搜档网
当前位置:搜档网 › 结构功能函数.

结构功能函数.

结构功能函数.
结构功能函数.

P s P Z 0≥()0

∞Z f Z Z ()???d :=结构功能函数

(R 为抗力,S 为荷载效应)

Z=R —S

Z>0,结构可靠;

Z<0,结构失效;

Z =0,结构处于极限状态。

结构失效概率

结构失效概率就是结构处于失效状态的概率,以pf 表示。 P f P Z 0<()∞-0Z

f Z Z ()???d :=

f Z Z ()--------结构功能函数Z 的概率分布函数

结构可靠度

结构可靠度是结构可靠性的概率量度。

具体的就是:

结构在规定时间内,在规定条件下,完成预定功能的概率。

以ps 表示。

f Z Z ()--------结构功能函数Z 的概率分布函数

结构可靠度ps 与结构失效概率pf 的关系

由于上述两事件是对立的,因此结构可靠度ps 与结构失效概率pf 有下列关系:

P s +P f =1

结构可靠指标

β为结构可靠指标

设R 和S 为两个相互独立的正态随机变量,他们的均值和方差分别为 μZ =μR -μS

σZ 2

σR

2

σS

2

+

βμz σz

当β增大时,失效概率P s

减小。

当结构功能函数的基本变量不为正态分布或对数正态分布时,

βφ1

-

-p f

()

式子中φ1

-

---表示标准正态分布函数的反函数。这个式子也表明了可靠指标和失效概率的关系

八年级数学上 第六章 一次函数的图象和性质知识点和典型例题讲解

八年级数学上第六章一次函数的图象和性质 一、知识要点: 1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。 注意:(1)k≠0,否则自变量x的最高次项的系数不为1; (2)当b=0时,y=kx,y叫x的正比例函数。 2、图象:一次函数的图象是一条直线, (1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0) (2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x 平行。 3、性质: (1)图象的位置: (2)增减性 k>0时,y随x增大而增大 k<0时,y随x增大而减小 4.求一次函数解析式的方法 求函数解析式的方法主要有三种 (1)由已知函数推导或推证 (2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。 (3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: ①利用一次函数的定义 构造方程组。 ②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b 平行于y=kx,即由k来定方向。 ③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。 ④利用题目已知条件直接构造方程。 二、例题举例: 例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。证明:∵与成正比例, 设=a(a≠0的常数), ∵y=, =(k≠0的常数), ∴y=·a=akx, 其中ak≠0的常数, ∴y与x也成正比例。 例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断=(3-) 是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。 解:依题意,得 解得 n=-1, ∴=-3x-1, =(3-)x, 是正比例函数; =-3x-1的图象经过第二、三、四象限,随x的增大而减小;

copula函数及其应用.doc

copula函数及其应用 陆伟丹2012214286 信息与计算科学12-2班Copula函数及其应用Copula函数是一种〃相依函数"或者“连接函数",它将多维变量的联合分布函数和一维变量的边际分布函数连接起来,在实际应用中有许多优点。 首先,由于不限制边缘分布的选择,可运用Copula理论构造灵活的多元分布。其次,运用Copula理论建立模型时,可将随机变量的边缘分布和它们之间的相关结构分开来研究,它们的相关结构可由一个C opu 1 a函数来描述。另外,如果对变量作非线性的单调增变换,常用的相关性测度——线性相关系数的值会发生改变,而由Cop u1 a函数导出的一致性和相关性测度的值则不会改变。此外,通过C o p u1 a函数,可以捕捉到变量间非线性、非对称的相关关系,特别是容易捕捉到分布尾部的相关关系。 正是这些性质与特点使得C opu 1 a为研究变量问的相关性提供了一种新方法,使得投资组合风险管理度量方法有了一个新的突破。 Copula函数是现代概率论研究的产物,在2 0世纪5 0年代由S k1 a r( 19 5 9 )首先提出,其特点在于能将联合分布的各边缘分布分离出来,从而简化建模过程,降低分析难度,这也是著名的S k 1 a r定理。S c hwe i z e r Sklar( 1983) 对其进行了阶段性的总结,在概率测度空间理论的框架内,介绍了C opu1 a函数的定义及Copula函数的边缘分布等内容。J oe ( 1 9 9 7 )又从相关性分析和多元建模的角度进行了论述,展示了Copula 函数的性质,并详尽介绍了Copula函数的参数族。Ne 1 s e n(1999 )在其专著中比较系统地介绍了C o pula的定义、 构建方法、Archimedean Copula及相依性,成为这一研究领域的集大成者。D a v i d s i on R A, Res nick S 1.( 1984)介绍了C o p u 1 a的极大似然估计和矩估计。而J o e , H .提出了二步极大似然估计,并说明它比极大似然估计更有效。在选择最适合我们要求的Copula 函数上,最常用的方法是拟合优度检验,W. B reymannn ,A.Dias , P ? Embrecht s ( 2 0

一次函数知识点总结41712

一次函数知识点总结 ?变量和函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定 的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y 是x的函数。例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。 对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是1 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数取值范围的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义 ?函数的表示方法 1、三种表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 公式法:即函数解析式,简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 2、列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变 量的对应值) 3、公式法:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。一般情况下, 等号右边的变量是自变量,等号左边的变量是因变量。用函数解析式表示函数关系的方法就是公式法。 4、函数的图像

三角函数知识点归纳

第一章:三角函数 §、任意角 1、 正角、负角、零角、象限角的概念. 2、 与角α终边相同的角的集合: {}Z k k ∈+=,2παββ. §、弧度制 1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、 r l = α. 3、弧长公式:R R n l απ== 180 . 4、扇形面积公式:lR R n S 2 1 3602== π. §、任意角的三角函数 y =α αcos ,sin 1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么: 2、 设点(),A x y 为角α终边上任意一点,那么: (设r = sin y r α= ,cos x r α=,tan y x α=,cot x y α= 3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法. 正弦线:MP; 余弦线:OM; 正切线:AT 5、 特殊角 . 1、 平方关系:1cos sin 22=+αα. 2、 商数关系:α α αcos sin tan = . 3、 倒数关系:tan cot 1αα= §、三角函数的诱导公式 (概括为“奇变偶不变,符号看象限”Z k ∈) 1、 诱导公式一:、 诱导公式二: ()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k ()()(). tan tan ,cos cos , sin sin ααπααπααπ=+-=+-=+(其中:Z k ∈)

3、诱导公式三: 4、诱导公式四: ()()(). tan tan ,cos cos ,sin sin αααααα-=-=--=- ()()(). tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=- 5、诱导公式五: 6、诱导公式六: .sin 2cos ,cos 2sin ααπααπ=??? ??-=??? ??- .sin 2cos ,cos 2sin ααπααπ-=?? ? ??+=??? ??+ §、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象: 2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中 心、奇偶性、单调性、周期性. 3、会用五点法作图. sin y x =在[0,2]x π∈上的五个关键点为: 30010-1202 2 π π ππ(,)(,,)(,,)(,,)(,,). §、正切函数的图象与性质 1、记住正切函数的图象: 2、记住余切函数的图象: 3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. 周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()(),那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.

一次函数 最全面 知识点题型总结

初中数学一次函数知识点总结 基本概念: 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k ≠0)。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 图像性质 1.作法与图形:

(1)列表. (2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 一次函数的图象特征和性质: y =kx+b b>0 b<0 b=0 y=kx k >0 经过第一、二、 三象限 经过第一、三、 四象限 经过第一、 三象限图象从左到右上升,y随x的增大而增大 k <0 经过第一、二、 四象限 经过第二、三、 四象限 经过第二、 四象限图象从左到右下降,y随x的增大而减小

三角函数知识点归纳

三角函数 一、任意角、弧度制及任意角的三角函数 1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角. ?? ??? 正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 ②按终边位置不同分为象限角和轴线角. 角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

高一函数知识结构图

函数知识结构图 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A 到集合 B 的一个函数,记作 y = f (x )① 增函数与减函数:定义:对于函数f(x)的 定义域 I 内某个区间上的任意两个自变 量的值x1,x2, (1)若当x1 < x2时,都有f(x1) < f (x2) , 则说f(x)在这个区间上是增函数。 (2)若当x1 < x2时,都有f(x1) > f(x2) , 则说f(x)在这个区间上是减函数。⑧ 单调性(1)函数最大值首先应该是 某一个函数值,即存在 x0∈ I ,使得 f (x0)= M ; (2)函数最大值应该是所有最函数值中最大的,即对于任 值意的x∈I,都有f(x)≤M⑨ ②区间表示集合: [a,b],(a,b) 函数的基本性[a,b) ,(a,b], 质 (- ∞ ,+ ∞ ) (-∞, a) ?(b, +∞) 函函数 一个函数的构成数及 要素为:定义域, 其 对应关系和值域。 表 如果两个函数的映射定义域相同,并且示 对应关系完全一 致,这两个函数相 定义域 等。③ 和值域函数的表示法奇偶性 对于定义域内任意一 个x,都有(1)f (-x)=f(x), 那么函数f(x)就叫 做偶函数;偶函数图 象关于 y 轴对称。 (2)f(-x)= -f(x), 那么函数f(x)就叫 做奇函数;奇函数图 象关于原点对称。⑩ x的取值范 围叫做函数 y= f ( x)的 定义域;④ 函数值y 的集合叫做函数 y=f(x) 的值域。⑤解析法:用数学表达 式表示两个变量之间 的对应关系。 图象法:用图象表示 两个变量之间的对应 关系。 列表法:列出表格来 表示两个变量之间的 对应关系。⑥ 设A,B是非空的数集,如果按 某一个确定的对应关系f,使 对于集合A中的任意一个数 x ,在集合B中都有唯一确定 的元数y和它对应,那么称对 应f:A→B为从集合A 到集合B的一个映射。⑦

定义构造函数的四种方法

定义类的构造函数 作者:lyb661 时间:20150613 定义类的构造函数有如下几种方法: 1、使用默认构造函数(类不另行定义构造函数):能够创建一个类对象,但不能初始化类的各个成员。 2、显式定义带有参数的构造函数:在类方法中定义,使用多个参数初始化类的各个数据成员。 3、定义有默认值的构造函数:构造函数原型中为类的各个成员提供默认值。 4、使用构造函数初始化列表:这个构造函数初始化成员的方式显得更紧凑。 例如:有一个学生类。其中存储了学生的姓名、学号和分数。 class Student { private: std::string name; long number; double scores; public: Student(){}//1:default constructor Student(const std::string& na,long nu,double sc); Student(const std:;string& na="",long nu=0,double sc=0.0); Student(const std:;string& na="none",long nu=0,double sc=0.0):name(na),number(nu),scores(sc){} ……….. void display() const; //void set(std::string na,long nu,double sc); }; ......... Student::Student(const std::string& na,long nu,double sc) { name=na; number=nu; scores=sc; } void Student::display()const { std::cout<<"Name: "<

一次函数的图像与性质知识点总结

一次函数的图像与性质知识点总结 知识点1 、一次函数和正比例函数的概念 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的 1x 一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.例如:y=2x+3,y=-x+2,y= 2 1x,y=-x都是正比例函数. 等都是一次函数,y= 2 知识点2、函数的图象 把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线. 知识点3、一次函数的图象 由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b. 由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成 b,0).但也直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(- k 不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可. 知识点4 、一次函数y=kx+b(k,b为常数,k≠0)的性质 (1)k的正负决定直线的倾斜方向; ①k>0时,y的值随x值的增大而增大; ②k﹤O时,y的值随x值的增大而减小. (2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓); (3)b的正、负决定直线与y轴交点的位置; ①当b>0时,直线与y轴交于正半轴上;

②当b<0时,直线与y轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数. (4)由于k,b的符号不同,直线所经过的象限也不同; ①当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限); ②当k>0,b﹥0时,直线经过第一、三、四象限(直线不经过第二象限); ③当k﹤0,b>0时,直线经过第一、二、四象限(直线不经过第三象限); ④当k﹤0,b﹤0时,直线经过第二、三、四象限(直线不经过第一象限). (5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的. 知识点5、正比例函数y=kx(k≠0)的性质 (1)正比例函数y=kx的图象必经过原点; (2)当k>0时,图象经过第一、三象限,y随x的增大而增大; (3)当k<0时,图象经过第二、四象限,y随x的增大而减小. 知识点6、点P(x0,y0)与直线y=kx+b的图象的关系 (1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b; (2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上. 例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l 的图象上.

三角函数知识点

第 1 页 共 1 页 三角函数知识点 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正, 第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α =MP ,cos α=OM ,tan α=AT .

函数与结构体

函数与结构体 写出下面程序的执行结果。 #include struct tree { int x; int y; } t; voidfunc(struct tree t) { t.x = 10; t.y = 20; } main() { t.x = 1; t.y = 2; func(t); printf("%d %d\n", t.x, t.y); } 为了加深对结构的理解,下面编写几个用于对点和矩形进行操作的函数 把结构体传递给函数的方式有三种:一是分别传送各个结构成员,二是传送整个结构,三是传送指向结构的指针。 一 /* makepoint: 通过x、y值确定一个点*/ struct point makepoint(int x, int y) { struct point temp; temp.x = x; temp.y = y; return temp; } 注意,变元和结构成员同名不会引起冲突,事实上,重名强调了两者之间的关系。 现在可以用makepoint动态初始化任意结构,也可以向函数提供结构类型变元: structrect screen; struct point middle; struct point makepoint(int, int); screen.pt1 = makepoint(0, 0); screen.pt2 = makepoint(XMAX, YMAX); middle = makepoint((screen.pt1.x + screen.pt2.x) / 2, (screen.pt1.y + screen.pt2.y) / 2);

第七章--三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为{}()360 k k Z ααβ? =+∈ x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈ 3、第一象限角:{ }()036090360 k k k Z αα?? +<<+∈ 第二象限角:{ }()90360180360 k k k Z αα?? +<<+∈ 第三象限角:{ }()180360270360 k k k Z αα?? +<<+∈ 第四象限角:{ }()270360360360 k k k Z αα?? +<<+∈ 4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()036090360 k k k Z αα?? +<<+∈ 锐角:{ }090 αα<< 小于90的角:{}90αα< 任意角的概念 弧长公式 角度制与 弧度制 同角三角函数的基本关系式 诱导 公式 计算与化简 证明恒等式 任意角的 三角函数 三角函数的 图像和性质 已知三角函数值求角 和角公式 倍角公式 差角公式 应用 应用 应用 应用 应用 应用 应用

5、若α为第二象限角,那么 2 α 为第几象限角? ππαππ k k 222 +≤≤+ ππ α ππ k k +≤ ≤ +2 2 4 ,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.01801≈=?π 815730.571801'?=?≈?=π 8、角度与弧度对应表: 角度 0? 30? 45? 60? 90 120? 135? 150? 180? 360? 弧度 6π 4π 3π 2 π 23 π 34 π 56 π π 2π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,22r x y =+. 2、三角函数值对应表: 度 0 30 45 60 90 120 135 150 180 ? 270 360 弧度 6 π 4 π 3 π 2π 23π 34π 56π π 32 π 2π sin α 0 12 22 32 1 32 22 12 1 cos α 1 32 22 12 12 - 2 2- 32- 1- 1 tan α 0 33 1 3 无 3- 1- 33 - 无 r y) (x,α P

一次函数知识点梳理

一次函数知识点梳理 1、正比例函数 一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 2、正比例函数图象和性质 一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小. 3、正比例函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k,其基本步骤是: (1)设出含有待定系数的函数解析式y=kx(k≠0); (2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程; (3)解方程,求出待定系数k; (4)将求得的待定系数的值代回解析式. 4、一次函数 一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx +b即y=kx,所以说正比例函数是一种特殊的一次函数. 5、一次函数的图象 (1)一次函数y=kx+b(k≠0)的图象是经过(0,b)和两点的一条直线,因此一次函数y=kx+b的图象也称为直线y=kx+b. (2)一次函数y=kx+b的图象的画法. 根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b), .即横坐标或纵坐标为0的点. 6、正比例函数与一次函数图象之间的关系 一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移). 7、直线y=kx+b的图象和性质与k、b的关系如下表所示: k>0,b>0 经过第一、二、三象限 k>0,b<0经过第一、三、四象限 k>0,b=0经过第一、三象限k>0时,图象从左到右上升,y随x的增大而增大 k<0 b>0经过第一、二、四象限 k<0,b<0经过第二、三、四象限 K,0,b=0经过第二、四象限 k<0 图象从左到右下降,y随x的增大而减小 8、直线y1=kx+b与y2=kx图象的位置关系: (1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象. (2)当b<0时,将y2=kx图象向x轴下方平移-b个单位,就得到了y1=kx+b的图象.

三角函数知识点归纳

三角函数知识点归纳集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

三角函数 一、任意角、弧度制及任意角的三角函数 1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. 角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

建筑结构功能的三性要求是指性

练习题 一、填空 1.建筑结构功能的“三性”要求是指:()性、()和()。 2.阳台的整体倾覆应为不满足()极限状态。 3、现阶段建筑结构设计方法()设计法. 4、混凝土的基本强度指标是()强度。 5、建筑结构应能承受()和()时出现的各种作用。 6、钢筋按其生产工艺,机械性能与加工条件的不同可分为()、()、()和()。 #7、采用约束混凝土不仅可以提高混凝土的()强度,而且可以提高构件的耐受()的能力。#8、混凝土在荷载长期作用下,随()而增长的变形称为徐变,其影响因素可分为:内在因素;环境因素; ()。 9、结构的极限状态分为两种,它们是()极限状态与()极限状态。在正常使用极限状态计算中,要考虑 荷载作用持续时间的不同区分为两种荷载效应组合:荷载的()效应组合和()效应组合。 10、结构可靠度是指结构在()内,在()下,完成预定()的概率。 11.混凝土的立方体强度可分别用200mm、150mm、100mm?的立方体试块来测定,?用200mm试块比用150mm 试块测得的抗压强度(),而用100mm试块比用150mm试块测得的抗压强度(),这种影响一般称为()。 12.在对有明显屈服点的钢筋进行质量查验时,主要应测定()、()、()和()四项指标。 13.在对没有明显屈服点的钢筋进行质量查验时,主要应测定()、()和()三项指标。 14.热轧钢筋分为四级,随着等级的提高,钢筋的屈服强度(),极限抗拉强度(),延伸率()。 15.对于没有明显屈服点的钢筋,取相应于()为0.2%时的应力作为没有明显屈服点钢筋的假想屈服点。 16.荷载效应S 和抗力R 之间的关系不同,结构构件将处于不同的状态,当()时,结构处于安全状态;当 ()时,结构处于极限状态;当S> R时,结构处于()状态。 17.无明显屈服点的钢筋的假想屈服点指相应于残余塑性应变为()的应力。 18.失效概率P f的大小可以通过可靠指标B来度量,即B越大,P f ()。 19 荷载效应泛指由荷载产生引起的各种()。 20、双筋矩形截面梁中,所采用的受压钢筋的抗压设计强度的取值原则是:当钢筋的抗拉设计强度 f y 小于 或等于()时,取钢筋的抗压设计强度f y/=()。当钢筋的抗拉设计强度大于()时,取钢筋的抗压设计 强度为()。 二、简答题 1、混凝土的立方体抗压强度f cu,k 是如何确定的?与试块尺寸有什么关系? 2、混凝土的割线模量、弹性模量有何区别?#它们与弹性系数有何关系? 3、什么叫混凝土的徐变?产生徐变的原因是什么?混凝土的收缩和徐变有何本质区别? 4、解释条件屈服强度、#屈强比、伸长率? 5 一对称配筋的钢筋混凝土构件,其支座之间的距离固定不变。试问由于混凝土的收缩,混凝土及钢筋中将产生哪些应力? 结构应满足哪些功能要求? 6、何谓结构的极限状态?结构的极限状态有几类?主要内容是什么? 7、何谓结构的可靠性及可靠度? 8、试说明材料强度平均值、标准值、设计值之间的关系。 9、论述在正常使用极限状态计算时,根据不同的设计要求,应采用哪些荷载组合? 10、筋混凝土结构共同工作的机理是什么? 答:钢筋和混凝土这两种力学性质不同的材料之所以能共同工作是因为:混凝土与钢筋之间具有良好的 粘结力,两者能成为共同受力的整体;钢筋与混凝土的温度线膨胀系数大致相同,钢筋 a =1.0 X 10-5 ;混凝

一次函数知识点总结与常见题型-一次函数知识点整理

一次函数知识点总结与常见题型 基本概念 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________. 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与 其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =21-3x (5)y =x 2 -1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个 3、定义域:一般的,一个函数的自变量允许取值的围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值围是x ≥2的是( ) A .y B .y C .y D .y 函数y = x 的取值围是___________. 已知函数22 1 +-=x y ,当11≤<-x 时,y 的取值围是 ( ) A .2325≤<-y B .2523<0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k >0时,图像经过一、三象限;k <0时,?图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴 例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( ) A .0 B . 23 C .23- D .32 - .(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的围是 ( ) A .0k C .1≤k D .1

三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈ x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈ 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈ 第二象限角:{}()90 360180360k k k Z αα??+<<+∈ 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈ 第四象限角: {}()270 360360360k k k Z αα??+<<+∈ 4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 锐角: {}090αα<< 小于90的角:{}90αα<

5、若α为第二象限角,那么 2 α 为第几象限角? ππαππ k k 222 +≤≤+ ππ α ππ k k +≤ ≤ +2 2 4 ,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.01801≈=?π 815730.571801'?=?≈? =π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”) π π π 2 3 5 π 3π

苏教版八年级一次函数知识点整理(精华)

苏教版八年级上学期一次函数知识点整理(最新) 知识点 1 一次函数和正比例函数的概念 若两个变量 x ,y 间的关系式可以表示成 y=kx+b ( k , b 为常数, k ≠0)的形式,则称 y 是 x 的一次函数( x 为自变量),特别地, 当 b=0 时,称 y 是 x 的正比例函数 . 例如: y=2x+3 ,y=-x+2 ,y= 1 2 1 x 等都是一次函数, y= x , 2 y=-x 都是正比例函数 . 【说明】 ( 1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定 . ( 2)一次函数 意义相同,即自变量 y=kx+b (k , b 为常数, b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次” x 的次数为 1,一次项系数 k 必须是不为零的常数, b 可为任意常数 . ( 3)当 b=0, k ≠ 0 时, y=b 仍是一次函数 . ( 4)当 b=0, k=0 时,它不是一次函数 探究交流 有人说:“正比例函数是一次函数,一次函数也是正比例函数,它们没什么区别. . ” 点拨 这种说法不完全正确.正比例函数是一次函数,但一次函数不一定是正比例函数,只有当 次函数才能成为正比例函数. 知识点 2 确定一次函数的关系式 b=0 时,一 根据实际问题中的条件正确地列出一次函数及正比例函数的表达式, 实质是先列出一个方程, 再用含 x 的代 数式表示 y . 知识点 3 函数的图象 把一个函数的自变量 x 与所对应的 y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点, 所 有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线. 知识点 4 一次函数的图象 由于一次函数 y=kx+b . y=kx+b ( k ,b 为常数, k ≠ 0)的图象是一条直线,所以一次函数 y=kx+b 的图象也称为直线 由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一 b 般选取两个特殊点:直线与 y 轴的交点( 0,b ),直线与 x 轴的交点( - , 0). 但也不必一定选取这两个特殊 k 点 . 画正比例函数 y=kx 的图象时,只要描出点( 0, 0),(1, k )即可 . 知识点 ( 1)k 5 一次函数 y=kx+b ( k , b 为常数, k ≠ 0)的性质 的正负决定直线的倾斜方向; ① k >0 时, y 的值随 ② k ﹤O 时, y 的值x 值的增大而增大; x 值的增大而减小. ( 2) |k| 大小决定直线的倾斜程度,即 |k| 越大,直线与 x 轴相交的锐角度数越大(直线陡) , |k| 越小,直 线与 x 轴相交的锐角度数越小(直线缓) ; ( 3)b 的正、负决定直线与 y 轴交点的位置; ①当 ②当 ③当 b > 0 时,直线与 b < 0 时,直线与 y 轴交于正半轴上; y 轴交于负半轴上; b=0 时,直线经过原点,是正比例函数. ( 4)由于 k , b 的符号不同,直线所经过的象限也不同; ①如图 11- 18( l )所示,当 k >0, b > 0 时,直线经过第一、二、 三象限(直线不经过第四象限) ; ②如图 11- 18( 2)所示,当 k >0, b ﹥ O 时,直线经过第一、三、 四象限(直线不经过第二象限) ; ③如图 11- 18( 3)所示,当 k ﹤O , b > 0 时,直线经过第一、二、 四象限(直线不经过第三象限) ;

相关主题