搜档网
当前位置:搜档网 › 盲源分离

盲源分离

盲源分离

盲源分离

盲源分离是指在信号的理论模型和源信号无法精确获知的情况下,如何从混迭信号(观测信号)中分离出各源信号的过程。盲源分离和盲辨识是盲信号处理的两大类型。盲源分离的目的是求得源信号的最佳估计,盲辨识的目的是求得传输通道混合矩阵。

?

?

1 引言

?

?

盲源分离主要分为线性混叠和非线性混叠两种。非线性混叠的主要有通过对线性模型的扩展和用自组织特征映射的方法[8]。

?

?

对于振动信号的盲分离,从2000年才开始受到重视[9],并且研究的范围主要在旋转机械和故障诊断中。

?

?

2 盲源分离基本概念

?

?

盲源分离问题可用如下的混合方程来描述[4]:

盲源分离 开题报告

一、研究背景及意义 语音信号的分离近年来成为信号处理领域的一个研究热点,它在电话会议、助听器及便携设备、机器的语音识别方面有很多的应用与影响。而语音信号常使用盲信号处理的方法分离。 盲信号处理(Blind Source Processing)作为一种新兴的信号处理方法,逐步发展并得到了越来越多的关注。盲信号处理与现代信号处理朝向非平稳、非高斯、非线性的发展方向相吻合,有利于复杂信号的分析以及处理,其研究对象主要为非高斯信号。它在传统信号处理方法的基础上结合了信息论、统计学和人工神经网络的相关思想。如图1所示,所谓的“盲分离”是指在没有关于源信号本身以及传输信道的知识,对数据及系统参数没有太多先验知识的假设的情况下,如何从混迭信号(观测信号)中分离出各源信号的过程。它能适用于更广泛的环境,为许多受限于传统信号处理方法的实际问题提供了崭新的思路。 图1 盲分离的概念 在科学研究和工程应用中,很多观测信号都可以假设成是不可见的源信号的混合,如通信信号、图像、生物医学信号、雷达信号等等。例如经典的“鸡尾酒会”问题,在一个充满宾客的宴会厅里,我们每个人都会听到来自不同地方的声音,如音乐,歌声及说话声等,正常的人类拥有在这种嘈杂环境下捕捉到所感兴趣的语音的能力。可以看到,盲信号处理同传统信号处理方法最大的不同就在于用它致力于用最少的信息得到理想的处理结果。

盲信号分离可以有不同的分类方法。 根据所处理信号的不同,可以分为声纳信号盲分离,雷达信号盲分离,通信信号盲分离,语音信号盲分离,脑电信号盲分离等。 根据盲处理领域的不同,可以分为时域盲分离和频域盲分离。 根据传输信道的情况,可以分为无噪声,有加性噪声,有乘性噪声等。 根据源信号在传输信道中被混合方式的不同,可以分为瞬时混合,卷积混合,非线性混合等。 根据源信号和观测信号数目的不同,可以分为正定盲分离,欠定盲分离,过定盲分离等。 本文研究的主要内容是正定不含噪的卷积混合语音信号的频域盲分离 方法。 总的来说,盲信号分离是一种仅利用观测到的混合信号来估计源信号的方法,它是以独立分量分析(Independent Component Analysis,ICA)为理论基础的。与传统信号处理方法如FIR 滤波,小波分析等不同的是,它不要求有关于源信号本身以及信号传输通道的知识。受益于这种“盲”的条件,盲信号分离对多个领域有很大的促进作用,特别是它在声纳、雷达、通信、语音、图像等方面的应用对军事,国防科技的发展起着非常重要的作用。近十多年来,各国学者在盲信号分离领域展开了深入的研究,有了一系列的成果。本课题就是在这样的背景下对语音信号进行盲分离的研究,以探索新的算法,新的应用。 二、研究的基本内容,拟解决的主要问题 1.研究的基本内容 本课题详细研究语音分离的基本理论,重点研究卷积混合频域解法模型框架下的语音信号分离算法。 基于时域实值瞬时混合模型的盲分离算法已经研究的比较充分,但是在语音信号在现实中往往是卷积混合,而且在频域分离方法中信号是复值的,本文将研究利用复值信号特征的瞬时混合盲分离算法,对不同的复数域盲分

盲源分离欠定问题欠定问题的研究与应用

盲源分离欠定问题欠定问题的研究与应用盲源分离(Blind Source Separation,BSS)技术,越来越成为信号处理领域中的重点关注问题。“盲源分离”这一概念的最初提出,主旨是为了解决某系统在源信号及信号个数未知、混合矩阵未知而只有观测号已知的情况下,对源信号进行恢复。 本文主要研究的是欠定盲源分离问题,即观测信号数目小于源信号数目的情况。基于稀疏分量分析(Sparse Component Analysis,SCA)法,分两个阶段讨论了混合矩阵和源信号的估计,并分别提出了估计混合矩阵和恢复源信号的新方法。 本文主要内容包括:讨论了基于SCA的“两步法”。在混合矩阵的估计阶段,研究了三类估计方法,分别是k均值算法、霍夫变换发及势函数法;对各算法的原理进行了分析,并通过仿真实验实现各算法,并验证了算法的有效性。 在源信号估计阶段,主要研究了目前最常用的最短路径法。提出了一种基于蚂蚁觅食原理的改进蚁群聚类算法估计混合矩阵,并利用网格密度法对聚类中心进行进一步修正。 首先利用源信号的稀疏性,对观测信号进行标准化处理形成球状堆;再利用观测信号之间的欧氏距离确定初始信息素矩阵,得出初始聚类中心;然后按照传统蚁群聚类法对数据进行聚类;接着利用网格密度法提取出每一类密度最大的网格,将该网格的中心作为该类聚类中心;最后输出每个聚类中心作为混合矩阵各列向量。提出了一种基于加权的最小l1范数法对源信号进行恢复,相较于传统l1范数法的寻找一组最优解,改进的范数法将其他可能的分解项按照权值进行相加,从而使恢复出的信号更加接近源信号向量。 当有两路观测信号时,按照分解项与观测信号的角度差大小作为加权值;当

盲源分离技术在通信侦察系统中的应用

盲源分离技术在通信侦察系统中的应用 摘要: 针对如何快速、准确地对无线电通信信号进行截获、分离和识别是现代通信侦察的瓶颈, 盲源分离对于解决这些难题具有独特的优势。给出了基于盲源分离的无线电通信侦察系统模型,从DoA估计和调制样式识别两方面讨论了盲源分离技术在该领域的应用情况。通过具体的仿真实验,证明了盲源分离应用于通信侦察的正确性和可行性。 关键词: 盲源分离;无线电侦察;DoA估计;调制识别 Application of blind source separation in radio surveillance Abstract:How to acquire ,separate and identify the radio communication signals quickly and exactly is abottleneck of modern radio surveillance , and blind source separation (BSS) is suitable for dealing with theseproblems. The model of the radio surveillance system based on BSS is presented , and two novel applications arediscussed, i. e. the direction- of- arrival (DoA) estimation and modulation identification. Simulation result s showthat the BSS solution in radio surveillance is valid and feasible. Key words:blind source separation ; radio surveillance ; direction- of- arrival estimation ; modulation identification 引言 现代战场通信信号环境日益复杂 , 如何有效地对信号进行快速、准确地截获、分离和识别 , 是现代通信侦察的一大瓶颈问题。主要表现在 : 信号分析时 , 难以对时域或频域重叠在一起的信号进行分析 , 如何对混叠的信号进行有效分离 ; 信号测向时 ,传统的测向方法精度不高 , 而一些超分辨率方法计算量过大 ,如何提高测向的速度和精度 ; 信号识别时 , 特征参数受环境影响较大 , 如何消除噪声的影响 , 采用最简单的方法来达到最理想的分类识别效果。这些问题的存在 , 一直束缚着通信侦察装备的发展。 近年来 ,盲信号处理技术在信号处理领域受到了广泛关注 , 根据其应用领域的不同 , 又可分为盲源分离、盲反卷积和盲均衡等技术。其中盲源分离

Ica盲源分离Matlab程序

Ica盲源分离Matlab程序 close all; clear all; i4=imread('1.jpg'); i5=imread('2.jpg'); i6=imread('2.png'); i1=rgb2gray(i4); i2=rgb2gray(i5); i3=rgb2gray(i6); s1=reshape(i1,[1,256*256]); s2=reshape(i2,[1,256*256]); s3=reshape(i3,[1,256*256]); s=[s1;s2;s3];sig=double(s); aorig=rand(size(sig,1)); mixedsig=aorig*sig; ms1=reshape(mixedsig(1,:),[256,256]); ms2=reshape(mixedsig(2,:),[256,256]); ms3=reshape(mixedsig(3,:),[256,256]); figure; subplot(331),imshow(i1),subplot(332),imshow(i2),subplot(333),imshow(i3); subplot(334),imshow(uint8(ms1)),subplot(335),imshow(uint8(ms2)),subplot(336),i mshow(uint8(ms3)); % mixedsig=zeros(size(mixedsig)); meanValue=mean(mixedsig')'; mixedsig=mixedsig-meanValue*ones(1,size(mixedsig,2)); covarianceMatrix=cov(mixedsig',1); [E,D]=eig(covarianceMatrix); eigenvalues=flipud(sort(diag(D))); whiteningMatrix=inv(sqrt(D))*E'; dewhiteningMatrix=E*sqrt(D); whitesig=whiteningMatrix*mixedsig; X=whitesig; [vectorSize,numSamples]=size(X); B=zeros(vectorSize); numOFIC=vectorSize; for r=1:numOFIC i=1;maxNumIterations=100; w=rand(vectorSize,1)-.5; w=w/norm(w); while i<=maxNumIterations+1

盲源分离算法初步研究

盲源分离算法初步研究 一、盲源分离基本问题 1.概念 BSS 信号盲分离,是指从若干观测到的混合信号中恢复出未知的源信号的方法。典型的观测到的混合信号是一系列传感器的输出,而每一个传感器输出的是一系列源信号经过不同程度的混合之后的信号。其中,“盲”有两方面的含义:(1)源信号是未知的;(2)混合方式也是未知的。 根据不同的分类标准,信号盲分离问题可以分成以下几类: (1)从混合通道的个数上分,信号的盲分离可以分为多通道信号分离和单通道信号分离。单通道信号分离是指多路源信号混合后只得到一路混合信号,设法从这一路混合信号中分离出多个源信号的问题就是单通道信号分离。多通道信号分离是M 个源信号混合后得到N 路混合信号(通常N ≥M )。从N 路混合信号中恢复出M 个源信号的问题即为多通道信号分离。一般情况下,单通道信号分离的难度要超过多通道信号分离。 (2)从源信号的混合方式上分,可将信号盲分离问题分为瞬时混合和卷积混合、线性混合和非线性混合等不同种类。在目前信号盲分离的研究文章中,所建模型大部分为瞬时混合。但是,作为更接近实际情况的卷积混合方式正受到越来越多的关注。 (3)根据源信号的种类,也可将信号盲分离分为多类。在通常的处理方法上,根据不同种类信号的特点,也有一些独特的处理技术。 2.盲分离问题的描述 BSS 是指仅从观测的混合信号(通常是多个传感器的输出)中恢复独立的源信号,在科学研究和工程应用中,很多观测信号都可以假设成是不可见的源信号的混合。所谓的“鸡尾酒会”问题就是一个典型的例子。在某个场所,多个人正在高声交谈。我们用多个麦克风来接受这些人说话的声音信号。每个人说话的声音是源信号,麦克风阵列的输出是观测信号。由于每个麦克风距离各个说话者的相对方位不同,它们接受到的也是这些人的声音信号以不同方式的混合。盲信号分离此时的任务是从麦克风阵列的输出信号中估计出每个人各自说话的声音信号,即源信号。如果混合系统是已知的,则以上问题就退化成简单的求混合矩阵的逆矩阵。但是在更多的情况下,人们无法获取有关混合系统的先验知识,这就要求人们从观测信号来推断这个混合矩阵,实现盲源分离。 3.混合模型 信号的混合模型包含两个方面的内容:(1)源信号的统计特征;(2)源信号的混合方式。 3.1源信号的统计特征 已有的研究表明如果加上源信号间相互独立的限制条件,就可以有效地补偿对以上先验知识的缺乏。如果用q i 表示第i 个分量的概率密度函数,则这种统计独立性可以表示为: 11221()()...()()n n n i i i q s q s q s q s ==???=∏q(s) 其中q(s)是s 的联合概率密度函数。 3.2源信号的混合方式 最简单的混合模型假定各个分量是线性叠加混合在一起而形成观测信号的。基于这样的假设,我们可以把观测信号和源信号用矩阵的方式表示为: ()()t t =x Hs 式中H 是n ×n 阶的混合矩阵。基于该模型,盲信号分离()()t t =x Hs 的目标可以表

盲源分离问题综述

盲源分离问题综述 摘要:盲源分离,是从观测到的混合信号中恢复不可观测的源信号的问题。作为阵列信号处理的一种新技术,近几年来受到广泛关注。本文主要阐述了盲源分离问题的数学模型、典型算法以及盲源分离的应用,并结合盲源分离问题的研究现状,分析了其未来的发展方向。主题词:盲源分离;盲源分离的典型算法 1. 引言 盲信号分离问题起源于人们对“鸡尾酒会”问题的研究。在某个聚会上,我们正在相互交谈,同一时刻同一场景下其他人的交谈也在同时进行着,可能还有乐队的音乐伴奏,这时整个会场上是一片嘈杂。但是非常奇妙的是,作为交谈对象的双方,我们能够在这混乱的众多声音中很清晰的听到对方的话语,当然,如果我们偶尔走神,将精力放在乐队奏出的音乐时,我们也同样可以听清楚音乐的主旋律。这种可以从由许多声音所构成的混合声音中选取自己需要的声音而忽视其他声音的现象就是鸡尾酒会效应。如何在这种从观察到的混合信号中分离出源信号的问题就是所谓的盲分离(Blind Signal Separation, BSS)问题,有时也被称为盲源分离(Blind Source Separation)问题。1986年,法国学者Jeanny Herault和Christian Jutten提出了递归神经网络模型和基于Hebb学习律的学习算法,以实现两个独立源信号混合的分离,这一篇开创性论文的发表使盲源分离问题的研究有了实质性的进展。随着数字信号处理理论和技术的发展以及相关学科的不断深入,大量有效的盲分离算法不断被提出,使盲分离问题逐渐成为当今信息处理领域中最热门的研究课题之一,在无线通信、图象处理、地震信号处理、阵列信号处理和生物医学信号处理等领域得到了广泛的应用。 2. 盲源分离问题的数学模型 盲源分离是指在不知道源信号和信道传输参数的情况下,根据输入信号的统计特性,仅由观测信号恢复出源信号各个独立成分的过程。盲源分离研究的信号模型主要有三种:线性混合模型、卷积混合模型和非线性混合模型。 2.1 线性混合模型 线性混合模型在神经网络、信号处理等研究中常常用到,其数学模型描述为: S1(t),S2(t)…S n(t)是一个随机的时间序列,用m个话筒表示接收到的混合信号,用X1(t),X2(t)…X m(t)来表示。它们有如下关系: { X1(t)=a11S1(t)+?+a1n S n(t) … X m(t)=a m1S1(t)+?+a mn S n(t) 其中{a ij}是未知的混合系数,在线性瞬时混合中,一般假定{a ij}是未知的常数矩阵。盲源分离需要解决的问题就是如何从接收到的观察信号中估计出源信号S1(t),S2(t)…S n(t)和混合矩阵的过程。实际上式还应该存在一个干扰存项,如果考虑到噪声的存在,那么上式可以

盲源分离和盲反卷积

盲源分离和盲反卷积 刘 琚1,何振亚2 (11山东大学信息科学工程学院,山东济南250100;21东南大学无线电工程系,江苏南京210096) 摘 要: 盲信号处理是信号处理领域的热点研究问题,盲源分离和盲反卷积是盲信号处理的重要组成部分近年 来取得许多重要进展.本文主要介绍盲源分离和盲反卷积的基本模型、数学原理和研究进展;分析了各种方法的特点并指出了进一步的研究方向. 关键词: 盲源分离;盲反卷积;独立分量分析中图分类号: T N91117 文献标识码: A 文章编号: 037222112(2002)0420570207 A Survey of Blind Source Separation and Blind Deconvolution LI U Ju 1,HE Zhen 2ya 2 (11College o f Information Science and Engineering ,Shandong Univer sity ,Jinan ,Shandong 250100,China ; 21Department o f Radio Engineering ,Southeast Univer sity ,Nanjing ,Jiangsu 210096,China ) Abstract : Blind signal processing is attractive in the community of signal processing.Blind s ource separation and Blind decon 2v olution are main com ponents in blind signal processing and advances have been developed in recent years.We introduce the basic m odel of blind s ource separation and blind deconv olution ,the mathematical principle of them ,and the latest progresses in research.We then analyze the characteristic of typical alg orithms and point out the future development. K ey words : blind s ource separation ;blind deconv olution ;independent com ponent analysis 1 引言 近几年,盲源分离和盲反卷积方法的研究已经成为信号 处理领域一个引人注目的热点问题.盲源分离(Blind S ource Separation 2BSS ),是指在不知源信号和传输通道的参数的情况下,根据输入源信号的统计特性,仅由观测信号恢复出源信号各个独立成分的过程.这一过程又称为独立分量分析(Inde 2pendent C om ponent Analysis 2IC A ).现在所指的盲源分离通常是对观测到的源信号的线性瞬时混迭信号进行分离.当考虑到时间延迟的情况下,观测到的信号应该是源信号和通道的卷积,对卷积混迭信号进行盲分离通常称为盲反卷积(Blind De 2conv olusion 2BD ).盲源分离和盲反卷积方法的研究在语音、通信、生物医学工程和地震等各个领域具有非常重要的理论价值和实际意义. 较早进行盲源分离方法研究的是Herault 和Jutten [1],他们提出了一种类神经盲源分离方法.该方法基于反馈神经网络,通过选取奇次的非线性函数构成Hebb 训练,从而达到盲源分离的目的.该方法不能完成多于两个混迭源信号的分离,非线性函数的选取具有随意性,并且缺乏理论解释.T ong 和Liu [2]分析了盲源分离问题的可分离性和不确定性,并给出一类基于高阶统计的矩阵代数特征分解方法.Cardos o [3]提出了基于高阶统计的联合对角化盲源分离方法,并应用于波束形 成.C om on [4]系统地分析了瞬时混迭信号盲源分离问题,并明确了独立分量分析的概念.利用了可以测度源信号统计独立性的K ullbak 2Leibler 准则作为对比函数(C ontrast Function ),通过对概率密度函数的高阶近似,得出用于测度信号各分量统计独立的对比函数,并由此给出一类基于特征分解的独立分量分析方法.Sejnowski 和Bell [5]基于信息理论,通过最大化输出非线性节点的熵,得出一种最大信息传输的准则函数并由此导出一种自适应盲源分离和盲反卷积方法(In fomax ),当该方法中非线性函数的选取逼近源信号的概率分布时可以较好地恢复出源信号.该算法只能用于源信号峭度(kurtosis )大于某一值的信号的盲分离,所以它对分离线性混迭的语音信号非常有效.Amari 和Cichocki [6]基于信息理论中概率密度的G ram 2Charlier 展开利用最小互信息(M inimum Mutual In forma 2tion 2M MI )准则函数,得出一类前馈网络的训练算法,可以有效分离具有负峭度的源信号,算法具有等变(equivariant )特性,即不受混迭矩阵的影响.Hyvarinen [7]基于源信号非高斯性测度(或峭度),给出一类定点训练算法(fixed 2point ),该类算法可以提取单个具有正或负峭度的源信号.该类准则函数和算法与G irolami 和Fy fe [8]的外推投影追踪(Exploratory Projection Pursuit 2EPP )算法具有相似性. 在对线性瞬时混迭信号盲源分离方法进行研究的同时, 收稿日期:2000208202;修回日期:2001203215 基金项目:国家自然科学基金(N o.30000041);山东省自然科学基金(N o.Y 2000G 12)   第4期2002年4月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.30 N o.4 April 2002

基于SCA的盲源分离开题报告1

1、立论依据 课题来源及研究的目的和意义: 信号处理技术在实际应用中一直具有非常重要的作用,随着科技的飞速发展,信号处理技术面临巨大的挑战,比如在移动通信技术中,发射端发射未知信号,称之为源信号[1],怎样只根据接收端接收的信号判别同时提取出源信号,成为一项值得深入探索的难题,为此产生了盲信号处理理论,称之为盲源分离(Blind Source Separation,BSS)[2]。 盲源分离理论来源于“鸡尾酒会”模型,即在酒会上众多人讲话声音与音乐声以及其它各种声音混杂在一起,致使我们难以得到感兴趣的某些声音信号,这类问题的显著特点就是源信号与传输信道参数均是无法预知的,要想从麦克风采集到的混叠声音中获取我们想要得到的声音信号,具有很大难度。但是盲源分离可以解决此类问题,从而可以从麦克风的混叠声音中分离出想要得到的声音信号。 由此可得,盲源分离[3-5]可以解释为在源信号和传输信道模型参数均为不可预知的情况下,按照所输入信号数学特征,只通过观测所得混合信号来重构并分离得到源信号的过程。 传统解决盲源分离的算法有主成分分析法(Principal Component Analysis,PCA)、独立分量分析法(Independent Component Analysis,ICA)[6-7]等方法,尤其ICA较大程度促进了盲源分离的进步,许多学者在此算法基础上进行改进并创新。 欠定盲源分离(Underdetermined Blind Source Separation,UBSS)是盲源分离中的一种特殊情况,即观测信号的数目少于源信号的数目。欠定盲源分离模型的系统为不可逆的,因而研究起来比较困难,解决欠定盲源分离问题已经不能使用传统解决盲源分离的方法。在实际应用中许多信号在一定条件下具备稀疏特性,该稀疏特性可以体现在时域或变换域中[8],因此有学者提出稀疏分量分析方法(Sparse Component Analysis,SCA),有的称为稀疏表示(Sparse Representation)[9-10]解决欠定盲源分离问题。其中“两步法”是解决基于稀疏分量分析的欠定盲源分离的常用方法,“两步法”的第一步是使用聚类或者势函数方法估计混合矩阵;第二步根据估计的混合矩阵重构源信号。 在实际应用中,通常许多信号在时域中并不是稀疏信号,但是在时频域会呈现出一定稀疏性,对于时域中非稀疏信号利用稀疏变换工具,如傅里叶变换、短时傅里叶变换、小波变换和Gabor变换等,使该信号在其对应变换域中表现出良好的稀疏性。然后利用信号在时域或其变换域中的稀疏特性实现对欠定盲源信号的分离。 本文在对国内外研究现状深入分析的基础之上,主要针对源信号稀疏性较弱的情况,对欠定盲源分离混合矩阵的估计方法进行了探索。针对传统许多算法解决欠定盲源分离问题时存在需要已知源信号数目的局限性与混合矩阵估计精度不高的不足,进行改进与完善。最后通过实验仿真与数据分析表明本文所研究的方法具有一定理论研究价值。

盲源分离 外文翻译

英文原文 An information-maximisation approach to blind separation and blind deconvolution Anthony J. Bell and Terrence J. Sejnowski Computational Neurobiology Laboratory The Salk Institute 100010 N.Torrey Pines Road La Jolla, California 92037 Abstract We derive a new self-organising learning algorithm which maximises the infor- mation transferred in a network of non-linear units. The algorithm does not assume any knowledge of the input distributions, and is defined here for the zero-noise limit. Under these conditions, information maximisation has extra properties not found in the linear case(Linsker 1989). The non-linearities in the transfer function are able to pick up higher-order moments of the input distributions and perform something akin to true redundancy reduction between units in the output representation. This enable- s the network to separate statistically independent components in the inputs: a higher -order generalisation of Principal Components Analysis. We apply the network to the source separation (or cocktail party)problem, succe- ssfully separating unknown mixtures of up to ten speakers. We also show that a vari- ant on the network architecture is able to perform blind deconvolution (cancellation of unknown echoes and reverberation in a speech signal). Finally, we derive depend- encies of information transfer on time delays. We suggest that information maximi- sation provides a unifying framework for problems in …blind? signal processing.

盲源分离综述_问题_原理和方法

中图分类号:T N97111 文献标志码:A 文章编号:C N51-1694(2008)02-0001-05收稿日期:2007-11-29;修回日期:2007-12-30 作者简介:陈锡明(1970-),男,高级工程师,博士;黄硕翼(1983-),男,硕士研究生。 盲源分离综述———问题、原理和方法 陈锡明,黄硕翼 (信息综合控制国家重点实验室,成都610036) 摘要:盲源分离,是从观测到的混合信号中恢复不可观测的源信号的问题。作为阵列信号处理 的一种新技术,近几年来受到广泛关注。文章按源信号不同的混合方式,将盲源分离问题分为三种类型:线性瞬时混合、线性卷积混合和非线性混合,综述了它们各自分离的原理和方法,并结合国内外的研究现状,对未来的发展作出了展望。关键词:盲源分离;独立分量分析 B lind Source Separation :Problem ,Principle and Method CHE N X i 2ming ,HUANG Shuo 2yi (National In formation C ontrol Lab oratory ,Chengdu 610036,China ) Abstract :Blind source separation is to recover unobserved source signals from observed mixtures.As a new technology of array signal processing ,it has attracted wide attention.Blind source separation is classified into three types :linear instantaneous mixtures ,linear conv olutional mixtures ,and nonlinear mixtures ,as per different mixture methods.And a survey is presented on separation principles and methods of each type.The prospect of future development is given too.K ey w ords :blind source separation ;independent com ponent analysis (ICA ) 1 引言 盲源分离(BSS )是信号处理领域的一个基本问题,是根据观测到的信号来分离或恢复出未知源信号的过程。它在医学信号处理、数据挖掘、语音增强、图像识别以及雷达与通信信号处理等方面正受到越来越广泛的重视。 其更一般的表述为:已知从多输入—多输出(MI M O )非线性动态系统(SIS O ,SI M O 是特例)中测得的传感器信号X (t )=[x 1(t ),x 2(t ),…, x m (t )]T ,要求找到一个逆系统,以重构估计原始 的源信号S (t )=[s 1(t ),s 2(t ),…,s n (t )]T[1]。源信号S (t )未知,源信号如何混合得到观测信号也未知,这体现了求解问题的“盲”。最简单的情况,如果X (t )是S (t )的线性瞬时混合,即X (t )=H 3S (t ),H 为一个m ×n 维的混合矩阵,盲分 离问题简化为求一个n ×m 维的解混矩阵W ,使输出Y (t )=W 3X (t )=W 3H 3S (t )≈S (t )。 事实上,在缺乏某些先验知识时是不可能唯一地确定源信号的,所以盲分离问题存在两个内在的解不确定性:一是输出分量排列顺序的不确定性,即无法确定所恢复的信号对应于原始信号源的哪一个分量;二是输出信号幅度的不确定性,即无法恢复原始信号源的真实幅度。但因为源的大量信息蕴涵在源信号的波形中而不是信号的振幅或者系统输出的排列顺序中,所以这并不影响盲分离的应用。 2 盲源分离的基本类型和解决方法 就源信号经过传输通道的混合方式而言,可分为线性混合和非线性混合信号的盲分离;其中 1 电子信息对抗技术?第23卷 2008年3月第2期 陈锡明,黄硕翼 盲源分离综述———问题、原理和方法

盲源分离技术及其发展

盲源分离技术及其发展 王春华,公茂法, 衡泽超时间:2009年11月06日 字体: 大中小 关键词:信号处理语音识别图像处理移动通信医学信号处理 摘要:盲源信号分离是一种功能强大的信号处理方法,在生物医学信号处理、阵列信号处理、语音识别、图像处理及移动通信等领域得到了广泛的应用。简要介绍了盲源分离的数学模型、可实现性、可解的假设条件及算法,综述了盲源分离的发展及研究现状,提出了其未来的发展方向。 关键词:盲源分离;独立分量分析;发展 盲源分离BSS(Blind Source Separation)是信号处理中一个传统而又极具挑战性的问题。BSS指仅从若干观测到的混合信号中恢复出无法直接观测的各个原始源信号的过程。这里的“盲”指源信号不可观测、混合系统特性事先未知这两个方面。在科学研究和工程应用中,很多观测信号都可以看成多个源信号的混合,所谓“鸡尾酒会”[1]问题就是一个典型的例子。其中独立分量分析ICA(Independent Component Analysis)[2]是一种盲源信号分离方法,它已成为阵列信号处理和数据分析的有力工具,而BSS比ICA适用范围更宽。目前国内对盲信号分离问题的研究,在理论和应用方面也取得了很大的进步,但是还有很多问题有待进一步研究和解决。 1 盲源分离基本理论 1.1 盲源分离的数学模型 盲信号分离研究的信号模型主要有线性混合模型和卷积混合模型,盲源分离源信号线性混合是比较简单的一种混合形式,典型的BSS/ICA问题就是源于对独立源信号的线性混合过程的研究。 1.1.1 盲源分离的线性混合模型 所谓的“鸡尾酒会”问题,具体描述是:在一个鸡尾酒会现场,如果用安放在不同位置的多个麦克风现场录音,则所记录的信号实际上是不同声源的混合信号。人们希望从这些混合录音信号中把不同的声源分离出来,这显然不是一件很容易的事,至少用传统的频域滤波方法行不通。因为不同声源信号的频谱相互混叠在一起,无法有效地设计滤波器,但从频谱的角度可以把不同声源分离出来。根据以上描述,可以把盲源分离问题表示为如图1所示的线性模型。为简单起见,暂时忽略时延、非线性等因素的影响,即最简单混合系统——线性瞬时混合系统。

卷积混合盲源分离算法研究

卷积混合盲源分离算法研究 在客观环境中,我们通过传感器接收到的信号不但含有信号本来的信息,而 且还混合由其他信源及环境噪声。因而,当信道和信源等先验知识未知,仅通过得到的观测信号估计出源信号成为需要及时解决的问题。 我们称此类问题为盲源分离(Blind Source Separation, BSS)司题。随着盲源分离技术的发展,它已经在通信系统、语音分离、生物医学、图像处理等许多领域有着广泛的应用。 根据源信号的混合方式,可以将盲源分离问题分为线性混合、卷积混合和非线性混合三类。关于线性混合问题,现已涌现出许多优秀的算法,但在实际中,信号在传输过程中会发生延时,因而卷积混合模型比瞬时混合更具有实际意义,所 以本文着重对卷积混合盲源分离算法进行研究。 针对线性混合模型,提出一种基于峰度值和改进粒子群优化的盲源分离算法。该算法采用改进粒子群代替传统算法对基于峰度值最大化的目标函数进行优化。 对四路会议语音信号进行盲源分离仿真,结果验证了算法的有效性。但是该算法处理信号类型单一,且源信号最多只能含一路高斯信号。 为此,提出一种改进的基于非线性函数和简化粒子群优化的算法,该改进算 法依据源信号类型选取的非线性函数作为目标函数,采用简化粒子群优化算法进行优化。仿真结果表明,该改进算法能够有效实现源信号为多类型和含有两路高斯信号的盲源分离。 与其他算法相比,具有更快收敛速度和更高分离精度。针对卷积混合模型, 提出一种基于峰度值和简化粒子群优化的消源盲源分离算法。 该算法采用基于参考基的参考目标函数,并通过去相关性来实现消源,最终

实现逐一提取源信号。仿真结果表明,该算法可有效实现对BPSK、PAM和随机信号的卷积混合盲源分离。 针对卷积混合模型,还提出一种基于四阶互累积量和粒子群优化的盲源分离算法。该方法采用信号的四阶互累积量作为目标函数,使用粒子群优化算法来优化,实现从卷积混合信号中提取出源信号。 仿真结果表明,该算法可以有效实现对通信信号卷积混合的盲源分离。

盲源分离之极大似然ICA算法

极大似然独立成分分析算法 一、似然度 极大似然估计可以解释为:采纳那些使观测向量具有最大概率的估计参数 值。 设()x p x ∧ 是对观测向量x 的概率密度()x p x 的估计,源信号的概率密度函数为 ()s p s ,根据线性变换下两个概率密度函数之间的关系,观测数据x 的概率密度函数的估计()x p x ∧ 与源信号概率密度函数()s p s 满足 1() ()det s x p A x p x A -∧ = 对于给定的模型,观测数据x 的似然函数是模型参数A 的函数,定义为 { } 1222()log ()()log ()log det x x s L A E p x p x p A x dx A ∧ -==-? 当模型参数为分离矩阵1W A -=时,对数似然函数为 {}221 1()log (())log det T s t L W p Wx t W T =≈+∑ 式中,T 为独立同分布观测数据的样本数,最大化此似然函数就可获得关于 参数W 的最优估计。 二、Infomax 算法 Infomax 算法即为信息传输极大化算法。 图1 Infomax 算法框图

由图1可知,Infomax 算法是一种基于信息论的前向反馈自组织神经网络的 算法,其中x 为多路观测信号向量,它是由n 个独立源线性混合而成,网络输出 u Wx =是对真实源s 的逼近。12()((),(), ,())T n g g g g ?=???为可逆单调非线性函 数,非线性输出为12(,,,)T n y y y y =。独立性判据为最大信息传输准则,即通过 对分离矩阵W (神经网络的连接权值矩阵)的调整寻找优化的W ,使网络输出y 和输入x 之间的互信息(;)I x y 达到最大。由信息论可知 (;)()(|)I x y H y H y x =- 式中,()H y 为网络联合输出熵;(|)H y x 为输出的条件熵。若系统存在噪声 N ,即()()y g u N g Wx N =+=+,有(|)()H y x H N =,则上式可表示为 (;)()()I x y H y H N =- 于是,y 和x 之间的互信息(;)I x y 最大等价于网络联合输出熵()H y 最大(噪 声N 与系统无关)。以网络输出的联合熵()H y 作为目标函数,由信息熵理论可知 1212()()()()(,,,)n n H y H y H y H y I y y y =++ +- 式中,()i H y 为非线性输出的边缘熵;12(,,,)n I y y y 为非线性输出之间的互 信息,其值总是非负的,只有当非线性输出i y 之间彼此相互独立时, 12(,,,)0n I y y y =。由互信息可知,单调可逆非线性映射对互信息没有影响,所 以()I y 取最小值0时,()I u 也同时达到最小值零,于是各成分间相互统计独立,ICA 问题得以解决。此时 {}2()()()()(())i n y H y H y H y H y E In p y =++ +=- 式中,()y p y 为输出y 的概率密度函数,因此最大化()H y 包含了最大化边缘 熵和最小化互信息两个内容。选择熵作为目标函数是因为熵是一个随机变量无序性的度量及信息量大小(不确定信息的多少)的测度,y 的各成分统计独立性越高则相应的y 熵()H y 越大,所含信息也越多。可以证明,当非线性函数()i g ?为源

盲信号分离

盲信号分离=盲源分离BSS Blind Signal/Source Separation Herault、Jutten 1985 从多个观测到的混合信号中分析出没有观测的原始信号。 观测到的混合信号来自多个传感器的输出,且传感器的输出信号线性不相关。 文献:盲信号分离技术研究与算法综述_周治宇、陈豪 1.盲信号分离的“盲”是什么意思? 已知原信号和传输通道的先验知识时,通过滤波器的信号处理能够在一定程度上完成信号分离的任务。 但是在没有原信号和传输通道的先验知识时,上述通过滤波的信号处理方法无法完成信号分离的任务,必须通过盲信号分离技术来解决。 “盲”是指 (1)原始信号并不知道; (2)对于信号混合的方式也不知道。 也就是仅根据观测到的混合信号估计源信号。 2.什么是“信号分离”? 是信号处理中的一个基本问题。 从接收到的混合信号(感兴趣信号+干扰+噪声)中分别分离或恢复出原始信号。 各种时域滤波器、频域滤波器、空域滤波器或码域滤波器都可以看作是一种信号分离器,完成信号分离任务。 3.盲信号分离如何实现的? 独立分量分析ICA Independent Component Analysis 是为了解决盲信号分离问题而逐渐发展起来的一种新技术,是目前主要采用的方法。 将接收到的混合信号按照统计独立的原则通过优化算法分解为若干独立分量,这些独立分量作为源信号的一种近似估计。 4.盲信号分离结果存在两个不确定性 分离结果排列顺序不确定、分离结果幅度不确定。 由于要传送的信息往往包含在信号波形中, 因此这两个不确定性并不影响在实际中的应用。 5.目前主要应用领域 目前盲信号处理技术已经在生物医学信号处理、语音信号处理、雷达信号分选、电子侦察、数字波束形成、无线通信、地震信号处理、机械故障诊断、图像处理、数字水印、人脸识别和金融数据分析等领域得到了广泛应用。

相关主题