搜档网
当前位置:搜档网 › 热式质量流量计原理及概述

热式质量流量计原理及概述

热式质量流量计原理及概述
热式质量流量计原理及概述

精品整理

热式质量流量计原理及概述

编辑:潘东升江苏瑞特仪表有限公司2010-5-31

)是利用传热原理,即流动中的流体与热源(流体中加热的物体或测量管外TME 热式质量流量计(以下简称

加热体)之间热量交换关系来测量流量的仪表,过去我国习称量热式流量计。当前主要用于测量气体。年代中期销售量估万台。国内90销售金额约占流量仪表的8%,约4.590 20世纪年代初期,世界范围TMF 台左右。过去流程工业用仪表主要是热分布式,近几年才开发热散(或冷却)效应式。计每年1000 1. 原理和结构利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式1)热式流量仪表用得最多有两类,即。TMF(效应的金氏定律King s Iaw)thenmaI prohIe fIowmeter)曾称量热式TMF;2)利用热消散(冷却)(流量计)。有些在使用intrusion type又由于结构上检测元件伸入测量管内,也称浸入型(immersion type )或侵入型()。时从管外插入工艺管内的仪表称作插入式(insertion type

TMF 热分布式1.1

)(1cp -------被测气体的定压比热容;式中A -------测量管绕组(即加热系统)与周围环境热交换系统之间的热传导系数;

K -------仪表常数。

页脚内容.

精品整理

TMF 1.2基于金氏定律的浸入型

金氏定律的热丝热散失率表述各参量间关系,如式所示。2)2(单位长度热散失率,H/L -------J/m?h; 式中--------ΔT热丝高于自由流束的平均升高温度,K;--------λ流体的热导率,J/h?m?K; cV---------定容比热容,J/kg?k;3kg/m密度,---------ρ;

m/h; U---------流体的流速,m.

页脚内容.

精品整理

;另一细管经功T如图5所示,两温度传感器(热电阻)分别置于气流中两金属细管内,一热电阻测得气流温度增加,气流带走更多热量,ρU高于气流温度,气体静止时Tv最高,随着质量流速率恒定的电热加热,其温度Tv 。温度测量法”“这种方法称作“温度差测量法”或温度下降,测得温度差ΔT=Tv-T.便可算出质量流速,2?~?之间。从式所示比列关系,式中B, C, K均为常数,K在消耗功率P和温度差ΔT如式3 4。qm,再将式3变换成式乘上点流速于管道平均流速间系数和流通面积的质量流量

)(34)(则是与所测气体物性如热导率、比热容、粘度等有关的系数,如果气体成分和物性恒定则视为常数。D式4中E 是与实际流动有关的常数。”。恒定,控制加热功率随着流量增加而增加功率,这种方法称作“功率消耗测量法若保持ΔT

点优2、

,2~60m/s)中偏高流速(气体可测量低流速(气体0.02~2m/s)微小流量;浸入式TMF可测量低~热分布式TMF 更适合于大管径。插入式TMF无活动部件,无分流管的热分布式仪表无阻流件,压力损失很小;带分流管的热分布式仪表和浸入性仪表,TMF 虽在测量管道中置有阻流件,但压力损失也不大。使用性能相对可靠。与推导式质量流量仪表相比,不需温度传感器,压力传感器和计算单元等,仅有流量传TMF 感器,组成简单,出现故障概率小。等接近理想气体的双原子气体,不必用这些气体专门标定,直接就、NO、O2、CO N2 热分布式仪表用于H2 、即可;用于其他气体可用等单原子气体则乘系数1.4Ar、He用空气标定的仪表,实验证明差别仅2%左右;用于比热容换算,但偏差可能稍大些。气体的比热容会随着压力温度而变,但在所使用的温度压力附近不大的变化可视为常数。

热式质量流量计响应慢。cp值和热导率变化,测量值会有较大变化而产生误差。被测量气体组分变化较大的场所,因对小流量而言,仪表会给被测气体带来相当热量。,被测气体若在管壁沉积垢层影响测量值,必须定期清洗;对细管型仪表更有易堵塞的缺点,TMF对于热分布式一般情况下不能使用。

对脉动流在使用上将受到限制。

液体用TMF对于粘性液体在使用上亦受到限制。

页脚内容.

精品整理

按流体对检测元件热源的热量作用可分为热量传递转移效应和热量消散效应或冷却效应。

应用概况5.1

TMF目前绝大部分用于测量气体,只有少量用于测量微小液体流量。

石油化工微型反较多应用于半导工业外延扩散、热分布式仪表使用口径和流量均较小,应装置、镀膜工艺、光导纤维制造、热处理淬火炉等各种场所的氢、氧、氨、燃气等气

页脚内容.

精品整理

在气体流量控制,以及固体致冷中固体氩蒸发等累积量和阀门制造中泄漏量的测量等。分流型热分布式仪表应用体色谱仪和气体分析仪等分析仪器上,用于监控取样气体量。以上管径时,通常在主流管道上装孔板等节流装置或均速管,分流部分气于30~50mm 体到流量传感器进行测量。

年在环境保护和流程工业中应用发展迅速,例如;国外近10冷却效应的插入式TMF气配比控制,污水处理发生水泥工业竖式磨粉机排放热气流量控制,煤粉燃烧过程粉/大管道用还有径向分段排列多的气体流量测量,燃料电池工厂各种气体流量测量等等。和组检测元件组成的插入检测杆,应用于锅炉进风量控制以及烟囱烟道排气监测SO2 排放总量。NOX

应用于化学、石油化工、食品等流程工业实验性装置,如液化气流TMF液体微小流量药液配比系统定流量配比控量测量,注入过程中控制流量;高压泵流量控制的反馈量;还有在色谱分析等仪器上供给工业流程或商业销售。制;直接液化气液态计量后气化,TMF用作定量液取样控制以及用于动物实验麻醉液流量测量。还未见到液体微小流量国内定型产品。

流体种类和物性5.2

气体或液体,用气体的型号不能用于液体,反之------TMF只能用于测量清洁单相流体亦然。对于热分布式气体还必须是干燥气体,不能含有湿气。流体可能产生的沉积、结制造厂还应给出接受的不清洁程TMF 垢以及凝结物均将影响仪表性能。对于热分布式TMF用户可按此决定是在仪表前装过滤器。浸入式例如大部分给出允许微粒粒度,度,能再不停流条件对清洁度要求低些,则可用于测量烟道气,但必须装有阀等插入机构,下去取出检测头。

流体的比热容和热导率(1)

工作时流体的比热容和热导率保持恒定才能测量准确。被测TMF和式2可知,从式1介质工况温度、压力变化范围不大,仅在工作点附近波动,比热容变化不大,可视作常2数。若工作点压力温度远离校准时压力温度,则必须在该工作点压力温度下调整。表列出几种气体在不同压力温度下的定压比热容,可看到其变化程度。

表2 几种气体定压比热容cal/(g?K)

页脚内容.

精品整理

1cal/ (g?k)=4186.8J/ (kg?K) 注:流量值的换算2()。热分布式(校准)TMF制造厂通常用空气或氮气在略高于常压的室温工况条件下标定如实际使用工况有异或不用于同一气体,均可通过各自条件下比热容或换算系数换算。的数值可以看出空气、氩气、一氧化碳、氮同一气体不同工况的流量换算从表2 1)之气、氧气压力在1MPa以下变化,定压比热容变化仅在400K1%~2%以下、温度在因为同一气压力温度变换较大时也可利用式间,大部分使用场所可不作换算;6计算,体两种工况条件下定压比热容的比值与摩尔定压比热容的比值是相等的。,2)F 不同气体间流量换算有些制造厂的使用说明书给出以空气为基数的转换系数66换算;也可直接以标定(校准)气体和实际使用气体的摩尔定压比热按式可按式给出若干气体按摩尔定换算,但因还有热导率等其他因素,换算后精度要降低些。表3两者差别较压比热容直接计算和若干制造厂提供的两种转换系数数据,其中Freon12 大。3 表几种气体的转换系数

页脚内容.

精品整理

各厂提供的转换系数单双原子气体差别较小,仅百分之几;烃类气体则差别较大,达。20% ~30%

(5)

(6)

(标准状态);式中qm-----仪表标定的质量流量,但通常以标准状态体积流量表征,L/h (标准状态);qm -------特使用气体的质量流量。L/hk); J/ (moI·cP-------标定气体的摩尔定压比热容,通常为空气,。cP-------待使用气体的摩尔定压比热容,J/ (moI·k)中各系数由各个检测元件几何形状和所测气体而定,和式(4)TMF浸入式由于式(3)所以目前通常只能在实际使用条件下个别校准。Fmix6进行,惟其转换系数3)

混合气体的换算的转换系数混合气体的换算亦按式合成按式7(7)

为各成分气体的转换系F1,F2,-----FnV1,V2,----Vn为各成分气体体积的占有率;式中数。3()流体中含有异相和低沸点液体气体用仪表,热分布式必须是清洁气体,不能有固相,浸入式则可允有微粒,但均不得含有水气。测量液体时如混入气泡会产生测量误差。要带给流体一定热量,流体温度会升高,如所测液体是低沸点液体,由于大部分TMF 。应考虑液体汽化气化问题,必要是时选用致冷元件的TMF 5.3 仪表性能考虑

页脚内容.

精品整理

流量范围、流速和范围度1)(

的流量应以单位时间流过的质量来表示,但测量气体时习惯上亦常以计算到标准TMF状态下单位时间流过的体积表示。流速亦以标准状态下单位时间流过距离的长度表示。适用于低流速范围,特别是小口径热分布式;带测量短管浸TMF与其他流量计相比,最小上限流/入检测杆式可选上限(满度)流速范围较宽,上限范围度(最大上限流量之间。型)TH1200量)在10~ 30(型)和60 ~80 (TH1300

视之间,但较多用于3~60m/s插入式TMF的上限流速选择范围较宽,可在0.5~100m/s, TMF 适用于低流速烟道气测量。仪表结构设计而异。插入式数量级1~102g/min10-液体用TMF的上限流量很小,国外现有产品上限流量范围在之间。之间;流量范围度在10:1~50:1

2)精确度和重复性(

之间。国外设)%FS具有中等测量精确度。热分布式的基本误差通常在±(2~2.5TMF

之间。,重复性则在0.2%~0.5%FS计优良的产品则有较高精确度,基本误差为±1%FS。±2%R%之间,设计优良的产品可达带测量短管浸入式的基本误差相仿,亦在±(2~2.5)单点测量影响较大,还应加上流速分布系数变化影响等,插入式除仪表本身基本误差外,之间。2.5~5)%FS多点或多检测杆则影响较小,合计约在±(

有制造厂在正常流速分布流动状况插入式仪表检测的点数视流通面积和流动状况而定,为双点,200~300mm 下,推荐检测点数为:;圆管直径在200mm以下为单位单点,0.05m2点。矩形管面积以上为6为5点,1250mm750~1200350~700mm为3~4点,12~20为点。点,2.5m2以上为4~12以下为单点,0.1~0.2m2为2~4点,0.2~2.5mm2为

响应性3)(

,0.5s,响应较快者为TMF在流量仪表中的响应时间是比较长的,时间常数一般为2~5s若应用于控制系统不能选用响应时间长的仪有些型号长达数秒、十几秒甚至几十秒者。表。

流体温度,环境温度和环境温度影响量)(4

,应用于窑炉或烟道的高温高─10~1200C0~500C,范围较宽者为流体使用温度一般为)。。加热热源温度高于气体数十度(粉尘型则可高达5500CK

流量,(体积)不像体积流量仪表那样气体体积变化改变所测测量气体时流体温度变化,

页脚内容.

精品整理

并不影响质量流量,然而如前文所述若温度变化过大,比热容的变化会导致量程变化。这种影响因气体种类而异,如空气、氮气、氧气、氢气等影响量不大;但有些气体例如)此(见表2升高到400K定压比热容要增加11.1%甲烷压力在0.1MPa,温度从300K 外还有零点偏移影响。

。环境温度激烈变化将影响。较宽者为(─10~ +80)0C环境温度适用范围通常为(0~50)0C环境温度影响量一导致测量值的变化,包括零点偏移和量程变化。经外壳散失的热量,(0.5~1.5)%/10K,但也有一些制造厂声称无环境温度影响。般为±

压力损失5)(

以下,其中带10kpa气体用仪表压力损失很小,满量程流量时热分布式压力损失均在型仅数十帕;浸

安装姿势(方向)6.1

垂直或倾斜)的流量传感器可任何姿势(水平、热分布式大部分热分布式TMF)1

然而有些型号有些仪表只要安装好后在工作条件压力、温度下作电气零点调整。安装,仪表对安装姿势具有敏感性,大部分制造厂会对此就安装姿势影响和安装要求作出说±20只能水平安装,水平度允差。LDG-明。例如□DB系列为减少环境气氛对流传热影响,应用于高压气体时流量传感器则宁可选择水平安装,因为这样便于做到调零的零偏置。

2)浸入式大部分浸入式TMF性能不受安装姿势影响。然而在低流速测量时因受管道内气体对流的热流影响,使安装姿势显得重要。因此在低和非常低流速流动时要获得精确测量,必须遵循制造厂依据仪表设计结构而定的安装建议。

6.2 前置直管段

1)热分布式本类仪表对上下游配管布置不敏感,通常认为无上下游直管段长度要求。国际标草案ISO/DIS 11451认为流量测量不受旋转流和流速场剖面畸变影响。然而BS

7405却认为;①上下游直管段长度可小至2D;②在进口端置一金属(或塑料)网,可有效地改善流速分布畸变,得到分布均匀的气流;③要防止从小管径突然扩大进入较大口径仪表,要缓慢过渡。

页脚内容.

精品整理

带测量管的浸入式流量传感器和插入式仪表需要一定长度前置直管段,浸入式2)

建议对于在管道中对此未作具体规定,而按制造厂建议的值。BS 7405ISO/DIS 14511列举的下游直管段。表4(8~10)D的上游直管段和(3~5)D用插入热丝流速计时,需要所规定的上直管段长度;若在其进口端装一块或二公司对带测量管浸入式TMFSierra 快多孔板式流动调整器(整流器)后,则其长度可大为缩短,如表最右列所示。表4 带测量管浸入式上游直管段长度列

上游直管段长度要求上游组流件名内装流动调整器无流动调整器

控制阀≥3D ≥45D

0 T弯管或型接管90≥1D ≥15D

D )≥(10~45 渐扩管≥3D

渐缩管≥1D ≥15D

注:摘自Sierra 公司760UHP型780UHP型样本。

只有一组温度检测点的插入式仪表与带测量管浸入式仪表的上游直管段长度要求相近(只相差检测杆到测量管进口端的距离);多组检测点的检测杆或多根检测杆的TMF,直管段长度可缩短很多,通常制造厂会提供建议。

6.3 仪表连接管道的振动

连接TMF的管道在常见实际范围内的振动不会产生振动干扰,在正常情况下不影响仪表的测量性能。惟插入式TMF的检测杆必须牢固地固定于管道,并避免装在有振动的场所。

6.4 脉动流的影响

TMF响应时间长,不适应脉动流流量测量。若作测脉动流测量,应了解TMF的响应性,以保证能跟随的上脉动的速度变化。脉动引起的测量误差通常使仪表输出偏高,其程度取决于脉动幅值和频率。

页脚内容.

超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述 一、工作原理 1、概述 超声流量计是一个测量仪表,它利用声学原理来测定流过管道的流体的流速。在气体的测量现场主要的检测元件包括一对或几对超声传感器。这些传感器都安装在管壁上,每一组传感器的表面都彼此具有规定的几何关系。 由一个传感器发射的超声脉冲由同一组内另一个传感器接收,反过来也如此。Q.Sonic-3 采用了一个单反射声道的方案,在对面的管壁处声脉冲有一次反射。此方案使声道的总长度增加,从而能改善分辨率(灵敏度)并拓宽流量计的范围度,如图2-1所示。 图2-1 信号反射路径 2 、流速的测量 超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;这样就有: L tD = ——————— -------------- (2.1) C + V ? cos 和 L tU = ——————— -------------- (2.2) C — V ? cos 式中,L代表两个传感器之间声道的直线长度,可按下式确定L: L D —— = ———— -------------- (2.3) 2 sin ^ 采用电子学手段来测量此传输时间。根据时间倒数的差,可按下式计算流速V ^ L 1 1 V = ————(—————)-------(2.4)

热式质量流量计工作原理与常见问题分析

热式质量流量计工作原理与常见问题分析 【摘要】介绍了热式质量流量计的工作原理与特点,同时分析了流量计在使用过程中经常出现的故障及处理方法,最后对日常维护做了简要说明。 【关键词】热式质量流量计;工作原理;常见故障;处理方法;日常维护 引言 热式质量流量计在传统化工企业中不多常用,但在聚甲醛精细化工企业中,由于使用化工原料三氟化硼,因三氟化硼是剧毒腐蚀性化学品,作为三聚甲醛反应过程的催化剂,使用量很小,而且要求测量准确、调节精密,常规流量仪表无法达到三氟化硼的测量要求,从而采用专用流量计--三氟化硼热式质量流量计实现测量调节,以达到工艺装置生产的要求。本文适用于聚甲醛化工企业中在线使用的SLAMF50SH1CD1K2A1K411AA热式质量流量计(品牌BROOKS),其他同类型仪表可参照使用。 1 工作原理 热式气体质量流量计是利用热扩散原理测量气体流量的仪表。传感器由两个基准级热电阻(RTD)组成。一个是速度传感器RH,一个是测量气体温度变化的温度传感器RMG。当这两个RTD置于被测气体中时,其中传感器RH被加热,另一个传感器RMG用于感应被测气体温度。随着气体流速的增加,气流带走更多热量,传感器RH的温度下降。 根据热效应的金氏定律,加热功率P、温度差△T(TRH-TRMG)与质量流量Q有确定的数学关系式。P/△T=K1+K2 f(Q)K3 K1、K2、K3是与气体物理性质有关的常数。热式气体质量流量计独特的温度差测量方式克服了采用恒温差原理的热式气体质量流量计测量煤气流量时因煤气中含水、油和杂质而造成的很大的零点漂移,导致无法测量的弊端。 2 常见故障及处理方法 2.1 故障:流量计工作不稳定;处理方法:保证流量计前压力稳定,投运方法正确。 投运流量计时做到流量计前的平稳,不能直接开钢瓶减压阀代替流量计前手阀。在更换钢瓶或切换流量计时,要关闭流量计前手阀,待压力稳定在操作压力0.7Mpa以下,慢慢打开手阀。突然的流量涌动会造成器件损坏。更换钢瓶或切换流量计时由工艺人员和仪表人员共同完成,相互督促。切忌用压缩空气对管线进行吹扫。 2.2 故障:流量计堵塞;处理方法:流量计前的过滤器及流量计需要定期清

热式质量流量计原理与概述

热式质量流量计原理及概述 2010-5-31 瑞特仪表编辑:东升 热式质量流量计(以下简称TME)是利用传热原理,即流动中的流体与热源(流体中加热的物体或测量管外加热体)之间热量交换关系来测量流量的仪表,过去我国习称量热式流量计。当前主要用于测量气体。 20世纪90年代初期,世界围TMF销售金额约占流量仪表的8%,约4.5万台。国90年代中期销售量估计每年1000台左右。过去流程工业用仪表主要是热分布式,近几年才开发热散(或冷却)效应式。 1. 原理和结构 热式流量仪表用得最多有两类,即1)利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式流量计(thenmaI prohIe fIowmeter)曾称量热式TMF;2)利用热消散(冷却)效应的金氏定律(King s Iaw)TMF。又由于结构上检测元件伸入测量管,也称浸入型(immersion type )或侵入型(intrusion type)。有些在使用时从管外插入工艺管的仪表称作插入式(insertion type)。 热分布式TMF的工作原理如图1所示,薄壁测量 管3外壁绕着两组兼作加热器和检测元件的绕组 2,组成惠斯登电桥,由恒流电源5供给恒定热量, 通过线圈绝缘层、管壁、流体边界层传导热量给 管流体。边界层热的传递可以看作热传导方式实 现的。在流量为零时,测量管上的温度分布如图 下部虚线所示,相对于测量管中心的上下游是对 称的,由线圈和电阻组成的电桥处于平衡状态; 当流体流动时,流体将上游的部分热量带给下游, 导致温度分布变化如实线所示,由电桥测出两组 线圈电阻值的变化,求得两组线圈平均温度差 ΔT。便可按下式导出质量流量qm,即 (1) 式中 cp -------被测气体的定压比热容; A -------测量管绕组(即加热系统)与周围环境热交换系统之间的热传导系数; 在总的热传导系数A中,因测量管壁很薄且具有相对较高热导率,仪 表制成后其值不变,因此A的变化可简化认为主要是流体边界层热导 率的变化。当使用于某一特定围的流体时,则A、cp均视为常量,则 质量流量仅与绕组平均温度差成正比,如图2 Oa 段所示。 Oa段为仪 表正常测量围,仪表出口处流体不带走热量,或者说带走热量极微;

科氏力质量流量计的工作原理和典型结构特性

科氏力质量流量计的工作原理和典型结构特性 中国计量研究院流量室李旭 一、工作原理 如图一所示,截取一根支管,流体在其内以速度V从A流向B,将此管置于以角速度ω旋转的系统中。设旋转轴为X,与管的交点为O,由于管内流体质点在轴向以速度V、在径向以角速度ω运动,此时流体质点受到一个切向科氏力Fc。这个力作用在测量管上,在O点两边方向相反,大小相同,为: δFc = 2ωVδm 因此,直接或间接测量在旋转管道中流动的流体所产生的科氏力就可以测得质量流量。这就是科里奥利质量流量计的基本原理。 图1 科里奥利力的形成图2 早期科氏力质量流量计 二、结构 早期设计的科氏力质量流量计的结构如图2所示。将在由流动流体的管道送入一旋转系统中,由安装在转轴上的扭矩传感器,来完成质量流量的测量。这种流量计只是在试验室中进行了试制。 在商品化产品设计中,通过测量系统旋转产生科氏力是不切合实际的,因而均采用使测量管振动的方式替代旋转运动。以此同样实现科氏力对测量管的作用,并使得测量管在科氏力的作用下产生位移。由于测量管的两端是固定的,而作用在测量管上各点的力是不同的,所引起的位移也各不相同,因此在测量管上形成一个附加的扭曲。测量这个扭曲的过程在不同点上的相位差,就可得到流过测量管的流体的质量流量。 我们常见的测量管的形式有以下几种:S形测量管、U形测量管、双J形测

量管、B形测量管、单直管形测量管、双直管形测量管、Ω形测量管、双环形测量管等,下面我们分别对其结构作一简单介绍。 1. S形测量管质量流量计 如图3所示,这种流量计的测量系统由两根平行的S形测量管、驱动器和传感器组成。管的两端固定,管的中心部位装有驱动器,使管子振动。在测量管对称位置上装有传感器,在这两点上测量振动管之间的相对位移。质量流量与这两点测得的振荡频率的相位差成正比。 图3 S形质量流量计结构 这种质量流量计的工作原理及工作过程,如图4所示。 图4 无流动时位移传感器的输出 当测量管中流体不流动时,两根测量管在驱动力作用下(作用在每根管子上的力大小相等、方向相反)作对称的等振幅运动。由于管子两端是固定的,在管子中间振幅最大,到两端逐渐减为零。这时在两个传感器上测得的相位如图4B 所示,由图中可以看出,两传感器测得的相位差为零。当测量管内流体以速度V 流动时,流体中任意值点的流速,可认为是两个分流速的合成:水平方向Vx及垂直方向Vy(与振动方向相同)。在恒定流条件下,流体沿水平方向的流速Vx 保持恒定。从图5中可以看出,管子的进、出口处振幅为零,流体质点垂直移动 速度Vx为零;

热式质量流量计原理及概述

精品整理 热式质量流量计原理及概述 编辑:潘东升江苏瑞特仪表有限公司2010-5-31 )是利用传热原理,即流动中的流体与热源(流体中加热的物体或测量管外TME 热式质量流量计(以下简称 加热体)之间热量交换关系来测量流量的仪表,过去我国习称量热式流量计。当前主要用于测量气体。年代中期销售量估万台。国内90销售金额约占流量仪表的8%,约4.590 20世纪年代初期,世界范围TMF 台左右。过去流程工业用仪表主要是热分布式,近几年才开发热散(或冷却)效应式。计每年1000 1. 原理和结构利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式1)热式流量仪表用得最多有两类,即。TMF(效应的金氏定律King s Iaw)thenmaI prohIe fIowmeter)曾称量热式TMF;2)利用热消散(冷却)(流量计)。有些在使用intrusion type又由于结构上检测元件伸入测量管内,也称浸入型(immersion type )或侵入型()。时从管外插入工艺管内的仪表称作插入式(insertion type TMF 热分布式1.1 )(1cp -------被测气体的定压比热容;式中A -------测量管绕组(即加热系统)与周围环境热交换系统之间的热传导系数; K -------仪表常数。

页脚内容. 精品整理 TMF 1.2基于金氏定律的浸入型 金氏定律的热丝热散失率表述各参量间关系,如式所示。2)2(单位长度热散失率,H/L -------J/m?h; 式中--------ΔT热丝高于自由流束的平均升高温度,K;--------λ流体的热导率,J/h?m?K; cV---------定容比热容,J/kg?k;3kg/m密度,---------ρ;

科里奥利质量流量计工作原理和基本结构

标 题: 科里奥利质量流量计工作原理和基本结构 说明:众所周知,当一个位于旋转系内的质点作朝向或者离开旋转中心的运动时,将产生一惯性力。如 图6-1所示,当质量为(δm的质点以匀速u在一个围绕旋转轴P以角速度ω旋转的管道内轴向移动时,这个质点将获得两个加速度分量: (1)法向加速度a r (向心加速度),其值等于ω2r,方向指向P轴。 (2)切向加速度a t (科里奥利加速度),其值等于2ωu,方向与a r 垂直,正方向符合右手定则,如图6-1所示。 为了使质点具有科里奥利加速度a t ,需在a t 的方向上加一个大小等于2ωuδm的力,这个力来自 管道壁面。反作用于管道壁面上的力就是流体施加在管道上的科里奥利力F c 。 方向与α t 相反。 从图6-1可以看出,当密度为ρ的流体以恒定流速u沿图6-1所示的旋转管流动时,任一段长度ΔX的管道都将受到一个大小为ΔF e的切向科里奥利力: 式中,A为管道内截面积。由于质量流量q m =ρuA,因此: 基于上式,只要能直接或者间接地测量出在旋转管道中流动的流体作用于管道上的科里奥利力,就可以测得流体通过管道的质量流量。 在过程工业应用中,要使流体通过的管道围绕P轴以角速度ω旋转显然是不切合实际的。这也是早期的质量流量计始终未能走出实验室的根本原因。经过几十年的探索,人们终于发现,使管道

绕P轴以一定频率上下振动,也能使管道受到科里奥利力的作用。而且,当充满流体的管道以等于或接近于其自振频率振动时,维持管道振动所需的驱动力是很小的。从而从根本上解决了CMF 的结构问题。为CMF的迅速商用化打下了基础。 经过近二十年的发展,以科里奥利力为原理而设计的质量流量计已有多种形式。根据检测管的形状来分,大体上可以归纳为四类,即:直管型和弯管型;单管型和多管型(一般为双管型)。 弯管型检测管的仪表管道刚度低,自振频率也低,可以采用较厚的管壁,仪表耐磨、耐腐蚀性能较好,但易存积气体和残渣引起附加误差。直管型仪表不易存积气体,流量传感器尺寸小,重量轻。但自振频率高,为使自振频率不至于太高,往往管壁做得较薄,易受磨损和腐蚀。单管型仪 表不分流,测量管中流量处处相等,对稳定零点有好外,也便于清洗,但易受外界振动的干扰,仅见于早期的产品和一些小口径仪表。双管型仪表由于实现了两管相位差的测量,可降低外界振动干扰的影响。 科氏力质量流量计的性能特点: 与传统的流量测量方式相比,该流量计具体优点有如下几个方面: 直接测量管道内流体的质量流量 测量准确度高、重复性好,可在较大量程比范围内,对流体质量流量实现高准确度直接测量。 计量的准确度高 该流量计的质量流量测量准确度是0.2级;同时,它还能准确地测出流体介质的温度和密度。 工作稳定可靠 流量计管道内部无障碍物和活动部件,因而可靠性高、寿命长、维修量小;使用方便、安全。 适应的流体介质面宽 除一般粘度的均匀流体外,还可测量高粘度、非牛顿型流体;不仅可以测量单一溶液的流体参数,还可以测量混合较均匀的多相流;无论介质是层流还是紊流,都不影响其测量准确度。 广泛的应用领域 可在石油化工、制药、造纸、食品、能源等多种领域实施计量和监控。 防腐性能好 能适用各种常见的腐蚀性流体介质。 多种实时在线测控功能 除质量流量外,还可直接测量流体的密度和温度。智能化的流量变送器,可提供多种参数的显示和控制功能,是一种集多功能为一体的流量测控仪表。 可扩展性好 公司可根据用户需要,专门设计和制造特殊规格型号和特殊功能的质量流量计;还可进行远程监控操作等。 两相分离计量的另一种形式的计量设备由两相分离器、质量流量计和气体流量计组成。质量流量计测量分离出的液量,并计算出其中的含水率,从而测量出油井的油、气、水产量。这种计算装置投资较少、操作简便,在我国油田中获得了较多的应用。 由这一段话可以看出液体和气体的计量是有区别的。 点击下面的文字可以看清楚的。

基于科氏质量流量计的聚氨酯计量控制系统设计

第39卷第7期2018年7月自 动 化 仪 表PROCESS AUTOMATION INSTRUMENTATION Vol.39No.7Jul.2018收稿日期:2017-12-14作者简介:王华强(1963 ),男,硕士,副教授,主要从事工业过程控制方向的研究,E-mail:wang hua qiang@https://www.sodocs.net/doc/124145363.html, 基于科氏质量流量计的聚氨酯计量控制系统设计 王华强,陈 浩 (合肥工业大学电气与自动化工程学院,安徽合肥230009) 摘 要:作为一种重要的聚氨酯树脂合成原料,二苯基甲烷二异氰酸酯(MDI)价格昂贵且对产品性能影响显著,需要精确计量三在聚氨酯树脂规模化生产过程中,需要多次使用MDI三原计量系统采用一个科氏质量流量计(CMF),分别计量多个管道的MDI 质量三为避免管道中由于MDI 残留造成计量误差,在原计量系统的基础上,增加了多个CMF,并采用可编程逻辑控制器(PLC)控制三介绍了计量系统的结构和工作原理,给出了计量系统的控制流程三对比了改造前后的计量系统结构组成和特点,阐述了流量计的结构二原理和选型,比较了几种CMF 算法的优劣性三基于CMF 的聚氨酯计量控制系统在试生产中达到预期要求,提高了计量系统的测量精度三 关键词:聚氨酯;计量系统;科氏质量流量计;传感器;PLC 中图分类号:TH814;TP273 文献标志码:A DOI:10.16086/https://www.sodocs.net/doc/124145363.html,ki.issn1000-0380.2017120017 Design of Polyurethane Metering Control System Based on Coriolis Mass Flowmeter WANG Huaqiang,CHEN Hao (School of Electric Engineering and Automation,Hefei University of Technology,Hefei 230009,China)Abstract :As an important raw material for synthesis of polyurethane resin,diphenyl-methane-diisocyanate (MDI)needs to be precisely weighed because it is expensive and has a significant impact on product performance.In the process of large scale production of the polyurethane,it is necessary to use MDI multiple times.In original metering system,Coriolis mass flowmeter (CMF)is used to respectively measure the mass of MDI in multiple pipelines.In order to avoid the measurement error caused by the residual MDI in the pipeline,a number of CMFs are added based on the original measurement system and PLC control is adopted.The structure and operation principle of the metering system are introduced,the control flowchart of the metering system is given.The composition and structural characteristics of the metering system before and after revision are compared,and the structure,principle and model selection of the flowmeters are described,the advantages and disadvantages of several algorithms of CMF are compared.The polyurethane metering control system based on CMF achieves expected results in trial production and improves the measurement accuracy of the metering system.Keywords :Polyurethane;Metering system;Coriolis mass flowmeter;Sensor;PLC 0 引言 在聚氨酯树脂(polyurethane,PU)工业生产过程 中,不同的物料配比会导致产品具有不同的性能三企 业在生产不同用途的产品时,需要产品具有特定的性 能[1]三为了确定最佳的物料配比,企业在研发中需要试验不同的配方三作为一种重要的聚氨酯树脂合成原 料,二苯基甲烷二异氰酸酯(diphenyl-methane- diisocyanate,MDI)因其价格昂贵且对产品性能影响显著,需要精确计量三在聚氨酯树脂规模化生产的过程 中要多次使用MDI,需由多个管道下料三原计量系统 中,企业采用一个科氏质量流量计(Coriolis mass flowmeter,CMF)分别计量多个管道的MDI 质量,而其他物料采用托利多秤称重计量三随着企业生产规模的扩大,由于管道中MDI 残留,采用单独CMF 计量的精度已不能满足要求三对于上述问题,本文在原计量系统的基础上,改进了计量仪表,比较了几种CMF 的算法,提高了物料的下料精度,减小了产品质量的波动三1 计量系统原理与结构某企业聚氨酯树脂生产采用高纯对苯二甲酸万方数据

节流式流量计的工作原理

节流式流量计的工作原理 节流式流量计是一种典型的差压式流量计.是目前工业生产中用来测量气体、液体和蒸气流量的最常用的一种流量仪表. 据调查统计,在炼钢厂、炼油厂等工业生产系统中所使用的流量计有(70—80)%左右是节流式流量计.在整个工业生产领域中,节流式流量计也占流量仪表总数的一半以上.节流式流量计所以得到如此广泛的应用,主要是因为它具有以下两个非常突出的优点: ①结构简单,安装方便,工作可靠,成本低,又具有一定准确度.能满足工程测量的需要. ②有很长的使用历史,有丰富的、可靠的实验数据,设计加工已经标准化.只要按标准设计加工的节流式流量计,不需要进行实际标定,也能在已知的不确定度范围内进行流量 测量. 尤其是第二个优点,使得节流式流量计在制造和使用上都非常方便.因为对一个流量计,特别是大流量测量用的流量汁,在检定时将会遇到各种各样的困难.

节流式流量计通常由能将流体流量转换成差压信号的节流装置及测量差压并显示流量的差压计组成.安装在流通管道中的节流装置也称“一次装置”,它包括节流件、取压装置和前后直管段.显示装置也称“二次装置”,它包括差压信号管路利测量中所需的仪表. 不少国家对节流装置做了很多研究工作.AGA(美国气体协会)和ASME(美国机械工程师协会)从本世纪初就开始进行节流装置的实验,研究结果分别在1969年和1971年的报告中发表.DIN(德国工业标准)中,早就对节流装置进行了规定,到1969年已经过六次修订国际标难化组织(ISO)在汇总了各国的研究成果的基础上,分别于1967年和1968年出版了ISO/R541和ISO/R781,作为节流装置的国际标准.1980年又对前面的两个文件进行了修订,出版了适合于孔板、喷嘴和文丘里管的国际标准ISO 5167.我国也于1981年出版了流量测量节流装置的国家标准GB 2624,对角接取压、法兰取压的标准孔板和角接取压标准喷嘴做了具体规定. 使用标准节流装置时,流体的性质和状态必须满足下列条件: ①流体必须充满管道和节流装置,并连续地流经管道. ②流体必须是牛顿流体,即在物理上和热力学上是均匀的、单相的,或者可以认为是单相的,包括混合气体,溶液和分散性粒子小于o.1

热式质量流量计哪家好

热式质量流量计哪家好 热式气体质量流量计是基于热扩散原理而设计的,该仪表采用恒温差法对气体进行准确测量。具有体积小、数字化程度高、安装方便,测量准确等优点。传感器部分由两个基准级铂电阻温度传感器组成,仪表工作时,一个传感器不间断地测量介质温度T1;另一个传感器自加热到高于介质温度T2,它用于感测流体流速,称为速度传感器。 该温度ΔT=T2-T1,T2>T1,当有流体流过时,由于气体分子碰撞传感器并将T2的热量带走,使T2的温度下降,若要使ΔT保持不变,就要提高T2的供电电流,气体流动速度热快,带走的热量也就越多,气体流速和增加的热量存在固定的函数关系,这就是恒温差原理。 其中ρg—流体比重(和密度相关) V—流速 K—平衡系数 Q—加热量(和比热及结构相关) ΔT—温度差 由于传感器温度比介质(环境)温度总是自动恒定高出30℃左右,所以热式气体流量 计从原理上不需要温度补偿。 热式气体质量流量计适用介质温度范围为-40-220℃。 (1)式中流体比重和密度相关

其中ρg—工况体积下的介质密度(kg/m3) ρn—标准条件下介质密度(101.325Kpa、20℃)(kg/m3) P—工况压力(kPa) T—工况温度(℃) 从(1)(2)式可以看出,流速和工况压力,气体密度,工况温度函数关系已确定。恒温差热式气体质量流量计不但不受温度影响,而且不受压力的影响,热式气体质量流量计是真正的直接式质量流量计,用户不必对压力和温度进行修正。 热式气体质量流量计具有如下技术优势: ①真正的质量流量计:对气体流量测量无需温度和压力补偿,测量方便、准确。可得到气体的质量流量或者标准体积流量。 ②宽量程比:可测量流速高至100Nm/s底至0.5Nm/s的气体,可以用于气体检漏。 ③抗震性能好使用寿命长:传感器活动部件和压力传感部件,不受震动对测量精度的影响。 ④安装维修简便:在现场条件允许的情况下,可以实现不停产安装和维护。 ⑤数字化设计:整体数字化电路测量,测量准确、维修方便。 ⑥采用RS-485通讯:或HART通讯,可以实现工厂自动化、集成化。 热式质量流量计厂家——上海有恒测控是集研发、生产、销售为一体的现代化仪器仪表制造企业,主要从事工业自动化仪器仪表的生产销售及安装成套、自动化项目的系统集成、工程服务及特殊需求定制。代表设备有涡街流量计、涡轮流量计、热式质量流量计等各类型

质量流量计工作原理的学习

质量流量计工作原理的学习 质量流量计以科氏力为基础,在传感器内部有两根平行的T型振管,中部装有驱动线圈,两端装有拾振线圈,质量流量计直接测量通过流量计的介质的质量流量,还可测量介质的密度及间接测量介质的温度。质量流量计是一种重要的流量测量仪表。质量流量计是采用感热式测量。 流体的体积是流体温度和压力的函数,它是一个因变量,而流体的质量是一个不随时间、空间温度、压力的变化而变化的量。如前所述,常用的流量计中,如孔板流量计、涡轮流量计、涡街流量计、电磁流量计、转子流量计、超声波流量计和椭圆齿轮流量计等的流量测量值是流体的体积流量。在科学研究、生产过程控制、质量管理、经济核算和贸易交接等活动中所涉及的流体量一般多为质量。采用上述流量计仅仅测得流体的体积流量往往不能满足人们的要求,通常还需要设法获得流体的质量流量。以前只能在测量流体的温度、压力、密度和体积等参数后,通过修正、换算和补偿等方法间接地得到流体的质量。这种测量方法,中间环节多,质量流量测量的准确度难以得到保证和提高。随着现代科学技术的发展,相继出现了一些直接测量质量流量的计量方法和装置,从而推动了流量测量技术的进步。 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P ?正比于2 qρ,如图1所示,密度计 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为

热式气体质量流量计的工作原理

热式气体质量流量计的工作原理 本文主要介绍热式气体质量流量计的工作原理,安装技术规范、调试方法以及应用注意事项和ST98A流量计在滨化热力公司锅炉中的应用及常见故障处理方法。 3、质量流量计插入深度等于管内径的1/2+12.7+管厚。 4、接线 1)、出于安全因素的考虑,ST98特别要求220V AC电源采用三线制,其中一根接地线必须连接到流量变送器接线端子排的接地终端。 2)、因传统4~20mA的I/O产品对变频驱动设备等产生的高频噪声干扰较为敏感,且现场的电气高频噪声污染较为严重。避免仪表信号传输回路遭受干扰,对输出信号电缆采用屏蔽电缆,且屏蔽层在靠近变送器一端接地,DCS机柜一端包裹保护起来。 5、现场传感器部分按照图三、四联接

五、调试 使用ST98流量变送器提供的RJ-12通讯串口与FCI的FC88通讯器进行链接通讯。 第一、将风机负荷调节至40%,在过程连接头A处插入传感器总长度1/3,记录FC88 T状态下流量值,继续推进传感器至2/3处,记录流量值,最后全部推进,记录流量值。然后将传感器分别移至B和C点记录数据。 第二、将风机负荷调节至60%,在过程连接头A处插入传感器总长度1/3,记录FC88 T状态下流量值,继续推进传感器至2/3处,记录流量值,最后全部推进,记录流量值,然后将传感器分别移至B和C点记录数据。 第三、将风机负荷调节至80%,在过程连接头A处插入传感器总长度1/3,记录FC88 T状态下流量值,继续推进传感器至2/3处,记录流量值,最后全部推进,记录流量值。然后将传感器分别移至B和C点记录数据。把3个不同负荷下的9个数据相加除9,既为不同负荷下瞬时流量值。 示例:负荷40%点 A位置三个数据分别为:365NCMH、500 NCMH、700 NCMH。B位置三个数据分别为:200 NCMH、600 N CMH、900 NCMH, C位置三个数据分别为:800 NCMH、900 NCMH、1000 NCMH,9个数据相加,计算平均值是663 NCMH,这就是此管道的瞬时流量值,最佳安装点是A3或B2 。若安装在A3点,K系数为663除以7 00所得值0.947。若安装在B2点, K系数为663除以600所得值为1.105。三种不同负荷状态下数据计算,可寻出最佳的安装位置以及流场分布点,便于减小误差。 六、菜单控制和结构 1、大部分条目需要敲至少两个键:一个字母加[ENTER]键,或一个或多个数字加[ENTER]键。 2、所以有的用户条目由输入模式(input Mode)?<提示开始,只是当设备处于主功能模式下(这时需按[EN TER]选择条目)时除外。 3、 Y/N表示是(Y),保存或者改变参数,或否(N),不要保存或改变参数。 4、使用backspace(后退一格)[BKSP]键可以退后。 常用菜单选项表

科氏质量流量计

科氏质量流量计  传 感 器        使用说明书    2003年8月 1.0版            四川中测科技发展有限公司

科氏质量流量计  传 感 器              公司所在地:四川省成都市玉双路10号 电 话:86-28-8440-3736,8440-4095(市场部)  传 真:86-28-8440-4926,8440-4095(市场部)  邮 编:610021  网 址:www.nimtt-kj.com  电 子邮 件:Tech@nimtt-kj.com    四川中测科技发展有限公司版权所有,2003年8月    注册商标

目录 1. 概述  1.1 简介……………………………………………………………….4 1.2 工作原理………………………………………………………….4 1.3 特点……………………………………………………………….4 1.4 技术规格………………………………………………………….5 2.传感器的安装  2.1 传感器安装位置的选择………………………………………….7 2.2 传感器安装方式的选择………………………………………….7 2.3 传感器安装示意图……………………………………………….9 2.4 传感器安装过程中其它注意事项……………………………….10 2.5 减振的具体办法………………………………………………….11 2.6 传感器管道的清洁……………………………………………….11 3. 传感器与变送器的连接  3.1 传感器与变送器的连接方式…………………………………….12 3.2 接线端子盒接线………………………………………………….12 3.3 电气接线的具体要求…………………………………………….13 4.传感器的工作  4.1 电源……………………………………………………………….15 4.2 调零……………………………………………………………….15 5.保养维修  5.1 保养……………………………………………………………….16 5.2 维修……………………………………………………………….16 6.包装及附件  6.1包装……………………………………………………………….17 6.2附件……………………………………………………………….17 附录Ⅰ 传感器安装尺寸图…………………………………………..18 附录Ⅱ 质量流量系数和密度系数…………………………………..21 附录Ⅲ 电缆准备说明………………………………………………..22

热式质量流量计说明书

热式质量流量计 【热式质量流量计性能特点】: 热式气体质量流量计是利用热传导原理测量气体质量流量的仪表。热式质量流量计的传感器由两个基准级热电阻(铂RTD)组成。一个是质量速度传感器T1,一个是测量气体温度变化的温度传感器T2。当这两个RTD置于被测气体中时,其中传感器T1被加热到气体温度以上的一个恒定的温差,另一个传感器T2用于感应被测气体温度。随着气体质量流速的增加,气流带走更多热量,传感器T1 的温度下降,要维持T1、T2恒定的温度差,T1的加热功率就要增大。根据热效应的金氏定律,加热功率P、温度差△T(T1-T2)与质量流量Q有确定的数学关 系式。 P/△T=K1+K2 f(Q)K3 K1、K2、K3是与气体物理性质有关的常数。 【热式质量流量计的应用】: ● 氧气、氮气、氢气、氯气及多组分 气体测量。 ● 高炉煤气、焦炉煤气测量。 ● 烟道气测量。 ● 沼气、水处理中的曝气和氯气测量。 ● 压缩空气测量。 ● 天然气,液化气,火炬气,等气体流量测量 ● 电厂高炉的一次风、二次风流量测量 ● 矿井下通风或排风系统流量测量 【热式质量流量计特点】: ● 测量气体质量流量,无需温度、压力补偿。 ● 量程比大,测量流速范围:0.1Nm/s~100Nm/s。 ● 无压力损失,适用已知截面积的任意形状管道。 ● 耐腐蚀型传感器,适合测量腐蚀性气体。 ● 插入式传感器可以在线安装和维护。 ● 全量程段的专家算法,保证了测量的准确度。 适于贸易结算或气体检漏。 ● 液晶显示器:8位字段式+24位提示符。 ● 测量显示:质量流量、标况体积流量、累计流量、北京时间、累计运行时间。 ● 瞬时流量最大显示值:999999.9 ● 累计流量最大显示值:99999999×103 ● 信号输出:4~20mA、RS-485 ● 内置MENU(菜单)、CUS(光标移动)、UP(数值增加)、ENT(确认)四个按键,用于参数的设定。

科氏流量计原理

科氏质量流量计简述 北京航空航天大学仪器科学与光电工程学院王帅 1.科氏质量流量计的意义 质量流量测量技术发展的重点是质量流量直接式测量方法,以提高测量准确度,实现对各种介质在复杂环境条件下的高准确度、高可靠的测量。在质量流量直接式测量方法中,科里奥利质量流量计已经受到各方面用户的青睐。这是因为它能够高准确度的直接测量管道内流体的质量流量,而且稳定度高,可靠性好,量程比大,又适合应用于高粘度流体。 2.科氏质量流量计的原理 科氏流量计(Coriolis MassFlowmeter,CMF) 是基于科里奥利力的原理而设计的。流体流过测量 管时,如果测量管以某一频率振动,则振动的测量 管相当于一个匀速转动的参考系,由于流体与测量 管具有相对运动,所以会受到科里奥利力的作用, 如图1所示。这个力作用在测量管的两边上方向是 相反的,使测量管发生扭曲,流体的质量流量与这个扭转角是成正比的,因此只要测出这个扭转角,就可以得到流体的质量流量。二次仪表就是通过适当的测量电路和处理方法设计,测得扭转角并由此得出流体质量等参数[1]。 科氏流量计由一次仪表和二次仪表组成,其中一次仪表包括测量管、传感器和激振器,二次仪表则是一次仪表输出信号的处理系统[2] (如图2)。目前市场上科氏流量计的种类很多。 从一次仪表的结构来看,有直管、U形管、S 形管、Ω形管、双梯形管、螺旋形管、Δ形管 等(如图3所示)。每一种形状的测量管又有单 管、双管和多管之分。每一种管形的适用场合、 测量精度及价格水平各不相同。用户可以从安 装环境、清洗方式及对压力损失的要求等方面 作出选择[3] 。 图3科氏质量流量计的部分管型 科里奥利质量流量计具有其它流量计无可比拟的优点[4]: (1)其抗腐蚀、抗污、防爆、耐磨等问题已经满意地得到解决,因此可以测量范围广泛的介质,如油品、化工介质、造纸黑液、浆体、气体、固体颗粒的流体以及高粘度的物体。 (2)管道内无障碍物,无可动部件,故障因素少,便于清洗、维护和保养。 (3)安装简便,各种尺寸的传感器管子的进出口方向可随意调动安装:调整、使用方便,不必配置进出口的直管段。 (4 )能较容易地测量多相流体。 图2双U 形管的科氏质量流量计原理 图1科氏流量计测量管受力原理图

质量流量计工作原理

今天我们就来介绍质量流量计工作原理。 质量流量计工作原理:质量流量计是采用感热式测量,通过分体分子带走的分子质量多少从而来测量流量,因为是用感热式测量,所以不会因为气体温度、压力的变化从而影响到测量的结果。质量流量计是一个较为准确、快速、可靠、高效、稳定、灵活的流量测量仪表,在石油加工、化工等领域将得到更加广泛的应用,相信将在推动流量测量上显示出巨大的潜力。质量流量计是不能控制流量的,它只能检测液体或者气体的质量流量,通过模拟电压、电流或者串行通讯输出流量值。但是,质量流量控制器,是可以检测同时又可以进行控制的仪表。质量流量控制器本身除了测量部分,还带有一个电磁调节阀或者压电阀,这样质量流量控制本身构成一个闭环系统,用于控制流体的质量流量。质量流量控制器的设定值可以通过模拟电压、模拟电流,或者计算机、PLC提供。 质量流量计的工作原理和典型结构 科氏力式质量流量计一般由传感器和信号处理系成,而流量传感器又是一种基于科里奥利力效应的谐振式传感器。这种传感器的敏感元件——振动管,是处于谐振状态的空心金属管,又称测量管。科氏力式质量流量传感器的测量管有各种不同的结构形式,按照传感器测量管的数量可将其分为单管型、双管型和连续管型三种结构。单管型结构简单,不存在分流问题,管路清洗方便。一般地说,它对外来振动比较敏感。双管型结构容易实现相位差的测量,可以较好地克服外来振动的影响,并对提高振动系统的Q值有利。目前大多数产品均采用这种结构。但这种结构同时带来的问题是两测量管中流过的流量不可能做到绝对相等,其中的沉积物和磨蚀也不可能绝对一致,从而引起附加误差。而且在两相流工作状态下,难以作到两测量管中流体分布的均匀一致,以致影响振动系统的稳定性。随着单管型结构中测量管系统的振动不平衡问题的解决,单管型结构仍具有一定的发展前景。连续管型是一种特殊形式的单管.它以环绕两圈的单管结构试图集单、双管型的优点于-身。根据测量管的形状,又可分为直管型和弯管型两大类。直管型一般外形尺寸小且不易于积存气体,但由于其振动系统刚度大,谐振频率高,相位差为微秒级,电信号的处理就比较困难。为了不使谐振频率过高,管壁必须较薄,以致其耐磨及抗腐蚀性能较差。弯管型的振

质量流量计工作原理

质量流量计工作原理 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P qρ,如图1所示,密度计 ?正比于2 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为 (1-1)靶式流量计的输出信号与2 qρ也成正比关系,故同样可按上述方法与密度计组合 v 构成质量流量计。密度计可采用同位素、超声波或振动管式等连续测量密度的仪表。 图1 节流式流量计与密度计组合 (2)体积流量计与密度计的组合

如图2所示,容积式流量计或速度式流量计,如涡轮流量计、电磁流量计等, q成正比,这类流量计与密度计组合,通过乘测得的输出信号与流体体积流量 v 法运算,即可求出质量流量为 (1-2)(3)体积流量计与体积流量计的组合 如图3所示,这种质量流量检测装置通常由节流式流量计和容积式流量计或速度式流量计组成,它们的输出信号分别正比于和通过除法运算,即可求出质量流量为 (1-3) 图2体积流量计和密度计组合图3 节流式流量计和其他体积流量计组合除上述几种组合式质量流量计外,在工业上还常采用温度、压力自动补偿式质量流量计。由于流体密度是温度和压力的函数,而连续测量流体的温度和压力要比连续测量流体的密度容易,因此,可以根据已知被测流体密度与温度和压力之间的关系,同时测量流体的体积流量以及温度和压力值,通过运算求得质量流量或自动换算成标准状态下的体积流量。但这种测量方式不适合高压或温度变化范围大的情形,因为在此条件下自动补偿检测出来的温度、压力很困难。 2.直接式质量流量计 直接式质量流量计的输出信号直接反映质量流量,其测量不受流体的温度、压力、密度变化的影响。直接式质量流量计有许多种形式。

科氏质量流量计

?科氏质量流量计是质量流量直接式测量方法的一种流量测量装置,它能够高准确度的直接测量管道内流体的质量流量,而且稳定度高,可靠性好,量程比大, 又适合应用于高粘度流 体,已经受到各方面用户的青睐,成为目前研究最多、最有前途的直接式质量流量测量仪器。 目录 ?科氏质量流量计的原理 ?科氏质量流量计的结构 ?科氏质量流量计的设计介绍 ?科氏质量流量计的信号处理 ?科氏质量流量计的优点 ?科氏质量流量计的应用 科氏质量流量计的原理 ?下面结合图1简要地说明科氏质量流量计的工作原理。图1(a)描述了传输流体的直管的运动。直管在力FE的作用下以一定的激励频率发生振荡运动。S1和S2是两个传感器,用于获得测量信号。如图1(b)所示,当管内的液体开始流动时,在科氏力FC的作用下,直管也会产生一个振荡,且该振荡和流过的质量流量成正比。通过传感器检测管子的合成振动就可以得到流体的质量流量。 科氏质量流量计的结构

?图2为典型的科氏质量流量计的装置。该装置有两只测量管、传感器、激励器组成。 图2中没有展示的是科氏质量流量计的另外两个组成部分外壳和用于信号处理、供电、输入输出控制的电子设施。一般商用的科氏质量流量计采用磁铁和线圈来提供驱动力以产生振动。其振幅很小,往往只有几十毫米。为了减小外部干扰,系统使用两根反向振动的管子来平衡,或者是在一根管子上加装特殊的平衡系统。由于管子的振幅很小,所以测量装置对外部干扰非常敏感。为了减少环境的影响和稳定零点的健壮测量,测量系统必须有准确的平衡。 平衡系统越好则测量系统与环境干扰的解耦也越佳。如果没有足够的平衡系统,内部的振动可能会传递到环境中去,并导致测量的不稳定。 科氏质量流量计的设计介绍 ?双管式科氏质量流量计采用结构对称的两根管子。两根管子弯成U型,流体平均地流入两平行的管子内。两个管在驱动力的作用下反相振动。为了减少能量损失,管子在谐振频率下工作。两根管子对称设计,不受流体密度、速度、温度以及压力的影响。这样的对称设计可使测量系统和外部干扰实现良好的解耦。 单管式的和双管式的相比更紧凑,更易于清洁,并且流体的压力损失也比双管的要小。 不过单管式的需要另外设置特殊的平衡系统,这也在无形中增加了其复杂度和成本。总的来说,单管式的有两种设计。第一种设计是将管子弯成两个圈,这和双管式的非常类似,只不过其是串联的而双管式的是并联的。这种弯曲的设计带来的好处是更宽的温度范围。但这种设计的缺陷是排水不易。另一种单管式的设计是直管式的。这种设计更易于清洗且能适应各种流体密度。 在双管式和单管式之间,还有一个折中的设计是双直管式。其两个管子的设计自然地提供了平衡而不需要额外添加平衡机构,从而降低了成本也减轻了仪器的重量。和单直管类似,双直管结构紧凑且易于清洗。不过由于分流的影响,流体的压力损失比较大。

相关主题