搜档网
当前位置:搜档网 › 年产10万吨甲醇工艺设计

年产10万吨甲醇工艺设计

年产10万吨甲醇工艺设计
年产10万吨甲醇工艺设计

1 总论

1.1 概述

甲醇作为及其重要的有机化工原料,是碳一化学工业的基础产品,在国民经济中占有重要地位。长期以来,甲醇都是被作为农药,医药,染料等行业的工业原料,但随着科技的进步与发展,甲醇将被应用于越来越多的领域。

1)甲醇(英文名;Methanol,Methyl alcohol)又名木醇,木酒精,甲基氢氧化物,是一种最简单的饱和醇。化学分子式为CH3OH。

甲醇的性质;甲醇是一种无色、透明、易燃、易挥发的有毒液体,略有酒精气味。分子量32.04,相对密度0.792(20/4℃),熔点-97.8℃,沸点64.5℃,闪点12.22℃,自燃点463.89℃,蒸气密度 1.11,蒸气压13.33KPa(100mmHg 21.2℃),蒸气与空气混合物爆炸下限6~36.5 % ,能与水、乙醇、乙醚、苯、酮、卤代烃和许多其他有机溶剂相混溶,遇热、明火或氧化剂易燃烧。

甲醇的用途;甲醇用途广泛,是基础的有机化工原料和优质燃料。主要应用于精细化工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫酸二甲脂等多种有机产品,也是农药、医药的重要原料之一。甲醇在深加工后可作为一种新型清洁燃料,也加入汽油掺烧。

甲醇的毒性及常用急救方法;甲醇被人饮用后,就会产生甲醇中毒。甲醇的致命剂量大约是70毫升。甲醇有较强的毒性,对人体的神经系统和血液系统影响最大,它经消化道、呼吸道或皮肤摄入都会产生毒性反应,甲醇蒸气能损害人的呼吸道粘膜和视力。急性中毒症状有:头疼、恶心、胃痛、疲倦、视力模糊以至失明,继而呼吸困难,最终导致呼吸中枢麻痹而死亡。慢性中毒反应为:眩晕、昏睡、头痛、耳鸣、现力减退、消化障碍。甲醇摄入量超过4克就会出现中毒反应,误服一小杯超过10克就能造成双目失明,饮入量大造成死亡。甲醇中毒,通常可以用乙醇解毒法。其原理是,甲醇本身无毒,而代谢产物有毒,因此可以通过抑制代谢的方法来解毒。甲醇和乙醇在人体的代谢都是同一种酶,而这种酶和乙醇更具亲和力。因此,甲醇中毒者,可以通过饮用烈性酒(酒精度通常在60度以上)的方式来缓解甲醇代谢,进而使之排出体外。而甲醇已经代谢产生的甲酸,可以通过服用小苏打(碳酸氢钠)的方式来中和。甲醇也容易引发大火。一旦发生火灾,救护人员必须穿戴防护服和防

毒面具。小火用二氧化碳、干粉、1211、抗溶泡沫、雾状水灭火,以使用大量水灭火效果较好。如果发生泄漏,救护人员首先必须切断所有火源,戴好防毒面具与手套,用水冲洗,对污染地面进行通风处理。

2)我国甲醇工业发展

我国的甲醇工业经过十几年的发展,生产能力得到了很大提高。1991年,我国的生产能力仅为70万吨,截止2004年底,我国甲醇产能已达740万吨,117家生产企业共生产甲醇440.65万吨,2005年甲醇产量达到500万吨,比2004年增长22.2%,进口量99.1万吨,因此下降3.1%。

2.生产技术的发展

1)装置大型化

于上世纪末相比,现在新建甲醇规模超过百万吨的已不再少数。在2004——2008年新建的14套甲醇装置中平均规模为134万t/a,其中卡塔尔二期工程项目高达230万t/a。最小规模的是智利甲醇项目,产能也达84万t/a,一些上世纪末还称得上经济规模的60万t/a装置因失去竞争力而纷纷关闭。

2)二次转化和自转化工艺

合成气发生占甲醇装置总投资的50%—60%,所以许多工程公司将其视为技术改进重点。已经形成的新工艺在主要是Syenetix(前ICI)的先进天然气加热炉转化工艺(AGHR),Lurgi的组合转化工艺(CR)和Tops e的自热转化工艺(ATR) 3)新甲醇反应器的合成技术

大型甲醇生产装置必须具备与其规模相适应的甲醇反应器和反应技术。传统甲醇合成反应器有ICI的冷激型反应器,Lungi的管壳式反应器,Topsdpe的径向流动反应器等,近期出现的新合成甲醇反应器有日本东洋工程的MRF--Z反应器等,而反应技术方面则出现了Lurgi推出的水冷一气冷相结合的新流程。 4)引入膜分离技术的反应技术

通常的甲醇合成工艺中,未反应气体需循环返回反应器,而KPT则提出将未反应气体送往膜分离器,并将气体分为富含氢气的气体,前者作燃料用,后者返回反应器。

5)液相合成工艺

传统甲醇合成采用气相工艺,不足之处是原料单程转化率低,合成气净化

成本高,能耗高。相比之下,液相合成由于使用了比热容高,导热系数大的长链烷烃化合物作反应介质,可使甲醇合成在等温条件下进行。

1.2 甲醇的合成方法

1.常用的合成方法

当今甲醇生产技术主要采用中压法和低压法两种工艺,并且以低压法为主,这两种方法生产的甲醇约占世界甲醇产量的80%以上。

高压法:(19.6-29.4Mpa)是最初生产甲醇的方法,采用锌铬催化剂,反应温度360-400℃,压力19.6-29.4Mpa。高压法由于原料和动力消耗大,反应温度高,生成粗甲醇中有机杂质含量高,而且投资大,其发展长期以来处于停顿状态。

低压法:(5.0-8.0 Mpa)是20世纪60年代后期发展起来的甲醇合成技术,低压法基于高活性的铜基催化剂,其活性明显高于锌铬催化剂,反应温度低(240-270℃)。在较低压力下可获得较高的甲醇收率,且选择性好,减少了副反应,改善了甲醇质量,降低了原料消耗。此外,由于压力低,动力消耗降低很多,工艺设备制造容易。

中压法:(9.8-12.0 Mpa)随着甲醇工业的大型化,如采用低压法势必导致工艺管道和设备较大,因此在低压法的基础上适当提高合成压力,即发展成为中压法。中压法仍采用高活性的铜基催化剂,反应温度与低压法相同,但由于提高了压力,相应的动力消耗略有增加。

目前,甲醇的生产方法还主要有①甲烷直接氧化法:2CH

4+O

2

→2CH

3

OH.②由

一氧化碳和氢气合成甲醇,③液化石油气氧化法

2.本设计所采用的合成方法

比较以上三者的优缺点,以投资成本,生产成本,产品收率为依据,选择中压法为生产甲醇的工艺,用CO和H

2

在加热压力下,在催化剂作用下合成甲醇,

其主要反应式为:CO+ H

2→CH

3

OH

1.3 甲醇的合成路线

1.常用的合成工艺

虽然开发了高活性的铜基催化剂,合成甲醇从高压法转向低压法,完成了合成甲醇技术的一次重大飞跃,但仍存在许多问题:反应器结构复杂;单程转化率

低,气体压缩和循环的耗能大;反应温度不易控制,反应器热稳定性差。所有这些问题向人们揭示,在合成甲醇技术方面仍有很大的潜力,更新更高的技术等待我们去开发。下面介绍20世纪80年代以来所取得的新成果。

(1) 气液固三项合成甲醇工艺首先由美国化学系统公司提出,采用三相流化床,液相是惰性介质,催化剂是ICI的Cu-Zn改进型催化剂。对液相介质的要求:在甲醇合成条件下有很好的热稳定性和化学稳定性。既是催化剂的硫化介质,又是反应热吸收介质,甲醇在液相介质中的溶解度越小越好,产物甲醇以气相的形式离开反应器。这类液相介质有如三甲苯,液体石蜡和正十六烷等。后来Berty等人提出了相反的观点,采用的液相介质除了热稳定性及化学稳定性外,要求甲醇在其溶液中的溶解度越大越好,产物甲醇不是以气相形式离开反应器,而是以液相形式离开反应器,在反应器外进行分离。经试验发现四甘醇二甲醚是极理想的液相介质。CO和H2在该液相中的气液平衡常数很大,采用Cu-Zn-Al 催化剂,其单程转化率大于相同条件下气相的平衡转化率。

气液固三相工艺的优点是:反应器结构简单,投资少;由于介质的存在改善了反应器的传热性能,温度易于控制,提高了反应器的热稳定性;催化剂的颗粒小,内扩散影响易于消除;合成甲醇的单程转化率高,可达15%-20%,循环比大为减小;能量回收利用率高;催化剂磨损少。缺点是三相反应器压降较大,液相内的扩散系数比气相小的多。

(2) 液相法合成甲醇工艺液相合成甲醇工艺的特点是采用活性更高的过度金属络合催化剂。催化剂均匀分布在液相介质中,不存在催化剂表面不均一性和内扩散影响问题,反应温度低,一般不超过200℃,20世纪80年代中期,美国Brookhaven国家实验室开发了活性很高的复合型催化剂,其结构为

,其中M代表过渡金属Ni,Pd或Co,R为低碳烷基,当M为Ni,NaOH-RONa-M(OAc)

2

R为叔戊烷基时催化剂性能最好,液相介质为四氢呋喃,反应温度为80-120℃,压力为2MPa左右,合成气单程转化率高于80%,甲醇选择性高达96%。当该催化剂与第Ⅵ族金属的羰基络合物混合使用时,能得到更好的效果,他能激活CO,并有较好的耐硫性,当合成气中还有1670×10-6的H2S时,其甲醇产率仍达33%。

Mahajan等人研制了由过渡金属络合物与醇盐组成的符合催化剂,如四羰基镍和甲醇钾,以四氢呋喃为液相介质,反应温度为125℃,CO转化率大于90%,

合成塔水

甲醇

分离

选择性达99%。

目前液相合成甲醇研究仍处在实验室阶段,尚未工业化,但它是一种很有开发前景的合成技术。该法的缺点是由于反应温度低,反应热不易回收利用;CO

2

和H

2O容易使复合催化剂中毒,因此对合成气体的要求很苛刻,不能还有CO

2

H

2

O,还需进一步研究。

(3) 新型GSSTFR和RSIPR反应器系统该系统采用反应,吸附和产物交换交替进行的一种新型反应装置。GSSTFR是指气-液-固滴流流动反应系统,CO 和H2在催化剂的作用下,在此系统内进行反应合成甲醇,该甲醇马上被固态粉状吸附剂所吸附,并滴流带出反应系统。RSIPR是级间产品脱出反应系统,当以吸附气态甲醇的粉状吸附剂流入该系统时,与该系统内的液相四甘醇二甲醚进行交换,气态的甲醇被液相所吸附,然后再将四甘醇二甲醚中的甲醇分离出来。这样合成甲醇反应不断向右进行,CO的单程转化率可达100%,气相反应物不循环。这项新工艺仍处在研究之中,尚未投入工业生产,还有许多技术问题需要解决和完善。

2.本设计的合成工艺

经过净化的原料气,经预热加压,于5 Mpa、220 ℃下,从上到下进入Lurgi 反应器,在铜基催化剂的作用下发生反应,出口温度为250 ℃左右,甲醇7%左右,因此,原料气必须循环,则合成工序配置原则为图2-2。

甲醇的合成是可逆放热反应,为使反应达到较高的转化率,应迅速移走反应热,本设计采用Lurgi管壳式反应器,管程走反应气,壳程走4MPa的沸腾水

粗甲醇驰放气

图1-1合成合序配置原则

甲醇合成的工艺流程(图①)

这个流程是德国Lurgi公司开发的甲醇合成工艺,流程采用管壳式反应器,催化剂装在管内,反应热由管间沸腾水放走,并副产高压蒸汽,甲醇合成原料在离心式透平压缩机内加压到5.2 MPa (以1:5的比例混合) 循环,混合气体在进反应器前先与反应后气体换热,升温到220 ℃左右,然后进入管壳式反应器反应,反应热传给壳程中的水,产生的蒸汽进入汽包,出塔气温度约为250 ℃,含甲醇7%左右,经过换热冷却到40 ℃,冷凝的粗甲醇经分离器分离。分离粗甲醇后的气体适当放空,控制系统中的惰性气体含量。这部分空气作为燃料,大部分气体进入透平压缩机加压返回合成塔,合成塔副产的蒸汽及外部补充的高压蒸汽一起进入过热器加热到50 ℃,带动透平压缩机,透平后的低压蒸汽作为甲醇精馏工段所需热源。

1.4 合成甲醇的目的和意义

甲醇是极为重要的有机化工原料,在化工、医药、轻工、纺织及运输等行

业都有广泛的应用,其衍生物产品发展前景广阔。目前甲醇的深加工产品已达

120多种,我国以甲醇为原料的一次加工产品已有近30种。在化工生产中,甲醇可用于制造甲醛、醋酸、氯甲烷、甲胺、甲基叔丁基醚(MTBE)、聚乙烯醇(PVA)、硫酸二甲酯、对苯二甲酸二甲酯(DMT)、二甲醚、丙烯酸甲酯、甲基丙烯酸甲醇等。

以甲醇为中间体的煤基化学品深加工产业:从甲醇出发生产煤基化学品是未来C1化工发展的重要方向。比如神华集团发展以甲醇为中间体的煤基化学品深加工,利用先进成熟技术,发展“甲醇-醋酸及其衍生物”;利用国外开发成功的MTO或MTP先进技术,发展“甲醇-烯烃及衍生物”的2大系列。

作为替代燃料:近几年,汽车工业在我国获得了飞速发展,随之带来能源供应问题。石油作为及其重要的能源储量是有限的,而甲醇燃料以其安全、廉价、燃烧充分,利用率高、环保的众多优点,替代汽油已经成为车用燃料的发展方向之一。我国政府已充分认识到发展车用替代燃料的重要性,并开展了这方面的工作。

随着C1化工的发展,由甲醇为原料合成乙二醇、乙醛和乙醇等工艺正日益受到重视。甲醇作为重要原料在敌百虫、甲基对硫磷和多菌灵等农药生产中,在医药、染料、塑料和合成纤维等工业中都有着重要的地位。甲醇还可经生物发酵生成甲醇蛋白,用作饲料添加剂,有着广阔的应用前景。

1.5 本设计的主要方法及原理

造气工段:使用二步法造气

CH

4+H

2

O(气)→CO+3H

2

-205.85 kJ/mol

CH

4+O

2

→CO

2

+2H

2

+109.45 kJ/mol

CH

4+

2

1

O

2

→CO+2H

2

+35.6 kJ/mol

CH

4+2O

2

→CO

2

+2H

2

O+802.3 kJ/mol

合成工段

5MPa下铜基催化剂作用下发生一系列反应

主反应: CO+2H

2→CH

3

OH+102.37 kJ/kmol

副反应: 2CO+4H

2→(CH

3

O)2+H

2

O+200.3 kJ/kmol

CO+3H

2→CH

4

+ H

2

O+115.69 kJ/kmol

4CO+8H

2→C

4

H

9

OH+3H

2

O+49.62 kJ/kmol------------(A)

CO+H

2→CO +H

2

O-42.92 kJ/kmol

除(A)外,副反应的发生,都增大了CO的消耗量,降低了产率,故应尽量减少副反应。

反应热力学

一氧化碳加氢合成甲醇的反应式为

CO+2H

2?CH3OH(g)

这是一个可逆放热反应,热效应()mol

KJ

K

H/

8.

90

298-

=

?。

当合成气中有CO

2

时,也可合成甲醇。

CO

2 + 3H

2 ? CH3OH(g) + H2O

这也是一个可逆放热反应,热效应()mol

KJ

K

H/

6.

58

298-

=

?

合成法反应机理

本反应采用铜基催化剂,5 MPa,250 ℃左右反应,清华大学高森泉,朱起明等认为其机理为吸附理论,反应模式为:

H

2

+2˙→2H˙ -----------------------------①

CO+H˙→HCO˙-------------------------②

HCO˙+H˙→H

2

CO˙˙

H 2CO˙˙+2H˙→CH

3

OH+3˙

CH

3OH˙→ CH

3

OH+˙

反应为①,②控制。即吸附控制。

2生产工艺及主要设备计算

工艺计算作为化工工艺设计,工艺管道,设备的选择及生产管理,工艺条件选择的主要依据,对平衡原料,产品质量,选择最佳工艺条件,确定操作控制指标,合理利用生产的废料,废气,废热都有重要作用。

2.1 甲醇生产的物料平衡计算

2.1.1 合成塔物料平衡计算

已知:年产100000吨精甲醇,每年以300个工作日计。

精甲醇中甲醇含量(wt):99.95%

粗甲醇组成(wt):[Lurgi低压合成工艺]

甲醇:93.89%

轻组分[以二甲醚(CH3)2O计]:0.188%

重组分[以异丁醇C4H9OH计]:0.026%

水:5.896%

所以:时产精甲醇:1000001000

13888.89

30024

?

=

?

Kg/h

时产粗甲醇:13888.8999.95%

14785.33

93.89%

?

=Kg/h

根据粗甲醇组分,算得各组分的生成量为:

甲醇(32):13888.8Kg/h 434.03kmol/h 9722.22 Nm3/h

二甲醚(46):27.796 Kg/h 0.604 kmol/h 13.536 Nm3/h

异丁醇(74):3.844 Kg/h 0.052 kmol/h 1.164 Nm3/h

水(18):871.74 Kg/h 48.43 kmol/h 1048.84 Nm3/h

合成甲醇的化学反应为:

主反应:CO+2H2→CH3OH+102.37 KJ/mol……①副反应:2CO+4H2→(CH3)2O+H2O+200.39 KJ/mol ……②CO+3H2→CH4+H2O+115.69 KJ/mol ……③

4CO+8H 2→C 4H 9OH+3H 2O+49.62 KJ/mol …… ④ CO 2+H 2→CO+ H 2O-42.92 KJ/mol …… ⑤

生产中,测得每生产1吨粗甲醇生成甲烷7.56 Nm 3,即0.34 kmol ,故CH 4每小时生成量为:7.56?14.78533=111.777 Nm 3,即4.987 kmol/h ,79.794 Kg/h 。

忽略原料气带入份,根据②、③、④得反应⑤生成的水的量为:48.43-0.604-0.0520?3-4.987=42.683 kmol/h ,即在CO 逆变换中生成的H 2O 为42.683 kmol/h ,即956.13 Nm 3/h 。

5.06 MPa ,40℃时各组分在甲醇中的溶解度列表于表2-1

表2-1 5.06Mpa ,40℃时气体在甲醇中的溶解度

组分

H 2 CO CO 2 N 2 Ar CH 4 溶解度

Nm 3/t 甲醇 0 0.682 3.416 0.341 0.358 0.682 Nm 3/h

1.008

5.501

0.504

0.529

1.008

《甲醇生产技术及进展》华东工学院出版社.1990

据测定:35 ℃时液态甲醇中释放CO 、CO 2、H 2等混合气中每立方米含37.14 g 甲醇,假定溶解气全部释放,则甲醇扩散损失为:

(1.008+5.501+0.504+0.529+1.008)?1000

14

.37= 0.318 kg/h 即0.0099kmol/h ,0.223 Nm 3/h 。

根据以上计算,则粗甲醇生产消耗量及生产量及组成列表2-2。

表2-2 甲醇生产消耗和生成物量及组成

消耗 方式 单 位

消耗物料量 生成物料量

合计

CO

H 2

CO 2

N 2

CH 4

CH 3OH C 4H 9OH (CH 3)2O

H 2O

消耗

生成

①式 kmol 434.03 868.06 434.03 Nm 3 9722.22 19444.44 9722.22 29166.66 9722.22 ②

kmol

1.208

2.416

0.604

0.604

式Nm327.06 54.12 13.536 13.536 81.18 27.07

③式kmol 4.987 9.974 4.987 4.987

Nm3111.777 223.554 111.777 111.777 335.331 223.554

④式kmol 0.208 0.416 0.0520.156

Nm3 4.659 9.318 1.164 3.494 13.977 4.658

⑤式kmol <42.683> 42.683 42.683 42.683

Nm3<956.13> 956.13 956.13 956.13 956.13 956.13

Nm3 1.008 0 5.051 0.504 1.008 7.571

Nm30.211 0 0.422 <0.211> 0.633 0.211

Nm318664.45 40194.86 961.603 0.504 110.769 19444.39 2.322 27.06 1101.933 59821.42 20686.502

%(v) 31.2 67.191 1.607 0.0008

kg 27751.34 7.70 55.56 873.70 28688.3

%(wt) 93.89 0.026 0.188 5.896 100

设新鲜气量为G

新鲜气

,驰放气为新鲜气的9%[1]。

表2-3驰放气组成

组分H2CO CO2CH4N2Ar CH3OH H2O Mol% 79.31 6.29 3.50 4.79 3.19 2.30 0.61 0.01

《甲醇生产技术及进展》华东工学院出版社.1990

G新鲜气=G消耗气+G驰放气=G消耗气+0.09 G新鲜气=59821.42+0.09 G新鲜气

所以:G

新鲜气

=65737.82 Nm3/h

新鲜气组成见表2-4

表2-4甲醇合成新鲜气组成

组分H2CO CO2N2总计

Nm344499.25 19168.45 2047.08 3.29 65737.82

组成

mol%

67.692 29.159 3.144 0.005 100

测得:甲醇合成塔出塔气中含甲醇7.12%。根椐表2-2、表2-4,设出塔气量为G 出塔

。又知醇后气中含醇0.61%。

所以:

出塔醇后

G

G

% 61

.0

18

.

19444

=7.12%

G醇后=G新鲜-(G醇+G副+G扩)+G CH4= 65737.82-59821.42+112.785

=6029.185 Nm3/h

所以:G

出塔

=272460.95Nm3/h

G循环气= G出塔-G醇后-G生成+G CH4-G溶解=272460.95-6029.185-20686.502+112.785-7.571 =245850.477Nm3/h

甲醇生产循环气量及组成见表2-5

表2-5 甲醇生产循环气量及组成

组分CO CO2H2N2CH4Ar CH3OH H2O 合计

流量:

Nm3/h

15463.99 8604.767 194984.01 7842.63 11776.24 5654.561 1499.69 24.585 245850.477 组

成%(V)

6.29 3.50 79.31 3.19 4.79 2.30 0.61 0.01 100

G入塔= G循环气+G新鲜气=245850.477+65737.82

=311588.297 Nm3/h

由表2-4及表2-5得到表2-6。

表2-6 甲醇生产入塔气流量及组成单位:Nm3/h

组分CO CO2H2N2CH4Ar CH3OH H2O 合计

流量:

Nm3/h

34894.77 10668.78 239349.67 7808.403 11721.95 5627.285 1492.51 24.927 311588.297 组成

(V)%

11.199 3.424 76.816 2.506 3.762 1.806 0.479 0.008 100

又由G

出塔= G

循环气

-G

消耗

+G

生成

据表2-2、2-6、得表2-7。

表2-7

CO CO2H2N2CH4A r CH3OH H2O C4H9OH(CH3)2O合计入

34894.77 10668.78 239349.67 7808.403 11721.95 5627.285 1492.51 24.927 311588.297 消

18664.45 961.603 40194.86 0.504 1.008 59821.42 生

111.777 19444.39 1101.933 2.322 27.06 20686.502

17145.49 8751.203 198114.48 7805.789 11941.63 5626.162 20853.58 2185.076 2.322 27.06 272453.379 组

(V)

6.293 3.212 72.715 2.865 4.383 2.065

7.654 0.802 0.001 0.010 100

甲醇分离器出口气体和液体产品的流量、组成见表2-8。

表2-8甲醇分离器出口气体组成、流量:单位:Nm3/h

组分CO CO2 H2 N2 CH4 Ar

CH3O

H C4H9

OH

(CH3)

2O

H2O 合计

损失 1.008 5.051 0 0.504 1.008 0.529 0.211 8.311

出气

17144.

482 8746.1

52

198114.47

7805.2

85

11940.6

22

5625.6

33

20853.

369

270230.

013

组成

(V)%

6.344 3.237 73.313 2.888 4.419 2.082

7.717 100

出液

19444.

39 2.322 27.06

1101.9

33

20575.7

06

组成

mol%

89.737 0.011 0.125 10.127 100 重量kg

27751.

34

7.70 55.56 873.70 28688.3 组成

(wt)%

93.805 0.026 0.188 5.981 100

甲醇驰放气流量及组成见表2-9。

表2-9 甲醇驰放气流量及组成

组成CO CO2H2CH4Ar CH3OH H2O 合计

流量:

Nm3/h

190.117 105.789 397.166 144.779 96.419 18.437 微2925.707 组成:

(V)%

6.49 3.61 81.92 4.95 3.30 0.63 100 粗甲醇贮罐气流量及组成风表2-10。

表2-10 贮罐气组成、流量

组成CO CO2H2CH4Ar CH3OH N2合计流量:

Nm3/h

1.008 5.051 0 1.008 0.529 0.211 0.504 8.311 组成:

(V)%

12.129 60.774 0 12.129 6.365 2.539 6.064 100 由表2-2到表2-10可得表2-11。

表2-11甲醇生产物料平衡汇总表

组分

新鲜气循环气入塔气出塔气醇后气

流量组成流量组成流量组成流量组成流量组成Nm3(v)% Nm3(v)% Nm3(v)% Nm3(v)% Nm3(v)%

CO 19168.49 29.159 15463.995 6.29 34894.77 11.199 17145.49 6.293 881.28 28.108 CO22047.08 3.144 8604.767 3.50 10668.78 3.424 8751.203 3.212 95.107 3.033 H244499.25 67.692 194984.013 79.31 239349.67 76.816 198114.475 72.715 2045.998 65.257 N2 3.29 0.005 7842.63 3.19 7808.403 2.506 7805.789 2.865 1.086 0.035 Ar 5654.561 2.30 5627.285 1.806 5626.162 2.065

CH411776.238 4.79 11721.952 3.762 11941.63 4.383 112.785 3.597 CH3OH 1499.688 0.61 1492.508 0.479 20853.58 7.654

C4H9OH 2.322 0.001

(CH3)2O 27.06 0.01

甲醇合成塔 分离器 贮 罐

冷 凝

H 2O 24.585 0.01 24.927 0.008 2185.076 0.802 微量 / 合计

65718.11

100

245850.474

100

311588.295

100

272452.787

100

3135.308

100

根椐计算结果,可画出甲醇生产物流图,如:图2-1 甲醇生产物流图

1.新鲜气 3.循环气

2.入塔气 6.驰放气

5.醇后气

7.粗甲醇

2.1.2 粗甲醇精馏的物料平衡计算

1. 预塔的物料平衡 (1).进料

A.粗甲醇:28688.3kg/h 。根据以上计算列表2-12

表2-12

组分 甲醇 二甲醚 异丁醇 水 合计 流量:kg/h 27751.34 55.56 7.70 873.63 28688.3 组成:(wt)% 93.805

0.026

0.188

5.981

100

B.碱液:据资料,碱液浓度为8%时,每吨粗甲醇消耗0.1 kg 的NaOH 。则消耗纯NaOH :0.1?28688.3≈2.869 kg/h 换成8%为:%8869.2=35.863 kg/h

C.软水:据资料记载。软水加入量为精甲醇的20%计,则需补加软水:

27751.34?20%-35.863?(1-8%)=5515.122 kg/h

据以上计算列表2-13。

表2-13 预塔进料及组成

物料量:kg/h CH3OH H2O NaOH (CH3)2O C4H9OH 合计粗甲醇27751.34 873.63 55.56 7.70 28688.3 碱液32.994 2.869 35.863 软水5515.122 5515.122 合计27751.34 6421.746 2.869 55.56 7.70 34239.215

(2).出料

A.塔底。甲醇:27751.34 kg/h

B.塔底水。粗甲醇含水:873.63kg/h

碱液带水:32.994 kg/h

补加软水:5515.122 kg/h

合计:6421.746kg/h

C.塔底异丁醇及高沸物:7.70 kg/h

D.塔顶二甲醚及低沸物:55.56 kg/h

由以上计算列表2-14。

表2-14预塔出料流量及组成

物料量:

CH3OH H2O NaOH (CH3)2O C4H9OH 合计kg/h

塔顶55.56 55.56 塔底27751.34 6421.746 2.869 7.70 34183.655 合计27751.34 6421.746 2.869 55.56 7.70 34239.215

2 主塔的物料平衡计算

(1).进料

预精馏塔加

加压塔。预后粗甲醇:34183.655 kg/h

常压塔。34183.655-27751.34?2/3=15682.76 kg/h

(2).出料

加压塔和常压塔的采出量之比为2:1,常压塔釜液含甲醇1%。

A.加压塔。塔顶:27751.34?2/3=18500.89kg/h

塔釜:15682.76kg/h

B.常压塔。塔顶:27751.34?1/3?99%=9157.94 kg/h

塔釜:甲醇水NaOH 高沸物

kg/h:92.5 6421.746 2.869 7.70

总出料:由以上计算。得表2-15甲醇精馏塔物料平衡汇总表:单位:kg/h 18500.89+6421.746+2.869+7.70+92.5+9157.94=34183.645

得表2-15 甲醇精馏塔物料平衡汇总

物料物料加压塔顶出料常压塔顶出料常压塔釜出料合计

甲醇27751.34 18500.89 9157.94 92.5 27751.34 NaOH 2.869 2.869 2.869 水6421.746 6421.746 6421.746 高沸物7.70 7.70 7.70

合计34175.955 18500.89 9157.94 6524.815 34175.955

根椐计算结果可画出粗甲精馏物流图,见图2-2。

4.预塔顶出料 6.加压塔顶出料7.常压塔顶出料

1.粗甲醇

2.软水

3.碱液

5.预塔底出料8.常压塔釜出料

图2-2 粗甲醇精馏物流图

2.2 甲醇生产的能量平衡计算

2.2.1 合成塔能量计算

已知:合成塔入塔气为220 ℃,出塔气为250 ℃,热损失以5%计,壳层走4MPa的沸水。

查《化工工艺设计手册》得,4 MPa下水的气化潜热为409.7 kmol/kg,即1715.00 kJ/kg,密度799.0 kg/m3,水蒸气密度为19.18 kg/m3,温度为250 ℃。入塔气热容见4-16。

表2-16 5MPa,220℃下入塔气除(CH3OH)热容

组分CO CO2H2N2Ar CH4合计

流量:

Nm3

34894.77 10668.78 239349.67 7808.403 5627.285 11721.95 310070.86 比热:

kJ/kmol℃

30.15 45.95 29.34 30.35 21.41 47.05 /

热量:

kJ/℃

23580.65 10987.99 157396.59 5312.06 2700.69 12360.21 212338.19 查得220℃时甲醇的焓值为42248.46 kJ/kmol,流量为749.391 Nm3。

所以:Q

入=42248.46?

4.

22

508

.

1492

+212338.19?220=2815007.35+46714401.8 =49529409.15 kJ

出塔气热容除(CH3OH)见表4-17。

表2-17 5MPa,220℃下出塔气除(CH3OH)热容

组分CO CO2H2N2Ar CH4C4H9OH (CH3)2O H2O 合计

流量:17145.49 8751.203 198114.48 7805.789 5626.162 11941.63 2.322 27.06 2185.08 251599.207

Nm 3 比热:

kJ/kmol ℃ 30.13

46.58

29.39

30.41

21.36

48.39

170.97

95.85

83.49

/

热量:

kJ/℃

11579.35 9138.40

130521.96 5321.88

2694.39

12951.53 8.90

59.71

4088.59 176365.71

查得250℃时甲醇的焓值为46883.2 kJ/kmol ,流量为10471.692 Nm 3。 所以:Q 出=46883.2?

4

.22692

.10471+176365.71?250=21917251.36+44091421.5

=66008672.86 kJ 由反应式得:Q 反应=[

4.22391

.19444?102.37+4.2206.27?200.39+4

.22777.111?115.69

+

4.22322.2?49.62+4

.2213

.956?(-42.92)] ?1000 =(88862.60+242.08+577.30+5.14-2130.80)?1000 =87556320 kJ

Q 热损失=(Q 入+Q 反应) ?5%=(49529409.15+87556320) ?5%

=6854286.46 kJ

所以:壳程热水带走热量

Q 传 = Q 入 + Q 反应 - Q 出 - Q 热

=49529409.15+87556320-66008672.86-6854286.46

=64222769.83 kJ 又:Q 传=G 热水r 热水

所以:G 热水=

99.171483

.64222769=37447.89 kg/h

即时产蒸气:18

.1989

.37447=1952.45m 3

2.2.2 常压精馏塔能量衡算

X f =

02

.18)746.6421

869.2(32

)

5.9294.9157(32

)

5.9294.9157(++++=0.448

同煤集团年产60万吨甲醇项目污水处理技术方案

同煤集团年产60万吨甲醇项目 污水处理工程 设 计 方 案 山西省聚力环保集团有限公司 2011年08月16日

甲醇废水处理工程技术方案 第一章、概述 甲醇是一种重要的化工产品。在甲醇生产过程中,由精馏塔底排出的约为甲醇产量20%(甚至更高比例)的蒸馏残夜,通常称为甲醇废水。甲醇废水具有强烈的刺激性气味;CODcr高达数万mg/L,其主要成分为甲醇,乙醇,高级醇及醛类;还含有一些长链化合物,当废水冷却时以有色蜡状物析出。 甲醇废水净化处理工程项目,是一项重要的环保工程。为保护环境,防止甲醇废水污染,保护水资源,要求对甲醇废水进行全面治理,要求污水处理后达到规定的排放标准排放。现新建甲醇废水处理系统1套。 第二章、设计依据、规范、范围及原则 2.1设计依据及规范 ●建设单位提供的污水水质、水量和要求等基础资 料; ●《地表水环境质量标准》(GB3838-2002)。 ●室外排水设计规范(GB50014-2006)。 ●《城市污水处理厂附属建筑和附属设备设计标准》 CJJ31—89 ●《城市污水处理工程项目建设标准》 ●《城市污水处理厂污水污泥排放标准》CJ3025—93 ●《民用建筑电气设计规范》GB/T16—92 ●《工业企业设计卫生标准》TJ36—79 ●《工业采暖、通风及空气调节设计规范》TJ19—75 ●《给水排水工程结构设计规范》GBJ69—84 ●《工业与民用10千伏及以下变电站设计规范》

GBJ53—83 ●《低压配电装置及线路设计规范》GBJ54—83 ●其它相关设计与施工规范 ●国内外处理同类型污水的技术参考资料。 2.2设计范围 (1)甲醇废水处理工程建设的必要性和可行性。 (2)甲醇废水处理工程建设规模与主要设计指标。 (3)甲醇废水处理站建设地址。 (4)选择污水处理站的污水处理工艺技术,确定主要建、构筑物的尺寸及主要设备(含电控设备)设计选型。 (5)污水处理站的总平面布置及工艺流程(包括高程)。 (6)污水处理工程建设的投资和技术经济分析。 (7)建设工期和工程进度安排。 (8)主要技术指标和效益分析。 ◆污水处理与利用 调查研究污水的水质水量变化情况,选择技术成熟、经济合理、运行灵活、管理方便、处理效果稳定的方案。 ◆污泥处理与处置 污水处理过程中产生的污泥,应进行稳定处理,防止对环境造成二次污染,并妥善考虑污泥的最终处置。 2.3设计原则 (1)严格遵守我国对环境保护、工业污水处理制定的法律、法规、标准和规范。 (2)服从总体规划要求,合理选择厂址,合理布置排水管网系统。 (3)根据企业的实际情况,因地制宜,按照占地少、投资省、运行费用低、处理效果好、工艺技术先进的原则选择污水处理技术。 (4)注重环境保护,尽可能减少污水处理站对周围环境的影响。 (5)要求污水处理站布局和占地面积合理,与周边环境协调一致。 (6)要求实施方案中各废水处理单元管理简便,安全实用,生产环境和劳动条件良好,处理场地清洁卫生,无二次污染。 (7)要求污水处理系统投资经济合理,运行费用低。

年产15万吨甲醇浮阀精馏塔设计解析

年产15万吨精甲醇浮阀精馏塔设计 化学工程专业2009级刘卫 摘要:本设计对年产15万吨精甲醇的浮阀精馏塔进行了设计。用试差法通过Excel快捷地计算出特定组成的甲醇—水溶液的泡点温度,相对挥发度;通过计算出最小回流比确定了适宜的操作回流比为1.74;通过逐板计算法计算出理论塔板数为23块,并进一步确定精馏塔的实际塔板数为50块;分别对此精馏塔的塔体工艺尺寸进行了设计,并对设计之后的浮阀塔板进行了流体力学的验算;绘制出塔板负荷性能图,从而得出精馏段的操作弹性为2.39,提馏段的操作弹性为2.35;确定了塔顶冷凝器冷却水的用量以及塔釜再沸器所需要的热量,同时对输送各物流的管径进行了设计。 关键词:浮阀塔;板式精馏塔;精馏塔设计;甲醇 Abstract: The design of float valve tower with the annual output of 150,000 tons of methanol by distillation . Through trial and error method using Excel to quickly calculate the specific composition of methanol - water solution of the bubble point temperature, relative volatility; by calculating the minimum reflux ratio to determine the optimum operating reflux ratio is 1.74;-by-plate approach to calculate the theoretical tower plate number was 23, and further determine the actual number of trays for the distillation column 50; this distillation of the tower, respectively, size of the design process, and after the valve tray design for fluid dynamics checking; draw tray performance

煤制甲醇项目(最终版)

雄伟煤化有限公司 60万t/a煤制甲醇项目建议书 项目人员:曾雄伟毛龙龙方建李永朋 时间:2015年10月

第一部分项目背景 甲醇是结构最为简单的饱和一元醇,又称“木醇”或“木精”,是仅次于烯烃和芳烃的重要基础有机化工原料,用途极为广泛。主要用于制造甲醛、二甲醚、醋酸、甲基叔丁基醚( MTBE) 、甲醇汽油、甲醇烯烃等方面。近年来,国内外在甲醇芳烃方面进行了应用。 我国甲醇工业始于20 世纪50 年代,随着国内经济发展的不断增长,甲醇下游产品需求的拉动,甲醇行业发展迅猛。从2004 年到2012 年甲醇产能和产量大幅增长,2012 年产能首次超过5 000 万t,产量也达到2 640 万t。2013 年我国甲醇产能已达5650 万t,产量约2 878 万t,已经成为世界第一大甲醇生产国,见图1。 从甲醇产能的区域分布来看,甲醇的产能主要集中在西北、山东、华北等地区。从2013 年各省市产量分布情况来看,排名前五的有内蒙、山东、陕西、河南及山西,内蒙古精甲醇的产量达563 万t[2],约占全国总产量20%,其次是山东、陕西、河南和山西,这五省合计约占总产量的63%。内蒙古、山西、陕西等地凭借其资源优势,成为甲醇生

产企业最为青睐的地区,向资源地集中成为我国甲醇产能布局的主导趋势。受资源因素限制,我国的甲醇生产多以煤为原料,并有焦炉煤气和天然气工艺。2013 年我国甲醇产能中,煤制甲醇产能3 610 万t,占比64%,天然气制甲醇产能1 080 万t,占比19%,焦炉煤气制甲醇产能960 万t,占比17%[3]。受国家治理大气污染、加快淘汰钢铁等“两高”行业落后产能以及经济增速放缓等因素的影响,对焦炭的需求将会减少,从而使焦炉煤气制甲醇装置面临原料短缺的局面,因此焦炉煤制甲醇产能会降低。天然气制甲醇装置,则受到天然气供应不足和气价攀升双重制约,也将大幅限产。据金银岛统计数据显示,截至2013 年12月中旬,国内气头装置开工负荷在三成左右,低于国内平均开工水平,甘肃及新疆气头企业普遍停车。2013 年全国甲醇生产企业有300 余家,其中产能在100 万t 以上的企业占总产能的58.9%,形成了神华、中海油、兖矿、远兴能源、华谊、久泰、河南能化、大唐、晋煤、新奥、新疆广汇等18 家百万吨级超大型甲醇生产企业,见表1。这些百万吨甲醇企业大致可以分为三类,第一类是以神华集团、久泰化工为代表的大型化、规模化、基地化的煤制甲醇企业,靠近煤炭资源富集区域,其综合竞争力在当前竞争环境下最强,也符合国家产业政策方向; 第二类是以晋煤集团、河南能源化工集团为代表的,在国内多地分布,有多个较小规模的煤制甲醇装置构成的甲醇企业,在煤价下降的情况下,其竞争力有所提升; 第三类是以“三桶油”为代表的天然气路线企业,在天然气价格高企的情况下,这类企业的产量将受到抑制。

年产10万吨甲醇合成工艺设计缩写稿

题目:年产10万吨甲醇合成工艺设计 摘要:本设计重点讨论了合成车间的主要设备的计算及选型,首先初步介绍了合成机理,然后重点围绕合成进行物料衡算和热量衡算,主要包括合成塔的外形设计,水冷凝器的选型及计算,脱硫塔的选型及计算,转化炉的选型及计算精馏塔的选型及计算等,最后进行了总结与讨论。 关键词:合成,转化,精馏,甲醇 The Syntheses Technological Of Y early Produces 40,000 Tons Methylalcohol ABSTRACT:This design mainly discussed with the key equipment computation and Choose of systhesis workshop ,first initially introduced synthesizme chanism, then key revolved sythesize to carry on material balance and thermal graduated acalculated, mainly included synthetic tower and contour design, water condenser shaping and computation, desulfurizer shaping and computation ,transformed stove shaping and computation, rectifying tower shaping and computation and so on, finally has carried on summary and discussion. KEYWORDS:Synthesis,Transformation,Fine distill,Methyl alcohol 1概述 本设计为年产10万吨甲醇合成工艺的计算,纯甲醇为无色透明略带乙醇气味的易挥发液体,沸点65℃,熔点-97.8℃,和水相对密度0.7915(20/4℃),甲醇能和水以任意比相溶,但不形成共沸物,能和多数常用的有机溶剂(乙醇、乙醚、丙酮、苯等)混溶,并形成恒沸点混合物。甲醇是一种重要的化工原料,在世界范围化工产品中,甲醇产量仅次于乙烯、丙烯和苯,居第四位,广泛应用于医药、农药、染料、涂料、塑料、合成纤维、合成橡胶等生产,还用于溶剂和工业及民用燃料等。主要广泛应用于精细化工,塑料,医药,林产品加工等领域的基本有机化工原料,可开发出100多种高附加值化工产品。甲醇有较强的毒性,对人体的神经系统和血液系统影响最大,它经消化道、呼吸道或皮肤摄入都会产生毒性反应,甲醇蒸汽能损害人的呼吸道粘膜和视力。随着世界化学工业的发展,特别是中国及亚太地区经济持续高速发展,甲醇的消费市场也在迅速扩大,近年来我国大力提倡发展甲醇产品作为石油的替代燃料,以及甲醇燃料电池的研制成功,为甲醇开拓了新的广阔市场,提供了大力发展甲醇产品的良好机遇。生产甲醇的原料可以是天然气,煤炭,焦炭渣油,石脑油,乙炔尾气等。从20世纪50年代起,天然气逐渐成为合成甲醇的主要原料 [1]。 2甲醇合成工艺流程 2.1流程概述

中油石化有限公司年产万吨二甲醚生产装置项目环境影响报告书

中油石化有限公司年产10万吨二甲醚生产装置项目环境影响报告书(简本) 浙江中油石化有限公司 10万t/a二甲醚生产线项目 环境影响报告书 (简? 本) 浙江大学环境影响评价研究室 Institute of Environmental Impact Assessment Zhejiang University 国环评证:甲字第2002号 二OO六年十月 目??? 录 附? 图 1? 项目概况 公司概况和项目由来 浙江中油石化有限公司系上海中油能源控股有限公司、江苏中油长江石化有限公司、上海华油有限公司等单位共同投资,公司主要经营石化产品的生产、储运和销售。公司拟在平湖独山港建设浙江中油石化有限公司10万t/a二甲醚生产线项目,以甲醇为原料气相制备二甲醚,生产规模10万t/a。平湖市经济贸易局以平经贸投资备[2006]244号《平湖市企业投资项目备案通知书(技术改造)》予以备案。 项目名称和性质 (1)项目名称:浙江中油石化有限公司10万t/a二甲醚生产线建设项目。 (2)项目性质:新建。 立项情况 平湖市经济贸易局以平经贸投资备[2006]244号《平湖市企业投资项目备案通知书(技术改造)》 建设规模 项目总用地面积19096.5m2,装置占地面积9567m2,建筑面积1788 m2,主要建设主装置区、甲醇储罐区、锅炉房、分析控制室、循环水站和空压站等。预计在2008年初可建成投产。 项目建设地点 浙江中油石化有限公司“综合型石化产品储运加工基地”位于平湖市独山港区临港工业发展区块内,基地的东侧为上海金山石化库区(属浙江境内),南侧为杭州湾海域,西侧为闲置工业用地,北侧为金桥村。 本项目位于“综合型石化产品储运加工基地”的东北侧,项目北侧为金桥村,其中金桥村居民距离本项目厂界最近距离为100m;东侧是上海金山石化库区;南侧是中油石化化学品库区(属于石化储运加工同期建设项目);西侧是中油石化液态烃库区(属于石化储运加工同期建设项目)。据现场踏勘,目前,项目所在地现状为陆地、水塘(废弃蟹塘)和滩涂,无任何建构筑物,自然地势为北高南低。 2? 工程内容及污染因素分析 公用工程内容 供水。本项目总用水量约301449m3/a,其中职工生活用水1449m3/a,冷却水总用量100万m3/a,采用冷却塔降温后循环使用,其中冷却补充水300000 m3/a(37.5 m3/h),由平湖自来水公司供给。 供电。本项目年用电量300万kWh,由平湖市供电局供给。 供热。本项目近期临时设有1400万大卡燃煤导热油锅炉1台,以工艺废气和煤为燃料,用于各设备装置加热。远期待荣成纸业正式投产运行后由该企业统一集中供热。 排水。雨污分流,雨水排入厂区南侧杭州湾独山港,生产废水经厂内污水预处理后和生活污水一起纳入平湖市东片污水处理厂。 消防。包括火灾消防系统和水消防系统 生产工艺流程

二期10万吨甲醇项目可研

一概述 本项目利用金塔山60万吨/年焦化与预新购置一产能为60万吨/年焦化企业,合计产能达120万吨焦炭外供的焦炉煤气,以焦炉煤气为原料生产五麟公司二期10万吨/年甲醇项目与现有一起10万吨/年甲醇合并为20万吨/年的产能。 本工程不仅有较好的经济效益,从本质上讲也是一项环保工程,是既符合国家能源发展政策,也符合国家环境保护要求,对焦化行业的持续发展具有重要意义的项目。 二项目研究范围 本项目在公司现有10万吨/年甲醇生产的基础再建二期工程,项目生产装置主要范围如下:(1)主装置区:焦炉气压缩、精脱硫、转化、合成气压缩、甲醇合成、甲醇精馏;(2)公用装置区:空分装置、循环水装置、锅炉、两个5000m3成品罐等;(3)水处理装置:生化处理以及深度处理装置。 三初步研究结论 废水治理本工程废水实行“清污分流”原则,清净下水和雨水直接排入雨水管网;生产废水、初期雨水送焦化厂的污水处理场进行生化处理后,复用于焦化厂;生活污水经化粪池后送到地埋式AO处理装置进行处理,达标后外排。(1)对于废热锅炉产生的排污水,

其中基本不含污染物,可送到焦化厂作为熄焦补充水。(2)焦炉气压缩机气液分离器废水、甲醇精馏汽提塔废水、甲醇合成废水等含污染物较多的废水均送到焦化厂的污水处理场进行处理。焦化厂的污水处理场采用A2/O的处理工艺,规模为200m3/h,其流程为除油、浮选、厌氧、缺氧、好氧、沉淀、混合反应、混凝沉淀,处理后的生化出水送去熄煤,不外排。(3)生活污水经化粪池预处理后,送到地埋式AO法一体式生化处理装置进行处理,其处理规模为3m3/h,处理达标后外排。(4)脱盐水站的酸碱废水经中和后与循环排污水一起送到焦化厂作为熄焦补充水。(5)事故水池有效容积为5500m3,事故水池内的水经检测后,如水质达标,则排入雨水系统;如水质超标,则用泵逐渐送到焦化厂的污水处理装置进行处理。 地面水/地下水环境影响本工程设计采用“清污分流”的原则,对清净下水尽可能采取回用措施,减少废水的外排;同时将生产废水送到焦化厂现有的污水处理装置进行生化处理,并且处理达标后复用于焦化厂,可减少对环境的污染;对于生活污水送到地埋式AO 法一体式生化处理装置进行处理,处理达标后外排;对于其它的清净下水则全部送到焦化厂用于熄焦,可节约大量的新鲜水。因此本工程建成投产后,废水排放也不会对水体产生大的影响。

【优秀毕设】年产40万吨甲醇合成工艺设计

设计任务书 设计(论文)题目:年产40万吨甲醇合成工艺 设 学院:内门古化工职业学院 专业:应用化工技术 班级:应化09-4班 学生:张琦 指导教师:杨志杰李秀清

1.设计(论文)的主要任务及目标 (1) 结合专业知识和工厂实习、分析选定合适的工艺参数。 (2) 进行工艺计算和设备选型能力的训练。 (3) 进行工程图纸设计、绘制能力的训练。 2.设计(论文)的基本要求和内容 (1) 本车间产品特点及工艺流程。 (2) 主要设备物料、热量衡算、结构尺寸计算及辅助设备的选型计算。 (3) 参考资料 3.主要参考文献 [1] 谢克昌、李忠.甲醇及其衍生物.北京.化学工业出版社.2002.5~7 [2] 冯元琦.联醇生产.北京.化学工业出版社.1989.257~268. [3] 柴诚敬、张国亮。化工流体流动与传热。北京。化学工业出版社。2000.525-530 4.进度安排 设计(论文)各阶段名称起止日期 1 收集有关资料 20111-01-28~2010-02-11 2 熟悉资料,确定方案 2010-02-12~2010-02-26 3 论文写作 2010-02-27~2010-03-19 4 绘制设计图纸 2010-03-20~2010-04-03 5 准备答辩 2010-4-10 目录 摘要 (1) 第1章甲醇精馏的工艺原理 (2) 第1.1节基本概念 (2) 第1.2节甲醇精馏工艺 (3) 1.2.1 甲醇精馏工艺原理 (3) 1.2.2 主要设备和泵参数 (3) 1.2.3膨胀节材料的选用 (6) 第2章甲醇生产的工艺计算 (7) 第2.1节甲醇生产的物料平衡计算 (7) 第2.2 节生产甲醇所需原料气量 (9) 2.2.1生产甲醇所需原料气量 (9) 第2.3节联醇生产的热量平衡计算 (15) 2.3.1甲醇合成塔的热平衡计算 (15) 2.3.2甲醇水冷器的热量平衡计算 (18) 第2.4节粗甲醇精馏物料及热量计算 (21) 2.4.1 预塔和主塔的物料平衡计算 (21) 2.4.2 预塔和主塔的热平衡计算 (25)

年产万吨甲醇制二甲醚生产工艺的初步设计

太原理工大学化学化工学院 《化工设计》课程设计说明书 年产20万吨甲醇制二甲醚生产工艺初步设计 学生学号: 学生姓名: 专业班级:化工工艺0904 指导教师: 起止日期: 2012.11.26~2012.12.21

化工设计课程设计任务书 一、化工课程设计题目 年产20万吨甲醇制二甲醚生产工艺的初步设计 二、化工课程设计要求及原始数据(资料): 操作方式:连续操作 产品品种:二甲醚 拟建规模:20万吨/年 年操作日:365天 汽化塔:原料粗甲醇纯度90%(质量分数,下同),塔顶甲醇气体纯度≥99%,釜液甲醇含量≤0.5%; 合成塔:选择 -Al2O3做催化剂,转化率≥80%,选择性≥99.9%,脱水温度选择300摄氏度。 精馏塔:塔顶二甲醚纯度≥“99.9%”釜液二甲醚含量≤0.5%; 回收塔:塔顶回收甲醇纯度≥98%,废水中甲醇含量≤0.5%。 三、化工课程设计主要内容: 1、绪论 2、生产流程或方法的确定 3、物料衡算和热量衡算 4、主要工艺设备的计算及选型(包括设备一览表) 5、原材料、动力消耗定额及消耗量 6、参考文献 7、致谢 8、附图(带控制点的工艺流程图和关键设备的结构图) 四、时间安排: 共设计四周,前2周收集资料,进行工艺流程的设计、物料和热量衡算,后两周进行设计说明书的撰写、工艺流程图和设备图的绘制。 五、学生应交出的设计文件: 课程设计说明书一本 带控制点的工艺流程图一套(要求手工绘制2#图纸) 主要设备结构图一套(要求CAD绘制,2#图纸)

六、主要参考文献(资料): 1、《化工设计》王静康主编 1995年版化学工业出版社出版 2、《化工原理》(上、下) 2001年版天津大学化工原理教研室编天津科学技术出版社出版 3.………… 专业班级化工工艺0904 学生武晓佩 要求设计工作起止日期 2012年11月25日至2012年12月21日 指导教师签字日期 教研室主任签字日期 系主任批准签字日期

年产xxx甲醇项目计划书

年产xxx甲醇项目 计划书 规划设计/投资分析/产业运营

报告摘要说明 甲醇是重要的基础化工原料之一,近年来随着新增产能的陆续投产以 及装置开工水平的提升,甲醇产量稳步增加,区域性紧张局势逐步缓解, 现我国已是全球最大的甲醇生产国。甲醇的广泛应用,昭示了其明朗的市 场前景。近年来,我国甲醇表观消费量明显增加。 近几年国内精细化工领域的规模扩张,为我国甲醇行业创造了全新的 市场空间。同时,随着前期煤炭领域供给侧改革,淘汰落后产能,我国煤 炭原料供应结构得到明显优化,原料端的支撑也促使近年来我国甲醇产量 逐年上升,2019年我国甲醇产能约为8812万吨,同比2018年增长约6.1%,产量约为6216万吨,同比2018年增长11.5%。 该甲醇项目计划总投资12267.53万元,其中:固定资产投资9567.50万元,占项目总投资的77.99%;流动资金2700.03万元,占 项目总投资的22.01%。 本期项目达产年营业收入26781.00万元,总成本费用20418.85 万元,税金及附加244.87万元,利润总额6362.15万元,利税总额7484.56万元,税后净利润4771.61万元,达产年纳税总额2712.95万元;达产年投资利润率51.86%,投资利税率61.01%,投资回报率 38.90%,全部投资回收期4.07年,提供就业职位495个。

截至2017年年底,甲醇行业利润率达48.95%。在利润高位运行的刺激下,甲醇装置恢复或者提负的动能增强。在甲醇装置开工率稳定上升的态势下,2018年甲醇产能增速也将同步加快。 随着环保收紧,焦化产业进入壁垒显著提升,预计焦化产业中期供求偏紧。但是,一方面,焦气化的原料可以从化工焦切换为无烟煤,另一方面,陕西区域情况比较特殊,甲醇供求缺口大,增速快,未来新增产能有望得到有效消化。<

年产10万吨甲醇工艺设计

1 总论 1.1 概述 甲醇作为及其重要的有机化工原料,是碳一化学工业的基础产品,在国民经济中占有重要地位。长期以来,甲醇都是被作为农药,医药,染料等行业的工业原料,但随着科技的进步与发展,甲醇将被应用于越来越多的领域。 1)甲醇(英文名;Methanol,Methyl alcohol)又名木醇,木酒精,甲基氢氧化物,是一种最简单的饱和醇。化学分子式为CH3OH。 甲醇的性质;甲醇是一种无色、透明、易燃、易挥发的有毒液体,略有酒精气味。分子量32.04,相对密度0.792(20/4℃),熔点-97.8℃,沸点64.5℃,闪点12.22℃,自燃点463.89℃,蒸气密度 1.11,蒸气压13.33KPa(100mmHg 21.2℃),蒸气与空气混合物爆炸下限6~36.5 % ,能与水、乙醇、乙醚、苯、酮、卤代烃和许多其他有机溶剂相混溶,遇热、明火或氧化剂易燃烧。 甲醇的用途;甲醇用途广泛,是基础的有机化工原料和优质燃料。主要应用于精细化工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫酸二甲脂等多种有机产品,也是农药、医药的重要原料之一。甲醇在深加工后可作为一种新型清洁燃料,也加入汽油掺烧。 甲醇的毒性及常用急救方法;甲醇被人饮用后,就会产生甲醇中毒。甲醇的致命剂量大约是70毫升。甲醇有较强的毒性,对人体的神经系统和血液系统影响最大,它经消化道、呼吸道或皮肤摄入都会产生毒性反应,甲醇蒸气能损害人的呼吸道粘膜和视力。急性中毒症状有:头疼、恶心、胃痛、疲倦、视力模糊以至失明,继而呼吸困难,最终导致呼吸中枢麻痹而死亡。慢性中毒反应为:眩晕、昏睡、头痛、耳鸣、现力减退、消化障碍。甲醇摄入量超过4克就会出现中毒反应,误服一小杯超过10克就能造成双目失明,饮入量大造成死亡。甲醇中毒,通常可以用乙醇解毒法。其原理是,甲醇本身无毒,而代谢产物有毒,因此可以通过抑制代谢的方法来解毒。甲醇和乙醇在人体的代谢都是同一种酶,而这种酶和乙醇更具亲和力。因此,甲醇中毒者,可以通过饮用烈性酒(酒精度通常在60度以上)的方式来缓解甲醇代谢,进而使之排出体外。而甲醇已经代谢产生的甲酸,可以通过服用小苏打(碳酸氢钠)的方式来中和。甲醇也容易引发大火。一旦发生火灾,救护人员必须穿戴防护服和防

年产3万吨甲醇工艺设计毕业设计

课题名称:年产3万吨甲醇合成工艺设 计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

国内二甲醚发展现状及市场前景

国内二甲醚发展现状及市场前景 摘要:文章重点介绍了近年来国内二甲醚产业发展状况,分析了二甲醚在我国发展存在的优势和问题,对其市场发展前景进行了展望。 关键词:二甲醚发展现状市场前景 二甲醚是一种新兴的煤化工产品,具有燃烧热值高、污染小等优点。在国际原油价格高企的背景下,二甲醚部分替代石油产品具有一定的经济优势,国内市场对于二甲醚的认同程度也渐渐提高。目前,国内二甲醚的主要用途是按一定比例(10%左右)添加到液化石油气中,作为民用燃气;其次,还可以替代柴油,作为汽车燃料。另外,二甲醚在医药、农药、金属焊接等领域也有一定的应用。近年来,由于国际原油价格持续上涨,液化气生产成本增加。二甲醚以其独特的优势逐步开始在市场上推广。 1国内二甲醚生产现状 1.1 2007年国内二甲醚生产情况 据统计,2007年我国共有二甲醚生产企业30家,产能合计261.15万吨/年,产量约130万吨。其中,外购甲醇生产二甲醚的企业共23家,产能合计170.65万吨/年;自配甲醇装置的企业7家,产能合计90.5万吨/年。我国主要二甲醚生产企业情况见表1 1.2 2008年产能扩张情况 2008年我国有8个二甲醚项目投产,产能合计147.5万吨/吨。其中自配甲醇装置的项目有2个,产能合计16万吨/年。需要外购甲醇的项目共6个,产能合计131.5万吨/年。我国二甲醚总产能达到408.65万吨/年,其中自配甲醇的产能为106.5万吨/年,外购甲醇的产能为302.15万吨/年。2008年投产的部分二甲醚项目统计见表2。

1.3 2009~2010年产能扩张情况 2009年~2010年投产的二甲醚项目共14个,产能合计395万吨/年(见表2)。其中,自配甲醇的项目共7个,产能合计125万吨/年,需要外购甲醇厚的项目也有7个,产能合计270万吨/年。预计到2010年底,国内二甲醚产能将至少达到803.65万吨/年,其中需要外购甲醇的生产能力为572.15万吨/年,若开工率按90%计算,则这部分二甲醚产量为514.9万吨,至少需要市场采购甲醇772.4万吨。 2 我国发展二甲醚产业的优势 2.1 资源优势 我国煤炭资源丰富,发展以煤为原料的化工产品原料充足,有利于保障行业的可持续发展,也符合我国“缺油富煤”的资源结构。国内拥有煤炭资源的企业发展二甲醚产业在保障原料来源的同时,也可以降低生产成本,提高产品竞争力,因此优势更加明显。从经济性考虑,建立在煤矿附近的甲醇生产企业可能有效降低甲醇生产成本,进而可以将二甲醚的生产成本相应控制在一定范围。 2.2市场优势 在两大应用领域——替代液化石油气领域和替代柴油领域,二甲醚都有广阔的市场前景。2007年我国液化石油气表现消费量为2300万吨,柴油表现消费量为1.25亿吨。随着国内经济的持续发展,市场对于液化气石油气和柴油的需求量都将保持稳定增长。预计到2010年,国内液化气石油气和柴油的市场需求量将分别达到2600万吨和1.4亿吨。但是,由于我国石油资源匮乏,原油和液化石油气的对外依存度不断上升。因此,发展替代产品有利于缓解我国石油供需矛盾,降低石油对外依存度。如果按照液化石油气替代10%,柴油替代3%计算,2010年二甲醚的市场需求量将会达到680万吨甚至更多。由此可见,只要二甲醚推广工作进展顺利、配套设施能够尽快完善,二甲醚的市场前景将会非常乐观。 2.3 政策优势 2007年8月,建设部发布了《城镇燃气用二甲醚》标准。该标准的实施表明,二甲醚作为液化气石油气的替代燃料已具有合法身份,可以正式进入城镇作为替代燃料。同时,该标准的实施也为二甲醚的大范围推广铺平了道路。除了在政策上给予支持,我国政府在二甲醚技术开发上也加大了投入。2006年12月,久泰化工获得了国家发改委总额730万元的财政扶持资金。此外,政府还直接推动中央企业参与二甲醚生产。由中煤、中石化等5家企业联合组建的中天合创420万吨/年甲醇、300万吨/年二甲醚项目已经在内蒙古鄂尔多斯签约,

(最新版)年产30万吨煤制甲醇生产工艺5毕业设计论文

优秀论文审核通过未经允许切勿外传 毕业设计任务书 题目:年产30万吨煤制甲醇生产工艺毕业设计函授站:甘肃石化技师学院 专业:化工工艺 班级: 10高级化工工艺 学生姓名:胡文花 指导教师:王广菊

2013年02月03 毕业设计(论文)任务书 设计(论文)题目:年产30万吨煤制甲醇生产工艺毕业设计 函授站:甘肃函授站专业:应用化工技术(工业分析与检验) 班级:甘化专111 (甘分专111)学生姓名:胡文花 指导教师(含职称):王广菊老师 1.设计(论文)的主要任务及目标 甲醇是一种极重要的有机化工原料,也是一种燃料,是碳化学的基础产品,在国民经济中占有十分重要的地位。近年来,随着甲醇下属产品的开发,特别是甲醇燃料的推广应用,甲醇的需求大幅度上升。为了满足经济发展对甲醇的需求,开展了此20万ta 的甲醇项目。 2.设计(论文)的基本要求和内容 首先是采用GSP气化工艺将原料煤气化为合成气;然后通过变换和NHD脱硫脱碳工艺将合成气转化为满足甲醇合成条件的原料气;第三步就是甲醇的合成,将原料气加压到5.14Mpa,加温到225℃后输入列管式等温反应器,在XNC-98型催化剂的作用下合成甲醇,生成的粗甲醇送入精馏塔精馏,得到精甲醇。然后利用三塔精馏工艺将粗甲醇精制得到精甲醇。 3.主要参考文献 [1]徐振刚,宫月华,蒋晓林.CSP加压气流床气化技术及其在中国的应用前景[J].洁净煤技术,1998,(3):15~18. [2]李大尚.GSP技术是煤制合成气(或H2)工艺的最佳选择[J].煤化工,2005,(3):1~6. [3]林民鸿,张全文,胡新田.NHD法脱硫脱碳净化技术.化学工业与工程技术,1995年,第3期. [4]李琼玖,唐嗣荣,等.近代甲醇合成工艺与合成塔技术(下)[J].化肥设计,2004,42(1):3~8. [5]陈文凯,吴玉塘,梁国华,于作龙.合成甲醇催化剂的研究进展.石油化工,1997年,第26卷. [6]唐志斌,王小虎,付超,于新玲.新型低压甲醇合成催化剂XNC-98的工业应用.石化技术与应用,第5期,第23卷.

年产10万吨甲醇精馏工段设计毕业设计

毕业设计设计题目:年产10万吨甲醇精馏工段工艺设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

年产50万吨甲醇合成工艺初步设计

年产50万吨甲醇合成工艺初步设计 摘要 本设计重点讨论了合成方案的选择,首先介绍了国内外甲醇工业的现状、甲醇原料的来源和甲醇本身的性质及用途。其次介绍了合成甲醇的基本原理以、影响合成甲醇的因素、甲醇合成反应速率的影响。在合成方案里面主要介绍了原料路线、不同原料制甲醇的方法、合成甲醇的三种方法、生产规模的选择、改善生产技术来进行节能降耗、引进国外先进的控制技术,进一步提高控制水平,来发展我国甲醇工业及简易的流程图。在工艺条件中,主要介绍了温度、压力、氢与一氧化碳的比例和空间速度。主要设备冷激式绝热反应器和列管式等温反应器介绍。最后进行了简单的物料衡算。 关键词:甲醇,合成塔

一、综述 (一)国内外甲醇工业现状 甲醇是重要的化工原料,应用广泛,主要用于生产甲醛,其消耗量约占甲醇总量的30%~40%;其次作为甲基化剂,生产甲胺、丙烯酸甲酯、甲基丙烯酸甲酯、甲基叔丁基醚、对苯二甲酸二甲酯;甲醇羰基化可生产醋酸、酸酐、甲酸甲酯、碳酸二甲酯等。其次,甲醇低压羰基化生产醋酸,近年来发展很快。随着碳化工的发展,由甲醇出发合成乙二醇、乙醛、乙醇等工艺正在日益受到重视。国内甲醇装置规模普遍较小,且多采用煤头路线,以煤为原料的约占到78%;单位产能投资高,约为国外大型甲醇装置投资的2倍,导致财务费用和折旧费用高,这些都会影响成本。据了解,我国有近200家甲醇生产企业,但其中10万吨/年以上的装置却只占20%,最大的甲醇生产装置产能也就是60万吨/年,其余80%都是10万吨/年以下的装置。根据这样的装置格局,业内普遍估计,目前我国甲醇生产成本大约在1400,1800元/吨(约200美元/吨),一旦出现市场供过于求的局面,国内甲醇价格有可能要下跌到约2000元/吨,甚至更低。这对产能规模小,单位产能投资较高的国内大部分甲醇生产企业来讲会加剧增。 而以中东和中南美洲为代表的国外甲醇装置普遍规模较大。目前国际上最大规模的甲醇装置产能以达到170万吨/年。2008年4月底,沙特甲醇公司170万吨/年的巨型甲醇装置在阿尔朱拜勒投产,使得

年产10万吨二甲醚项目设计说明书_化工设计竞赛 精品

2008“三井化学”杯大学生化工设计竞赛 广广西西大大学学 f f o o r r w w a a r r d d 团团队队

2008三井化学杯 大学生化工设计竞赛项目设计说明书 项目名称:以蔗渣(蔗髓)为原料年产10万吨二甲醚项目 参赛学校: 设计时间:2008.08-2008.09

目录 第一章总论 (1) 1.1 项目名称 (1) 1.2 企业和建设性质 (1) 1.3 编制依据 (1) 1.4 编制原则 (1) 1.5 项目背景 (1) 1.6 项目投资的必要性和经济意义 (2) 1.7 工程项目研究概述 (3) 1.8 本项目的特色与创新点 (4) 第二章市场预测分析 (5) 2.1 二甲醚特性 (5) 2.2 二甲醚产品用途 (5) 2.3 市场情况及预测 (7) 2.3.1 国内市场 (7) 2.3.2 国际市场 (8) 2.3.3 市场预测 (10) 2.3.4 二甲醚产品价格预测 (11) 第三章产品方案及生产规模 (12) 3.1 产品方案 (12) 3.1.1 产品方案构成 (12) 3.1.2 产品规格及质量指标 (12) 3.2 生产规模 (12) 第四章工艺技术方案 (13) 4.1 工艺技术方案的选择及技术来源 (13) 4.2 二甲醚合成工艺路线的现状及选择 (13) 4.2.1 二甲醚生产工艺对比 (13) 4.2.2 国内工艺发展路线 (17) 4.2.3 二甲醚合成工艺方案的确定 (18) 4.3 生物质超临界水气化氧化技术 (18) 4.3.1 生物质超临界水气化技术的选择及意义 (18) 4.3.2 超临界水中生物质气化原理及工艺选择 (19) 4.3.3 超临界水氧化技术的运用 (22) 4.4 合成二甲醚工艺条件的选取 (23)

年产20万吨煤制甲醇项目环境影响报告书

天富热电股份有限公司 年产20万吨煤制甲醇项目环境影响报告书 (送审稿)

目录 第一章总论 (1) 1.1项目背景和任务由来 (1) 1.2评价目的和指导思想 (3) 1.3编制依据 (5) 1.4评价等级 (7) 1.5评价重点 (7) 1.6评价范围 (7) 1.7评价标准采用 (8) 1.8环境敏感因素及保护目标 (10) 第二章项目所在区域环境概况 (11) 2.1 地理位置 (11) 2.2 自然环境状况 (11) 2.3 生态环境 (16) 2.4 社会环境状况 (17) 2.5 城市规划 (19) 第三章工程分析 (21) 3.1建设项目概况 (21) 3.2建设项目生产工艺过程简述 (27) 3.3配套公用工程 (39) 3.4主要原辅材料供应及消耗 (41) 3.5拟建工程物料、硫、水、汽平衡分析 (42) 3.6施工期污染影响分析及防治对策 (47) 3.7运营期大气污染影响分析及防治对策 (48) 3.8废水污染影响分析及防治对策 (51) 3.9固体废物影响分析及防治对策 (53) 3.10噪声影响分析及防治对策 (54) 3.11非正常生产状况分析 (54) 第四章工艺先进性及清洁生产分析 (58) 4.1生产工艺先进性 (58) 4.2清洁生产评述 (63) 第五章环境空气影响评价 (65)

5.1污染源调查与评价 (65) 5.2环境空气质量现状监测与评价 (67) 5.3污染气象特征分析 (73) 5.4环境空气影响预测与评价 (88) 第六章地表水环境影响评价 (107) 6.1地表水污染源调查与评价 (107) 6.2地表水环境质量现状监测与评价 (110) 6.3废水排放方案及排水去向 (115) 6.4地表水环境影响评价 (115) 第七章地下水环境影响分析 (117) 7.1地下水环境现状监测与评价 (117) 7.2地下水水文地质特征分析 (121) 7.3本工程用水水源可行性分析 (122) 7.4地下水环境影响分析 (125) 第八章噪声影响分析 (129) 8.1声环境现状监测及分析 (129) 8.2施工期的噪声环境影响分析 (130) 8.3运行期声环境影响预测 (132) 8.4本工程拟采取的噪声防治措施 (133) 第九章固体废物影响分析 (135) 9.1拟建甲醇工程固废概况 (135) 9.2固体废物分析 (135) 9.3固体废物的合理处置与综合利用途径 (136) 9.4工程投产后固体废物影响分析 (137) 第十章生态环境影响分析 (138) 10.1 生态环境与生态资源状况 (138) 10.2污染物排放对生态环境的影响 (139) 第十一章环境风险评价 (146) 11.1环境风险评价等级 (146) 11.2环境风险评价范围 (146) 11.3环境风险识别 (146) 11.4源项分析 (150) 11.5环境风险预测 (151)

年产120万吨甲醇和30万吨二甲醚项目建议书代可行性报告

第一章概述 1.1 概述 1.1.1项目名称、建设地点、建设单位 项目名称:年产120万吨甲醇、30万吨二甲醚项目 建设地点:内蒙古呼伦贝尔市鄂温克族自治旗浩勒堡 建设单位: 具体联系人: 编制时间: 1.1.2项目建设原因 石油、天然气和煤是目前世界能源的三大支柱,按现在石油消耗量和开采量计算,石油的开采年限约半个世纪,而煤的开采年限却超过200年。中国是一个煤炭资源极其丰富的国家,石油资源却相对较少,所有油田的出油率随开采年限的增长而下降,而石油的需求却正在逐年增加,加之天然气的价格比较高,工业经济效益难以得到保障。 我国煤炭资源丰富,2001年资源量为1万吨居世界第三位。估计到2010年消费量为18-19亿吨/年。坑口煤价较便宜,煤价为60-80元/吨。 内蒙古呼伦贝尔市有丰富的矿产资源,已探查到的矿产有4 0多种,主要有煤、石油、铁、铜、铅、锌、水泥灰岩、天然碱等。煤炭资源储量大、分布广,以海拉尔区为中心,

北有宝日希勒煤田,南有伊敏煤田,东有大雁煤田,西有扎赉诺尔煤田,四大煤田保有储量约280亿吨。内蒙古东部煤炭资源丰富保有储量大,占东北全区保有储量的58%,呼伦贝尔市煤炭储量占内蒙东部煤炭储量的67%,占东北煤炭储量的4O%左右,远景储量约1000亿吨,是黑龙江、吉林、辽宁三省总和的1.8倍,均是适于煤转化工用的优质褐煤。 1.1.3企业概况 大雁煤业集团公司为山东鲁能集团所属重点煤炭生产企业,属国有大型二档企业,是以煤炭生产为主,兼营电力、矿井建设、建筑安装、建材生产、绿色薯业以及生态旅游等多元化产业的经济实体,为全国煤炭百强企业。现有三对矿井,核定生产能力690万吨。 1.2项目建设的目的和意义 甲醇既是基本有机化工原料,又可以用来做汽车或民用的代用燃料。以甲醇为原料可以生产六十多个下游化工产品,经过再加工,又可以得到几百种化工产品,因此甲醇工业目前已成为碳一化学中的主要支柱。同时,我国对汽油掺烧甲醇已经进行了先期的试验,并取得了成功的经验。汽油掺烧甲醇被世界公认是可行的、经济的、安全的、环保的。为了在全国推广汽车用汽油掺烧甲醇,国家标准局在国家经贸委各有关司局的配合下正积极制订汽油中掺甲醇5%、10%和15%的各项标准规范和实施细则,并有望近期出台,

相关主题