻分类器有较大的提高。

5.参考文献:

[1]苏剑波, 徐波.应用模式识别技术导论———人脸识别与语音识别[M].上海:上海交通大学出版社, 2001.

[2]金忠.人脸图像特征抽取与维数研究[博士学位论文][D].南京:南京理工大学,1999.

[3]宋刚, 艾海舟, 徐光.纹理约束下的人脸特征点跟踪[J].软件学报, 2004(15),11.

[4]边肇祺, 张学工.模式识别[M]. 北京: 清华大学出版社,2000.

神经网络在人脸识别中的应用

神经网络在人脸识别中的应用 1. 引言 早在上世纪60年代末,人脸识别即引起了研究者的强烈兴趣.但早期的人脸识别一般都需要人的某些先验知识,无法摆脱人的干预。进入上世纪90年代,由于高速度、高性能计算机的出现,人脸识别的方法有了重大突破,进入了真正的机器自动识别阶段,人脸识别研究得到了前所未有的重视。人脸识别方法有很多种: (1) 特征脸方法。这种方法起源于图像描述技术,采用特征脸识别方法有良好的 稳定性、位移不变性、特征向量与图像的高度成比例变化以及转置不变性。不足之处是受表情变化、光照角度强度变化和视角变化等严重影响,鲁棒性较差。(2) 隐马尔可夫模型方法(HiddenMarkovModel) 是用于描述信号统计特征的一 组统计模型。HMM 的基本理论是由Baum和Welch等人在20世纪60年代末70年代初建立,在语音识别中应用较多。 (3) 弹性图匹配方法。弹性图匹配方法是一种基于动态连接结构的方法。它将人脸用格状的稀疏图表示。 (4) 神经网络方法。人工神经网络是由多个神经元按照一定的排列顺序构成的,是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但由大量冲经元所构成的网络系统却能够 实现复杂丰富的功能。神经网络系统除了具有集体运算的能力和自适应的学习能力外,还有根强的容错性和鲁棒性?善于联想、综合和推广。神经网络模型各种各样。它们是从不同的角度对生物神经系统不同层次的描述和模拟。有代表性的网络模型有感知器、多层映射BP网络、RBF网络等。目前,在人工神经网络的实际应用中,绝大部分的神经网络模型都是采用BP网络及其变化形式,它也是前向网

神经网络在人脸识别中的应用

神经网络在人脸识别中的应用 1.引言 早在上世纪60年代末, 人脸识别即引起了研究者的强烈兴趣.但早期的人脸识别一般都需要人的某些先验知识, 无法摆脱人的干预。进入上世纪9O年代, 由于高速度、高性能计算机的出现,人脸识别的方法有了重大突破, 进入了真正的机器自动识别阶段, 人脸识别研究得到了前所未有的重视。人脸识别方法有很多种: (1)特征脸方法。这种方法起源于图像描述技术,采用特征脸识别方法有良好的稳定性、位移不变性、特征向量与图像的高度成比例变化以及转置不变性。不足之处是受表情变化、光照角度强度变化和视角变化等严重影响, 鲁棒性较差。(2)隐马尔可夫模型方法(HiddenMarkovMode1)是用于描述信号统计特征的一组统计模型。HMM的基本理论是由Baum和Welch等人在20世纪6O年代末70年代初建立, 在语音识别中应用较多。 (3)弹性图匹配方法。弹性图匹配方法是一种基于动态连接结构的方法。它将人脸用格状的稀疏图表示。 (4)神经网络方法。人工神经网络是由多个神经元按照一定的排列顺序构成的, 是一个非线性动力学系统, 其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单, 功能有限, 但由大量冲经元所构成的网络系统却能够实现复杂丰富的功能。神经网络系统除了具有集体运算的能力和自适应的学习能力外, 还有根强的容错性和鲁棒性.善于联想、综合和推广。神经网络模型各种各样。它们是从不同的角度对生物神经系统不同层次的描述和模拟。有代表性的网络模型有感知器、多层映射BP网络、RBF网络等。目前, 在人工神经网络的实际应用中,绝大部分的神经网络模型都是采用BP网络及其变化形式, 它也是前向网络的核心部分, 是人工神经网络最精华的部分。2BP神经网络的人脸识别BP神经网络用于人脸识别一般应先对输入图像实行图像预处理,然后进行特征提取,接下来就是BP网络训练,最后用训练好的网络进行识别,获得识别结果。 2.基于特征脸和BP 神经网络的人脸识别方法 2.1特征脸分析 这种方法是根据图像的统计特征进行正交变换( K-L 变换) [3] , 以去除样 本间的相关性, 然后根据特征值的大小选择特征向量( 主分量) , 由于这些特 征向量的图像类似人脸, 所以称为特征脸[4, 5] 。下面就这种方法作简要介绍。 X∈RN 为表示一幅图像的随机向量, 这里N是图像的大小, X 由图像的行或列连 接而成的向量。假设有p 个人, 每个人有r1 ( 1≤i≤P) 个人脸样本图像, 样 本集为{ Xji } , Xji表示第j个人的第i个样本。那么每个人样本均值向量为 mi ( 1≤ i≤p) ; 总体样本均值向量为m; 类间散布矩阵为

基于神经网络的人脸识别实验报告

基于神经网络的人脸识实验报告别 一、 实验要求 采用三层前馈BP 神经网络实现标准人脸YALE 数据库的识别。 二、BP 神经网络的结构和学习算法 实验中建议采用如下最简单的三层BP 神经网络,输入层为],,,[21n x x x X =,有n 个神经元节点,输出层具有m 个神经元,网络输出为],,,[21m y y y Y =,隐含层具有k 个神经元,采用BP 学习算法训练神经网络。 BP 神经网络的结构 BP 网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式,只要用已知的模式对BP 网络加以训练,网络就具有输入输出对之间的映射能力。 BP 网络执行的是有教师训练,其样本集是由形如(输入向量,期望输出向量)的向量对构成的。在开始训练前,所有的权值和阈值都应该用一些不同的小随机数进行初始化。 BP 算法主要包括两个阶段: (1) 向前传播阶段 ①从样本集中取一个样本(X p ,Y p ),将X p 输入网络,其中X p 为输入向量,Y p 为期望输出向量。 ②计算相应的实际输出O p 。 在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成训练后正常运行时执行的过程。在此过程中,网络执行的是下列运算: (1)(2)()21(...((())...))n p n p O F F F X W W W = (2) 向后传播阶段 ①计算实际输出O p 与相应的理想输出Y p 的差; ②按极小化误差的方法调整权矩阵。 这两个阶段的工作一般应受到精度要求的控制,定义

21 1()2m p pj pj j E y o ==-∑ (1) 作为网络关于第p 个样本的误差测度(误差函数)。而将网络关于整个样本集的误差测度定义为 p E E =∑ (2) 如前所述,将此阶段称为向后传播阶段,也称之为误差传播阶段。 为了更清楚地说明本文所使用的BP 网络的训练过程,首先假设输入层、中间层和输出层的单元数分别是N 、L 和M 。X=(x 0,x 1,…,x N-1)是加到网络的输入矢量,H=(h 0,h 1,…,h L-1)是中间层输出矢量,Y=(y 0,y 1,…,y M-1)是网络的实际输出矢量,并且用D=(d 0,d 1,…,d M-1)来表示训练组中各模式的目标输出矢量。输出单元i 到隐单元j 的权值是V ij ,而隐单元j 到输出单元k 的权值是W jk 。另外用θk 和Φj 来分别表示输出单元和隐单元的阈值。 于是,中间层各单元的输出为: 1 0()N j ij i j i h f V x φ-==+∑ (3) 而输出层各单元的输出是: 1 0()L k jk j k j y f W h θ-==+∑ (4) 其中f(*)是激励函数,采用S 型函数: 1 ()1x f x e -=+ (5) 在上述条件下,网络的训练过程如下: (1) 选定训练集。由相应的训练策略选择样本图像作为训练集。 (2) 初始化各权值V ij ,W jk 和阈值Φj ,θk ,将其设置为接近于0的随机值,并初始化精度控制参数ε和学习率α。 (3) 从训练集中取一个输入向量X 加到网络,并给定它的目标输出向量D 。 (4) 利用式(7)计算出一个中间层输出H ,再用式(8)计算出网络的实际输出Y 。 (5) 将输出矢量中的元素y k 与目标矢量中的元素d k 进行比较,计算出M 个输出误差项:()(1)k k k k k d y y y δ=--对中间层的隐单元也计算出L 个误差项: 1 *0(1)M J j j k jk k h h W δδ-==-∑ (6) 依次计算出各权值和阈值的调整量: ()(/(1))*((1)1)**jk jk k j W n L W n h αδ?=+?-+ (6)

基于BP神经网络的人脸识别

基于BP神经网络的人脸识别 学生:林仙土学号:S071954 摘要:人脸自动识别技术有着广阔的应用领域,本文提出用主成分分析和BP神经网络进行人脸识别。人脸识别包括两个部分:第一,特征提取;第二,神经网络进行识别。 关键词:BP神经网络人脸识别主成分分析 本系统采用20幅图像(4个人每人5幅)作为训练图像,应用主成分分析对训练图像进行二阶相关和降维,提取训练图像的独立基成分构造人脸子空间,并将训练集中的人脸图像向独立基上投影得到的系数输入改进的BP神经网络进行训练。然后将待识别的人脸图像向独立基上投影得到投影系数,再将其输入已训练过的BP神经网络进行识别。此方法对人脸库图像进行测试,识别率达到90%以上。本系统采用MATLAB编程,并运用了其中的GUI编程实现人机交互。 为在不同机子下顺利运行,本系统用uigetdir函数让用户选择训练图像库和待识别图像,使得待识别图像可在不同位置皆可让软件识别。 注意:待识别图像的名字必须是test.jpg。 系统界面: 程序: function varargout=BP(varargin) gui_Singleton=1;

gui_State=struct('gui_Name',mfilename,... 'gui_Singleton',gui_Singleton,... 'gui_OpeningFcn',@BP_OpeningFcn,... 'gui_OutputFcn',@BP_OutputFcn,... 'gui_LayoutFcn',[],... 'gui_Callback',[]); if nargin&&ischar(varargin{1}) gui_State.gui_Callback=str2func(varargin{1}); end if nargout [varargout{1:nargout}]=gui_mainfcn(gui_State,varargin{:}); else gui_mainfcn(gui_State,varargin{:}); end function BP_OpeningFcn(hObject,eventdata,handles,varargin) handles.output=hObject; guidata(hObject,handles); %UIWAIT makes BP wait for user response(see UIRESUME) %uiwait(handles.figure1); %---Outputs from this function are returned to the command line. function varargout=BP_OutputFcn(hObject,eventdata,handles) %varargout cell array for returning output args(see VARARGOUT); %hObject handle to figure %eventdata reserved-to be defined in a future version of MATLAB %handles structure with handles and user data(see GUIDATA) %Get default command line output from handles structure varargout{1}=handles.output; %---Executes on button press in input. function input_Callback(hObject,eventdata,handles) %hObject handle to input(see GCBO) %eventdata reserved-to be defined in a future version of MATLAB %handles structure with handles and user data(see GUIDATA) global TestDatabasePath TestDatabasePath=uigetdir('D:\','Select test database path'); axes(handles.axes1); a=imread(strcat(TestDatabasePath,'\test.jpg')); imshow(a) set(handles.text1,'string','image for recognition') %---Executes on button press in recognise. function recognise_Callback(hObject,eventdata,handles) %hObject handle to recognise(see GCBO) %eventdata reserved-to be defined in a future version of MATLAB %handles structure with handles and user data(see GUIDATA) TrainDatabasePath=uigetdir('D:\','Select training database path');

基于神经网络的人脸识别

【代码及说明见第四页】 基于三层BP 神经网络的人脸识别 一、 实验要求 采用三层前馈BP 神经网络实现标准人脸YALE 数据库的识别。 二、BP 神经网络的结构和学习算法 实验中建议采用如下最简单的三层BP 神经网络,输入层为],,,[21n x x x X ,有n 个神经元节点,输出层具有m 个神经元,网络输出为],,,[21m y y y Y ,隐含层具有k 个神经元,采用BP 学习算法训练神经网络。 BP 神经网络的结构 BP 网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式,只要用已知的模式对BP 网络加以训练,网络就具有输入输出对之间的映射能力。 BP 网络执行的是有教师训练,其样本集是由形如(输入向量,期望输出向量)的向量对构成的。在开始训练前,所有的权值和阈值都应该用一些不同的小随机数进行初始化。 BP 算法主要包括两个阶段: (1) 向前传播阶段 ①从样本集中取一个样本(X p ,Y p ),将X p 输入网络,其中X p 为输入向量,Y p 为期望输出向量。 ②计算相应的实际输出O p 。 在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成训练后正常运行时执行的过程。在此过程中,网络执行的是下列运算: (1)(2)()21(...((())...))n p n p O F F F X W W W (2) 向后传播阶段

①计算实际输出O p 与相应的理想输出Y p 的差; ②按极小化误差的方法调整权矩阵。 这两个阶段的工作一般应受到精度要求的控制,定义 21 1()2m p pj pj j E y o (1) 作为网络关于第p 个样本的误差测度(误差函数)。而将网络关于整个样本集的误差测度定义为 p E E (2) 如前所述,将此阶段称为向后传播阶段,也称之为误差传播阶段。 为了更清楚地说明本文所使用的BP 网络的训练过程,首先假设输入层、中间层和输出层的单元数分别是N 、L 和M 。X=(x 0,x 1,…,x N-1)是加到网络的输入矢量,H=(h 0,h 1,…,h L-1)是中间层输出矢量,Y=(y 0,y 1,…,y M-1)是网络的实际输出矢量,并且用D=(d 0,d 1,…,d M-1)来表示训练组中各模式的目标输出矢量。输出单元i 到隐单元j 的权值是V ij ,而隐单元j 到输出单元k 的权值是W jk 。另外用θk 和Φj 来分别表示输出单元和隐单元的阈值。 于是,中间层各单元的输出为: 1 0()N j ij i j i h f V x (3) 而输出层各单元的输出是: 1 0()L k jk j k j y f W h (4) 其中f(*)是激励函数,采用S 型函数: 1 ()1x f x e (5) 在上述条件下,网络的训练过程如下: (1) 选定训练集。由相应的训练策略选择样本图像作为训练集。 (2) 初始化各权值V ij ,W jk 和阈值Φj ,θk ,将其设置为接近于0的随机值,并初始化精度控制参数ε和学习率α。 (3) 从训练集中取一个输入向量X 加到网络,并给定它的目标输出向量D 。 (4) 利用式(7)计算出一个中间层输出H ,再用式(8)计算出网络的实际输出Y 。 (5) 将输出矢量中的元素y k 与目标矢量中的元素d k 进行比较,计算出M 个输出误差项:()(1)k k k k k d y y y 对中间层的隐单元也计算出L 个误差项: 1 *0(1)M J j j k jk k h h W

基于神经网络的人脸识别技术方法研究

第3期2019年2月No.3February,2019 人们在特定时刻的感觉在临床术语中被称为“情绪”。6种基本情绪被认为是快乐、悲伤、愤怒、恐惧、厌恶和惊讶,而其他已知的人类情感往往被视为这6种复杂社交情境的特殊化。研究人员从各种观点研究了情绪在人工智能中的作用:开发与人类更优雅互动的代理人和机器人,开发利用情绪模拟来辅助自己推理的系统,或创建更接近人体情感互动和学习的机器人。皮卡德指出:“智能复杂自适应系统中将会有功能,它们必须响应不可预测的复杂信息,这些信息起着情感在人们身上发挥作用的作用。”因此,对于计算机以实时方式响应复杂的情感信号,他们将需要像我们所拥有的系统,我们称之为情感。 人类的情感不仅是一种合乎逻辑的理性成分,它们与行为和感情紧密相连。人类情感系统在生存、社会互动和合作以及学习中起着至关重要的作用。机器需要一种情感—机器运动。因此,我们可以确定智能机器需要情绪,以便在学习复杂任务时以及在对人类的学习和决策制定进行建模时提高其表现。 情绪在人类决策过程中发挥着重要作用,因此,当我们试图模拟人类反应时,它们应该嵌入推理过程中。Bates 使用Ortony 等描述的模型提出了一个可信的代理人。该模型仅描述了基本情绪和先天反应;然而,它为构建计算机情感模拟提供了一个很好的起点。Kort 等提出了一个模型,他们的目的是概念化情绪对学习的影响,然后,建立一个工作的基于计算机的模型,将识别学习者的情感状态并对其作出适当的反应,以便学习将以最佳的速度进行。Poel 等引入了模拟混合神经网络架构,用于情绪学习。系统从注释数据中学习如何产生情绪状态以及由内部和外部刺激引起的变化。Clocksin 探讨了记忆中的问题,并结合可能的人工认知架构进行了研究。这项工作与人工智能研究中考虑记忆和情感的传统方式背道而驰,并且源于社会和发展心理学中出现的两种思想[1]。 本文提出了一种基于情绪反向传播学习算法的情绪神经网络。情绪神经网络具有两种模拟情绪,有助于网络学习和分类过程。这两种情绪是焦虑和自信。结合这些情绪参数的基本原理是它们对我们人类认知过程中的学习的影响。在实践中,两个情感参数意味着当情绪神经网络被训练时,一个是使用所有节点作为训练模式样本的输入平均值,另一个是某种程度上的增加惯性项用于在训练时期进展时修改从一种模式到下一种模式的变化水平。从数学的角度来看,当接 近成本函数的最小值时,我们不希望被单个模式的误差所左 右,其中一些模式可能是异常值。因此,我们关注最近学习步骤积累的“记忆”。 本文旨在研究这些额外的情绪参数对情绪神经网络在学习和决策中的表现的影响。我们使用脸部图像数据库,它已经在我们以前的作品中有效地使用。该数据库包括270个不同性别,种族和年龄的30人的图像,具有各种照明条件和对比度。面部图像的多样性旨在研究情绪神经网络的稳健性。 1 具有情绪参数的学习算法 反向传播学习算法是用于训练分层神经网络的广义delta 规则。自前人引入该算法以来,该算法已被广泛使用。在本节中,基于情绪反向传播学习算法的情绪神经网络学习算法,根据情绪神经网络内的信息流详细解释,该网络由3层组成:输入层(i )神经元,具有(h )神经元的隐藏层和具有(j )神经元的输出层。1.1 输入层神经元 这些是非处理神经元;每个输入层神经元的输出定义为YIi =Xii 其中, XIi 和YIi 分别是输入和输出输入层中神经元i 的值。1.2 隐藏层神经元 这些是处理神经元,因此, S 形激活函数用于激活该层中的每个神经元。这里,假设有一个隐藏层。但是相同的过程可以应用于多个隐藏层。 其中XHh 和YHh 分别是隐藏层中神经元h 的输入和输出值。使用进入该神经元的所有输入值的总电位计算隐藏层神经元XHh 的输入。总电位是输入值的乘法和它们的相关权重的总和。 其中Whi 是隐藏神经元h 给予输入神经元i 的权重, YIi 是输入神经元i 的输出, r 是输入层神经元的最大数量。其中Whb 是由隐藏神经元h 给予隐藏层偏置神经元b 的权重, Xb 是偏置神经元的输入值。1.3 输出层神经元 这些也是处理神经元,因此, S 形激活函数用于激活该层中的每个神经元。 其中XJj 和YJj 分别是输出层中神经元j 的输入和输出值。除了偏置和情绪神经元之外,还使用从先前隐藏层馈送神经元的所有输入值的总电位来计算输出层神经元XJj 的输入。 作者简介:吴思楠(1997— ),女,辽宁丹东人,本科生;研究方向:计算机科学与技术。 摘 要:文章研究了情绪神经网络的效率,该网络使用改进的反向传播学习算法。实验结果表明,人工情绪可以成功建模并有 效实施,以改善神经网络的学习和普遍性。关键词:神经网络;反向传播算法;人工情感建模;面部识别基于神经网络的人脸识别技术方法研究 吴思楠 (辽宁师范大学海华学院,辽宁 沈阳 110167) 无线互联科技 Wireless Internet Technology

基于神经网络的人脸识别(附代码)

【代码及说明见第四页】 基于三层BP 神经网络的人脸识别 一、 实验要求 采用三层前馈BP 神经网络实现标准人脸YALE 数据库的识别。 二、BP 神经网络的结构和学习算法 实验中建议采用如下最简单的三层BP 神经网络,输入层为],,,[21n x x x X ,有n 个神经元节点,输出层具有m 个神经元,网络输出为],,,[21m y y y Y ,隐含层具有k 个神经元,采用BP 学习算法训练神经网络。 BP 神经网络的结构 BP 网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式,只要用已知的模式对BP 网络加以训练,网络就具有输入输出对之间的映射能力。 BP 网络执行的是有教师训练,其样本集是由形如(输入向量,期望输出向量)的向量对构成的。在开始训练前,所有的权值和阈值都应该用一些不同的小随机数进行初始化。 BP 算法主要包括两个阶段: (1) 向前传播阶段 ①从样本集中取一个样本(X p ,Y p ),将X p 输入网络,其中X p 为输入向量,Y p 为期望输出向量。 ②计算相应的实际输出O p 。 在此阶段,信息从输入层经过逐级的变换,传送到输出层。这个过程也是网络在完成训练后正常运行时执行的过程。在此过程中,网络执行的是下列运算: (1)(2)()21(...((())...))n p n p O F F F X W W W (2) 向后传播阶段

①计算实际输出O p 与相应的理想输出Y p 的差; ②按极小化误差的方法调整权矩阵。 这两个阶段的工作一般应受到精度要求的控制,定义 21 1()2m p pj pj j E y o (1) 作为网络关于第p 个样本的误差测度(误差函数)。而将网络关于整个样本集的误差测度定义为 p E E (2) 如前所述,将此阶段称为向后传播阶段,也称之为误差传播阶段。 为了更清楚地说明本文所使用的BP 网络的训练过程,首先假设输入层、中间层和输出层的单元数分别是N 、L 和M 。X=(x 0,x 1,…,x N-1)是加到网络的输入矢量,H=(h 0,h 1,…,h L-1)是中间层输出矢量,Y=(y 0,y 1,…,y M-1)是网络的实际输出矢量,并且用D=(d 0,d 1,…,d M-1)来表示训练组中各模式的目标输出矢量。输出单元i 到隐单元j 的权值是V ij ,而隐单元j 到输出单元k 的权值是W jk 。另外用θk 和Φj 来分别表示输出单元和隐单元的阈值。 于是,中间层各单元的输出为: 1 0()N j ij i j i h f V x (3) 而输出层各单元的输出是: 1 0()L k jk j k j y f W h (4) 其中f(*)是激励函数,采用S 型函数: 1()1x f x e (5) 在上述条件下,网络的训练过程如下: (1) 选定训练集。由相应的训练策略选择样本图像作为训练集。 (2) 初始化各权值V ij ,W jk 和阈值Φj ,θk ,将其设置为接近于0的随机值,并初始化精度控制参数ε和学习率α。 (3) 从训练集中取一个输入向量X 加到网络,并给定它的目标输出向量D 。 (4) 利用式(7)计算出一个中间层输出H ,再用式(8)计算出网络的实际输出Y 。 (5) 将输出矢量中的元素y k 与目标矢量中的元素d k 进行比较,计算出M 个输出误差项:()(1)k k k k k d y y y 对中间层的隐单元也计算出L 个误差项:1 *0(1)M J j j k jk k h h W

相关主题