搜档网
当前位置:搜档网 › 高速数据采集系统设计

高速数据采集系统设计

高速数据采集系统设计
高速数据采集系统设计

高速数据采集系统

设计

基于FPGA和SoC单片机的

高速数据采集系统设计

一.选题背景及意义

随着信息技术的飞速发展,各种数据的实时采集和处理在现代工业控制和科学研究中已成为必不可少的部分。高速数据采集系统在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。随着SoC单片机的快速发展,现在已经能够将采集多路模拟信号的A/D转换子系统和CPU核集成在一片芯片上,使整个数据采集系统几乎能够单芯片实现,从而使数据采集系统体积小,性价比高。FPGA为实现高速数据采集提供了一种理想的实现途径。利用FPGA高速性能和本身集成的几万个逻辑门和嵌入式存储器块,把数据采集系统中的数据缓存和控制电路全部集成在一片FPGA芯片中,大大减小了系统体积,提高了灵活性。FPGA 还具有系统编程功能以及功能强大的EDA软件支持,使得系统具有升级容易、开发周期短等优点。

二.设计要求

设计一高速数据采集系统,系统框图如图1-1所示。输入模拟信号为频率200KHz、Vpp=0.5V的正弦信号。采样频率设定为25MHz。经过按键启动一次数据采集,每次连续采集128点数据,单片机读取128点数据后在LCD模块上回放显示信号波形。

图1-1 高速数据采集原理框图

三.整体方案设计

高速数据采集系统采用如图3-1的设计方案。高速数据采集系统由单片机最小系统、FPGA最小系统和模拟量输入通道三部分组成。输入正弦信号经过调理电路后送高速A/D转换器,高速A/D 转换器以25MHz的频率采样模拟信号,输出的数字量依次存入FPGA内部的FIFO存储器中,并将128字节数据在LCD模块回放显示。

图3-1 高速数据采集系统设计方案

四.硬件电路设计

1.模拟量输入通道的设计

模拟量输入通道由高速A/D转换器和信号调理电路组成。信号调理电路将模拟信号放大、滤波、直流电平位移,以满足A/D转换器对模拟输入信号的要求。

2.高速A/D转换电路设计

五.FPGA模块设计

本设计的数据缓冲电路采用FIFO存储器。FIFO数据缓冲电路原理如图5-1。

图5-1 FIFO数据缓冲电路原理

FIFO的写端口的数据线与ADS931的数据线直接相连,FIFO的写时钟和ADS931采用同一时钟信号CLK0。FIFO的读端口与单片机并行总线相连,数据输出端口加了三态缓冲器。地址译码器的片选信号1

CS和读信号RD相或非后作为FIFO的读时钟电路和三态缓冲的使能信号。

FIFO数据顶层原理图如图5-2。

图5-2 FIFO数据顶层原理图

六.F360单片机模块设计

简易数据采集系统的设计

简易数据采集系统设计 题目:二选一 1. 设计一个单片机控制的数据采集系统,要求A/D 精度12位,采样频率最高100KHz,输 入8路信号,分时复用A/D 芯片,将采集到的波形进行4K 的SRAM 存储,然后通过串行口发送给计算机 2. 设计一波形发生电路,计算机通过串行口向板卡发送波形电路,波形存储到板卡上的 SRAM 中,然后进行计算机控制的D/A 波形产生,板卡上用单片机进行控制 要求: 1. 选择器件,确定具体型号。 2. 画原理图。 3. 根据器件封装画PCB 图。 4. 写出相应的单片机和微机控制程序。 5. 写出详细的原理分析报告。 器件选择: TI 公司生产的8位逐次逼近式模数转换器ADC0809,8051,MAX232 原理图如下: 原理报告原理报告:: 采集多路模拟信号时,一般用多路模拟开关巡回检测的方式,即一种数据采集的方式。利用多路开关(MUX )让多个被测对象共用同一个采集通道,这就是多通道数据采集系统的实质。当采集高速信号时,A/D 转换器前端还需加采样/保持(S/H)电路。 待测量一般不能直接被转换成数字量,通常要进行放大、特性补偿、滤波等

环节的预处理。被测信号往往因为幅值较小,而且可能还含有多余的高频分量等原因,不能直接送给A/D 转换器,需对其进行必要的处理,即信号调理。如对信号进行放大、衰减、滤波等。 通常希望输入到A/D 转换器的信号能接近A/D 转换器的满量程以保证转换精度,因此在直流电流电源输出端与A/D 转换器之间应接入放大器以满足要求。 本题要求中的被测量为0~5V 直流信号,由于输出电压比较大,满足A/D 转换输入的要求,故可省去放大器,而将电源输出直接连接至A/D 转换器输入端。 关于A/D 转换器的选取: 1.转换时间的选择 转换速度是指完成一次A/D 转换所需时间的倒数,是一个很重要的指标。A/D 转换器型号不同,转换速度差别很大。通常,8位逐次比较式ADC 的转换时间为100us 左右。由于本系统的控制时间允许,可选8位逐次比较式A/D 转换器。 2.ADC 位数的选择 A/D 转换器的位数决定着信号采集的精度和分辨率。 要求精度为0.5%。对于该8个通道的输入信号,8位A/D 转换器,其精度为 8 0.39%2 ?= 输入为0~5V 时,分辨率为 8 50.019611 22Fs N V v ==?? Fs v —A/D 转换器的满量程值 N —ADC 的二进制位数 量化误差为 8 50.0098(1)2 (1)2 22Fs N Q V v = = =?×?× ADC0809是8位逐次逼近式模数转换器,包括一个8位的逼近型的ADC 部分,并提供一个8通道的模拟多路开关和联合寻址逻辑,为模拟通道的设计提供了很大的方便。

高速数据采集系统设计

高速数据采集系统 设计

基于FPGA和SoC单片机的 高速数据采集系统设计 一.选题背景及意义 随着信息技术的飞速发展,各种数据的实时采集和处理在现代工业控制和科学研究中已成为必不可少的部分。高速数据采集系统在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。随着SoC单片机的快速发展,现在已经能够将采集多路模拟信号的A/D转换子系统和CPU核集成在一片芯片上,使整个数据采集系统几乎能够单芯片实现,从而使数据采集系统体积小,性价比高。FPGA为实现高速数据采集提供了一种理想的实现途径。利用FPGA高速性能和本身集成的几万个逻辑门和嵌入式存储器块,把数据采集系统中的数据缓存和控制电路全部集成在一片FPGA芯片中,大大减小了系统体积,提高了灵活性。FPGA 还具有系统编程功能以及功能强大的EDA软件支持,使得系统具有升级容易、开发周期短等优点。 二.设计要求 设计一高速数据采集系统,系统框图如图1-1所示。输入模拟信号为频率200KHz、Vpp=0.5V的正弦信号。采样频率设定为25MHz。经过按键启动一次数据采集,每次连续采集128点数据,单片机读取128点数据后在LCD模块上回放显示信号波形。

图1-1 高速数据采集原理框图 三.整体方案设计 高速数据采集系统采用如图3-1的设计方案。高速数据采集系统由单片机最小系统、FPGA最小系统和模拟量输入通道三部分组成。输入正弦信号经过调理电路后送高速A/D转换器,高速A/D 转换器以25MHz的频率采样模拟信号,输出的数字量依次存入FPGA内部的FIFO存储器中,并将128字节数据在LCD模块回放显示。 图3-1 高速数据采集系统设计方案 四.硬件电路设计 1.模拟量输入通道的设计 模拟量输入通道由高速A/D转换器和信号调理电路组成。信号调理电路将模拟信号放大、滤波、直流电平位移,以满足A/D转换器对模拟输入信号的要求。

激光雷达高速数据采集系统解决方案

激光雷达高速数据采集系统解决方案 0、引言 1、 当雷达探测到目标后, 可从回波中提取有关信息,如实现对目标的距离和空间角度定位,并由其距离和角度随时间变化的规律中得到目标位置的变化率,由此对目标实现跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化方法,可测量目标形状的对称性。雷达还可测定目标的表面粗糙度及介电特性等。接下来坤驰科技将为您具体介绍一下激光雷达在数据采集方面的研究。 1、雷达原理 目标标记: 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。在雷达应用中, 测定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: 1、目标的斜距R; 2、方位角α;仰角β。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角α,高度H。 图1.1 用极(球)坐标系统表示目标位置

系统原理: 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 图1.2 雷达系统原理图 测量方法 1).目标斜距的测量 雷达工作时, 发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在, 那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间, 它将滞后于发射脉冲一个时间tr, 如图1.3所示。 我们知道电磁波的能量是以光速传播的, 设目标的距离为 R, 则传播的距离等于光速乘上时间间隔, 即2R=ct r 或 2 r ct R

基于TLC549的数据采集系统设计

基于TLC549的数据采集系统设计 Time:2009-09-22 11:14:00 Author: Source:电子元器件应用 杨来侠,万建军 (西安科技大学,陕西西安710054) 0 引言 现代自动控制系统中需要测量和控制的参数往往都是连续变化的模拟信号,如温度,压力,流量,速度等。这些物理量和控制参数往往都是连续变化的电压和电流,因此,必须将其变换成数字量(即需经模,数转换),才能被数字计算机所识别。这些数字量在计算机内经过运算处理,可以得到一个数字形式的控制量,将这些控制量经过数/模转换器,变成模拟电压或电流信号,再送到执行机构去驱动相应的设备动作,即可实现对生产过程的自动控制。 1 TLC549的主要特点和工作原理 l.l TLC549的主要特点 TLC549是采用IinCMOSTM技术并以开关电容逐次逼近原理工作的8位串行A/D7芯片,可与通用微处理器、控制器通过I/O CLOCK、CS、DATA OUT三条口线进行串行接口。TLC549具有4MHz的片内系统时钟和软、硬件控制电路,转换时间最长为17μs,允许的最高转换速率为40000次/s。总失调误差最大为±0.5LSB,典型功耗值为6 mW。TLC549采用差分参考电压高阻输入,抗干扰,可按比例量程校准转换范围,由于其VREF-接地时,(VREF+)-(VREF-)≥1 V,故可用于较小信号的采样,此外,该芯片还单电源3~6v的供电范围。总之,TLC549具有控制口线少,时序简单,转换速度快,功耗低,价格便宜等特 点,适用于低功耗袖珍仪器上的单路A/D采样,也可将多个器件并联使用。TLC549的内部结构框图和管脚名称如图1所示。 1.2 TLC549的极限参数,

等间距采样的高速数据采集系统设计

等间距采样的高速数据采集系统设计 郝亮,孟立凡,刘灿,高建中 (中北大学仪器科学与动态测试教育部重点实验室,太原030051) 摘要:简单介绍通过对窄脉冲等间距采样来测试电缆故障的基本原理,分析其脉冲的特点和处理要求;采用F PGA和MSP430F149作为主控芯片,设计了单路多次低速数据采集系统;利用Quartus II软件编写主控程序,并在Modelsim下进行仿真验证。实验结果表明,该系统方案切实可行,可有效解决电缆故障测距过程中的高精度数据采集问题。 关键词:等间距采样;数据采集;MSP430F149;F PGA 中图分类号:TN98文献标识码:B H igh2spe ed Data Acquisition System Based on Equidistance Sampling Hao Liang,Meng Lifan,Liu Can,Gao Jianzhong (Inst ruments Science and Dynamic Measurement Ministry of Education Key Laboratory, North University of China,T aiyuan030051,China) A bstract:T he basic principle of testing cable faults wit h narrow2pulse equidistance sampling is described.Pulse characteristics and pro2 cessing requirements are analyzed.The single2line repeated low2speed dat a acquisition system is designed with FPGA and MSP430F149 as main control chips.Main control procedures are programmed in Quartus II and simulated in Modelsim.Experimental result shows that t he system is practical,and the problem of high2precision data acquisition in the process of cable fault location is resolved effectively. K ey words:equidist ance sampling;data acquisit ion;MSP430F149;FPGA 引言 电缆故障是通信行业中的常见故障,而电缆测距是排除故障的前提条件。准确的电缆测距可以缩短发现故障点的时间,利于快速排除故障,减少损失。窄脉冲时域反射仪利用时域反射技术来测定电缆断点位置,可以同时检测出同轴传输系统中多个不连续点的位置、性质和大小。窄脉冲信号持续的时间非常短暂,为了能够有效地捕捉到窄脉冲信号,对A/D采样率和处理器速率提出了较高的要求,传统的数据采集已经不能满足系统设计需求。本文介绍的单路多次低速数据采集方案硬件结构简单,成本低,能够满足系统设计要求。 1系统设计理论依据 根据电磁波理论,电缆即传输线。假若在电缆的一端发送一探测脉冲,它就会沿着电缆进行传输,当电缆线路发生障碍时会造成阻抗不匹配,电磁波会在障碍点产生反射。在发射端,由测量仪器将发送脉冲和反射脉冲波形记录下来。实际测试中,具体障碍的波形有所差异:断线(开路)障碍时,反射脉冲与发射脉冲极性相同;而短路、混线障碍时,反射脉冲与发射脉冲极性相反。波形如图1所示。 图1发射脉冲与反射脉冲波形 设从发射窄脉冲开始到接收到反射脉冲波的时间为$t,则: l=v#$t 2 其中,v为脉冲波在电缆中的传输速度;l为电缆故障点与脉冲波送入端的距离。 由以上分析可知,在同一个固定障碍的线路上多次送入同一脉冲电压,其反射脉冲将同样地在同一位置多次出现。 要实现对反射窄脉冲的捕获和1m的测距分辨率(在波速为200m/L s的情况下),则$t= 2l v =2@1 200 =0.01L s =10ns。即要求抽样的时间分辨率为10ns,对应的数据采集系统频率高达100MHz。同时,最大测量范围是2km 时,要求发射脉冲的重复周期T= 2l v =2@2000 200 =20L s。

多路数据采集系统设计毕业论文

多路数据采集系统设计毕业论文 第1章绪论 1.1 多路数据采集系统介绍 随着工、农业的发展,多路数据采集势必将得到越来越多的应用,为适应这一趋势,作这方面的研究就显得十分重要。在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。总之,不论在哪个应用领域中,数据采集与处理将直接影响工作效率和所取得的经济效益。 此外,计算机的发展对通信起了巨大的推动作用。算机和通信紧密结合构成了灵活多样的通信控制系统,也可以构成强有力的信息处理系统,这样对社会的发展产生了深远的影响。数据通信是计算机广泛应用的必然产物[2]。 数据采集系统,从严格的意义上来说,应该是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。 数据采集系统一般由数据输入通道,数据存储与管理,数据处理,数据输出及显示这五个部分组成。输入通道要实现对被测对象的检测,采样和信号转换等

工作。数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。数据处理就是从采集到的原始数据中,删除有关干扰噪声,无关信息和必要的信息,提取出反映被测对象特征的重要信息。另外,就是对数据进行统计分析,以便于检索;或者把数据恢复成原来物理量的形式,以可输出的形态在输出设备上输出,例如打印,显示,绘图等。数据输出及显示就是把数据以适当的形式进行输出和显示。 由于RS-232在微机通信接口中广泛采用,技术已相当成熟。在近端与远端通信过程中,采用串行RS-232标准,实现PC机与单片机间的数据传输。在本毕业设计中对多路数据采集系统作了初步的研究。本系统主要解决的是怎样进行数据采集以及怎样进行多路的数据采集,并将数据上传至计算机[2]。 1.2 设计思路 多路数据采集系统采用ADC0809模数转换器作为数据采集单元和AT89C51单片机来对它们进行控制,不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高采集数据的灵敏度及指标。通过MAX232电平转换芯片实现单片机与PC 机的异步串行通信,设计中的HD7279实现了键盘控制与LED显示显示功能。本文设计了一种以AT89C51和ADC0809及RS232为核心的多路数据采集系统。 多路数据采集系统就是通过键盘控制选择通路,将采集到的电压模拟两转换成数字量实时的送到单片机里处理从而显示出采集电压和地址值,最终控制执行单片机与PC机的异步串行通信。 连接好硬件后,给ADC0809的三条输入通路通入直流电压。4-F键为功能键,4-E键为复位键,F键为确认键。1-3键为通道选择键,分别采集三个通道的数据值并实时显示出数值和地址值。结合单片机RS232串口功能还实现了与PC机的异

单路数据采集系统设计

1 引言 1.1 数据采集系统的意义 数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。数据采集是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。本设计采用A/D转换器和51单片机组成数据采集系统,该设计具有结构简单、操作方便、高性价比、具有显示、记录存储功能,能够适应油田野外恶劣环境,具有性能稳定、可靠性高、响应速度快操作简单、费用低廉、回放过程的信号可以直观的观察。它与有线数传相比主要有布线成本低、安装简便、便于移动等性能。 经调查,目前数据采集器的市场需求量大,以数据采集器为核心构成的小系统应用广泛,因此开发高性能的数据采集器具有良好的市场前景。随着计算机技术的飞速发展和普及,数据采集系统在多个领域有着广泛的应用。数据采集是工、农业控制系统中至关重要的一环,在医药、化工、食品、等领域的生产过程中,往往需要随时检测各生产环节的温度、湿度、流量及压力等参数。同时,还要对某一检测点任意参数能够进行随机查寻,将其在某一时间段内检测得到的数据经过转换提取出来,以便进行比较,做出决策,调整控制方案,提高产品的合格率,产生良好的经济效益。随着工、农业的发展,多路数据采集势必将得到越来越多的应用,为适应这一趋势,作这方面的研究就显得十分重要。在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。单片机构成的数据采集处理系统适用于各种现场自动化监测及控制,能够适应油田野外恶劣环境,具有性能稳定、可靠性高、响应速度快操作简单、费用低廉、等优点。1.2 数据采集系统的主要功能 数据采集是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。比如条码机、扫描仪等都是数据采集工具。 数据处理系统是指运用计算机处理信息而构成的系统。其主要功能是将输入的数据信息进行加工、整理,计算各种分析指标,变为易于被人们所接受的信息形式,并将处理后的信息进行有序贮存,随时通过外部设备输给信息使用者。

5 Gsps高速数据采集系统的设计与实现

5 Gsps 高速数据采集系统的设计与实现 摘要:以某高速实时频谱仪为应用背景,论述了5 Gsps 采样率的高速数据采集系统的构成和设计要点,着重分析了采集系统的关键部分高速ADC(analog to digital,模数转换器)的设计、系统采样时钟设计、模数混合信号完整性设计、电磁兼容性设计和基于总线和接口标准(PCI Express)的数据传输和处理软件设计。在实现了系统硬件的基础上,采用Xilinx 公司ISE 软件的在线逻辑分析仪(ChipScope Pro)测试了ADC 和采样时钟的性能,实测表明整体指标达到设计要求。给出上位机对采集数据进行处理的结果,表明系统实现了数据的实时采集 存储功能。关键词:高速数据采集;高速ADC;FPGA;PCI Express 高速实时频谱仪是对实时采集的数据进行频谱分析,要达到这样的目的,对数据采集系 统的采样精度、采样率和存储量等指标提出了更高的要求。而在高速数据采集 系统中,ADC 在很大程度上决定了系统的整体性能,而它们的性能又受到时钟质量的影响。为满足系统对高速ADC 采样精度、采样率的要求,本设计中提 出一种新的解决方案,采用型号为EV8AQ160 的高速ADC 对数据进行采样;考虑到ADC 对高质量、低抖动、低相位噪声的采样时钟的要求,采用AD9520 为5 Gsps 数据采集系统提供采样时钟。为保证系统的稳定性,对模数混合信号完整性和电磁兼容性进行了分析。对ADC 和时钟性能进行测试,并给出上位 机数据显示结果,实测表明该系统实现了数据的高速采集、存储和实时后处理。 1 系统的构成高速数据采集系统主要包括模拟信号调理电路、高速ADC、高速时钟电路、大容量数据缓存、系统时序及控制逻辑电路和计算机接口电路等。图1 所示为5 Gsps 高速数据采集系统的原理框图。所用ADC 型号为EV8AQ160,8 bit 采样精度,内部集成4 路ADC,最高采样率达5 Gsps,可以工作在多种模式下。通过对ADC 工作模式进行配置,ADC 既可以工作在采样

高速数据采集系统

目录 1系统摘要 (2) 2系统设计理论 (2) 3系统设计方案 (4) 3.1AD7891高速数据采集系统 (4) 3.1.1 AD7891结构及功能 (4) 3.1.2工作时序和极限参数 (5) 3.1.3 AD7891的应用 (6) 3.1.4 AD7891与微处理器的接口 (8) 3.2PCI-1714高速数据采集系统……………………………….…,,,.9 3.2.1 PCI- 1714 功能结构和特点 (9) 3.2.2 PCI- 1714的系统构成..............................,.. (10) 3.3基于AT89C51的数据采集通信系统设计 (12) 3.3.1系统硬件设计 (12) 3.3.2系统软件设计 (14) 4各种方案的比较 (16) 5心得体会 (17) 6参考文献 (18)

1.系统简介 随着数字技术的飞速发展,高速数据采集系统也迅速地得到了广泛的应用。在生产过程中,应用这一系统可以对生产现场的工艺参数进行采集、监视和记录,为提高生产质量,降低成本提供了信息和手段。在科学研究中,应用数据采集系统可以获取大量的动态数据,是研究瞬间物理过程的有力工具,为科学活动提供了重要的手段。而当前我国对高速数据采集系统的研究开发都处于起步阶段,因此,开发出高速数据采集系统就显得尤为重要了。 所谓高速数据采集系统,是用计算机控制的多路数据自动检测或巡回检测(其对象包括数字和模拟信号),并且能够对数据实行某些处理(包括存储、处理、分析计算以及从检测的数据中提取可用的信息),以供显示、记录、打印或描绘的系统。 在数字技术日新月异的今天,数据采集技术的重要性是十分显著的。它是数字世界和外部物理世界连接的桥梁。而随着现代工业和科学技术的发展,对数据采集技术的要求日益提高,在雷达、声纳、图像处理、语音识别、通信、信号测试等科研实践领域中,都需要高精度,高数据率的数据采集系统。它的关键技术为高速高精度的ADC 技术,高数据率的存储和缓存技术以及系统高可靠性保证等。通过数据采集技术,科研人员在实验现场可以根据需要实时记录原始数据,用于实验室后期的分析和处理,对工程实践和理论分析探索具有重大意义。 2.系统设计理论 整个高速数据系统主要分为四个部分:数据采集部分、数据控制部分、数据处理部分、数据传输部分。 在数据采集部分,主要应用的就是采样定理、模数转换器ADC 及A/D 转换技术。采用定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。具体内容是,频带为F 的连续信号f(t)可用一系列离散的采样值)1(t f ,)1(t t f ?±,)1(t t f ?±,……来表示,只要这些采样点的时间间隔F t 21≤?,便可根据各采样值完全恢复原来的信号)(t f 。模数转换器ADC 用来把连续变化的模拟信号转换为一定格式的数字量。ADC 转换器实际上就是一个编码器,输

一种高速数据采集系统的研究

第31卷第5期 唐山师范学院学报 2009年9月 Vol. 31 No. 5 Journal of Tangshan Teachers College Sep. 2009 ────────── 收稿日期:2008-12-12 作者简介:李洋(1982-),男,河北衡水人,唐山师范学院基础教育部教师。 -66- 一种高速数据采集系统的研究 李 洋,郭小松 (唐山师范学院 基础教育部,河北 唐山 063000) 摘 要:由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,而其应用环境又往往非常复杂,所以在目前的实际应用中,很难实现一种既能进行长时间高速数据采集、又能进行大容量存储的数据采集系统。在此背景下,提出了一种高速数据采集及存储的解决方案,采用高速FPGA 加嵌入式微处理器作为中央处理器来进行高速数据传输和磁盘阵列数据存储,实现高速数据采集及大容量实时存储。 关键词:数据采集;模数转换;海量存储;RAID0 中图分类号: T N919.5 文献标识码:A 文章编号:1009-9115(2009)05-0066-03 Study of High-Speed Data Acquisition and Storage System LI Yang, GUO Xiao-song (Department of Foundation Education, Tangshan Teachers College, Tangshan Hebei 063000, China) Abstract: Because of the extreme requirements of signal integrity, noise jamming, high-speed layout, high-speed real-time storage and the complex application environments, it is very difficult to realize a high-speed data acquisition system which is suitable for long-time data acquisition and mass storage. Against this background, a solution of high-speed data acquisition and storage system is introduced in this thesis, which is using of high-speed FPGA and embedded microprocessors as the central processing device for high-speed data transfer and data storage of redundant array of inexpensive disks , realized on-time data acquisition and mass storage. Key words: data acquisition; A/D convert; mass storage; RAID 现代工业生产和科学研究对数据采集的要求日益提高,在雷达、声纳、软件无线电、瞬态信号测量等一些高速、高精度的测量中,需要进行高速数据采集。目前,数据采集系统在高速A/D 、D/A 器件发展的带动下,采集带宽在稳步提高,具有100MSPS 采集能力以上的高速数据采集系统产品己较成熟。然而国外厂商的高速采集系统往往都价格不菲,而且由于高速数据采集对信号完整性、信号干扰、高速布线及数据处理和高速实时存储要求极高,国内完全掌握这个技术的厂商并不多,所以在实际应用中,很难找到一种满足需要的高速采集系统。这种情况长期限制了高速数据采集技术在我国工业生产和科学研究中的应用。 在这样的背景下,本文提出一种高速数据采集与实时存储系统的解决方案,解决以往在高速技术、数据存储与传输技术等方面的几个技术难点,采用FPGA 作为核心器件,集成中央逻辑控制及硬盘接口,直接将高速数据存入有多块硬 盘组成的实时RAID 存储系统中,实现了高速采集和实时存储,并可脱机运行。这种方案成本低廉,能提高采集速度,增加系统可靠性,并大大提高可持续采集时间,具有较大的灵活性。 1 总体系统方案硬件设计 高速数据采集系统的主要目的是把采集到的模拟信号转化为数字信号,所以模拟信号进入数据采集系统的第一步就是通过AD 采集电路进行模数转换;采集到的数据为了以后研究调用,就需要存储到存储器中,所以系统的最后一步是使用高速海量存储器对数据进行存储;系统的启动、停止和数据传输的方式还需要使用中央逻辑控制电路,所以在AD 采集电路与高速海量存储器之间增加中央逻辑控制电路来作为AD 采集电路与高速海量存储器之间的桥梁;系统通过人机接口与PC 机连接,可以对数据采集系统进行调试,还方便调用存储数据进行研究测试,并实现

一种新的基于ARM的数据采集系统设计

?应用技术研究? 一种新的基于AR M 的数据采集系统设计 罗 浩 1a,2 ,谢华成 1b (1.信阳师范学院a .物理电子工程学院; b.网络信息与计算中心,河南信阳464000; 2.华中科技大学电子系,湖北武汉430074) 摘 要:给出了一种新的基于AR M 的数据采集系统硬件和软件设计方案1硬件主要由微处理器芯片 S3C44BOX 、US B 接口芯片I SP1362、AD 转换芯片AD7829等构成1系统能实现8路同时采集,单路采集速率100ks p s,且通过设置Device 和Host 两种模式,可在无PC 机的情况下进行数据采样与存储,从而实现了脱机式 应用1 关键词:数据采集;US B;S3C44B0X;AD7829;I SP1362 中图分类号:TP273 文献标识码:A 文章编号:100320972(2006)022******* 0 引言 数据采集是测控系统中的核心单元之一,目前常用的 数据采集方式是A /D 卡和422、485等总线板卡[1],这类方 式的数据采集过程必须依赖PC 机完成,不便野外应用;故研制能够实现脱离PC 机进行数据采集的数据采集卡具有实际意义1 本文提出的基于AR M 的数据采集系统设计方案,以 S3C44B0X 为主控制器,控制AD7829进行数据采集,并控 制US B 接口芯片(I SP1362)进行数据传输1本设计综合利用了S3C44B0X 的高性能、低成本和能耗省的特点,设计了 US B 数据通信的Device 模式和Host 模式,在没有PC 机的 情况下,工作在Host 模式,可以直接与外存储器相连进行脱机式数据采集,实现了脱机式应用1 1 硬件设计 1.1 方案选择 目前,对于US B Host 的开发方式主要有两种选择:一种是选用集成了US B 接口的单片机,比如Cyp ress 公司生产的EZ -US B 系列,I ntel 的8X930AX 系列等1此种开发工具虽然编程简单,但需要购置专门的开发系统,投资较大;另一种是选择普通的单片机或嵌入式微处理器,加专用的US B 接口芯片进行开发1后者不需要购买新的开发系统,节省投资1因此我们采用了第二种方案进行开发1 为了便于开发和扩展Device 、Host 模式,选择了较新且易于开发的US B 接口芯片I SP1362;且为了满足8路采集, AD 转换芯片选择了AD7829;适于I SP1362的开发,其主控 器芯片选择了高性能、低功耗的AR M 芯片S3C44BOX 1三星的S3C44B0X 是为手持设备和通用设备而设计的一款16/32位R I SC 结构的低成本高性能的单片机1为了降低产品的总体成本,S3C44B0X 还提供了如下的配置: 8K B 高速缓存(cache )、可配置的片内SRAM 、LC D 控制器、 两路带握手功能的UART (通用串行口)、4路DMA 控制器、系统管理功能(片选逻辑,FP /E DO /S DRAM 控制器)、5路带P WM 的定时计数器、I/O 接口,RTC (时钟)、8路10位ADC 、II C 总线、II S 总线、同步SI O 接口和为系统提供时钟而设的P LL 倍频电路[2]1 系统分为四大部分:8路AD 转换,US B 接口,AR M 主控器以及S DRAM (2M )、Flash (2M )1AD7829构成的模数转换(8路模拟输入、8位数字输出),在S3C44B0X 控制下完成数据采集,再通过US B 接口传输到外存储器1如图11 图1 系统结构框图 F i g .1The syste m structure d i a gram S3C44B0X 自身虽集成有8路10位ADC,但没有采样 保持电路,其内部集成的A /D 转换只能输入0~100Hz 的模拟信号,因此我们需要对其进行扩展1AD7829作为A /D 转换,S3C44B0X 作为控制器,利用S3C44B0X 的P D 口为双向口来进行扩展,以S3C44B0X 的P D 口发出脉冲作为 AD7829的CONVEST 的负脉冲,进行模数转换,同时能够  收稿日期:2005211230  基金项目:湖北省重大科技攻关项目(2002AA101C39 )  作者简介:罗 浩(19702),男,河南信阳人,讲师,在读硕士研究生,主要从事电子技术方向研究1 3 02信阳师范学院学报(自然科学版)Journal of Xinyang Nor mal University 第19卷 第2期 2006年4月 (Natural Science Editi on )Vol .19No .2Ap r .2006

数据采集系统

湖南工业大学科技学院 毕业设计(论文)开题报告 (2012届) 教学部:机电信息工程教学部 专业:电子信息工程 学生姓名:肖红杰 班级: 0801 学号 0812140106 指导教师姓名:杨韬仪职称讲师 2011年12 月10 日

题目:基于单片机的数据采集系统的控制器设计 1.结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述。 近年来,数据采集及其应用技术受到人们越来越广泛的关注,数据采集系统在各行各业也迅速的得到应用。如在冶金、化工、医学、和电器性能测试等许多场合需要同时对多通道的模拟信号进行采集、预处理、暂存和向上位机传送、再由上位机进行数据分析和处理,信号波形显示、自动报表生成等处理,这些都需要数据采集系统来完成。但很多数据采集系统存在功能单一、采集通道少、采集速率低、操作复杂、并且对操作环境要求高等问题。人们需要一种应用范围广、性价比高的数据采集系统,基于单片机的数据采集系统具有实现处理功能强大、处理速度快、显示直观,性价比高、应用广泛等特点,可广泛应用于工业控制、仪器、仪表、机电一体化,智能家居等诸多领域。总之,无论在那个应用领域中,数据采集与处理越及时,工作效率就超高,取得的经济效益就越大。 数据采集系统的任务,就是采集传感器输出的模拟信号转换成计算机能识别的信号,并送入计算机,然后将计算得到的数据进行显示或打印,以便实现对某些物理量的监测,其中一些数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的市场需求量大,特别是随着技术的发展,可用数据器为核心构成一个小系统,而目前国内生产的主要是数据采集卡,存在无显示功能、无记忆存储功能等问题,其应用有很大的局限性,所以开发高性能的,具有存储功能的数据采集产品具有很大的市场前景。 随着电子技术的迅速发展,,一些高性能的电子芯片不断推出,为我们进行电子系统设计提供的更多的选择和更多的方便,单片机具有体积小、低功耗、使用方便、处理精度高、性价比高等优点,这些都使得越来越广泛的选用单片机作为数据采集系统的核心处理器。一些高性能的A/D转换芯片的出现也为数据采集系统的设计提供了更多的方便,无论是采集精度还是采样速度都比以前有了较大的提高。其中一些知名的大公司如MAXIM公司、TI公司、ADI公司都有推出性能比效突出的 A/D转换芯片,这些芯片普通具有低功耗、小尺寸的特点,有些芯片还具有多通道的同步转换功能。这些芯片的出现,不仅因为芯片价格便宜,能够降低系统设计的成本,而且可以取代以前繁琐的设计方法,提高系统的集成度。 数据采集器是目前工业控制中应用较多的一类产品,数据采集器的研制已经相当成熟,而且数据采集器的各类不断增多,性能越来越好,功能也越来越强大。 在国外,数据采集器已发展的相当成熟,无论是在工业领域,还是在生活中的应用,比如美国FLUKE公司的262XA系列数据采集器是一种小型、便携、操作简单、使用灵活的数据采集器,它既可单独使用又可和计算机连接使用,它具有多种测量

基于8051单片机的数据采集系统设计

基于8051单片机的数据采集系统设计 一.设计任务 设计一个数据采集系统,要求: 1.有一组开关量和1路模拟量,采样开关量控制一组发光二极管,定时采样模拟量并显示出来。 2.定时采样ADC0809某通道模拟信号,每隔2秒在显示器或数码管上显示出来。 3.定时的实现。 二.设计思路 数据采集是指从传感器和其他待测设备中自动采集模拟或数字信号电量或非电量信号送入控制器中进行分析和数据处理。 本设计采用单路模拟信号的数据采集。设计思路为:通过传感器采集待测的信号,将其转换为相应的电压信号,经运算放大器放大后送入模数转换器ADC0809在单片机的控制下进行模数转换。每次转换结束后,单片机在控制电路的作用下将数据读走存入片内存储器。而单片机则需要将收到的数据送入PC机中进行相应处理。单片机与PC 间的数据通信方式为串口通信协议RS 232,通过芯片MAX232进行电气匹配。 目录

一.系统总统设计方案 二.系统的硬件设计 2.1信号调理电路 2.2数据采集电路 2.3 80C51芯片内部功能与引脚介绍 三.系统的软件设计 3.1主程序 3.2 A/D转换 3.3数据采集中断程序 四.设计总结 五.参考文献 六.附录—数据采集系统原理图一.系统总统设计方案

根据系统基本要求,将本设计系统划分为信号调理电路、8路模拟信号的产生与A/D 转换器、发送端的数据采集与传输控制器、人机通道的接口电路、数据传输接口电路几个部分。 数据采集与传输系统一般由信号调理电路,多路开关,采样保持电路,A/D,单片机,电平转换接口,接收端(单片机、PC或其它设备)组成。系统框图如下图1所示。 图1 一般系统框图 二.系统的硬件设计 2.1信号调理电路 信号调理能够将被测对象的输出信号变换成计算机要求的输入信号。如图2所示,为 避免小信号通过模拟开关造成较大的附加误差,在传感器输出信号过小时,每个通道应 设前置放大环节。 图2 信号调理过程 2.2 数据采集电路 把连续变化量变成离散量的过程称为量化,也可理解为信号的采样。 把以一定时间间隔T逐点采集连续的模拟信号,并保持一个时间t,使被采集的信号变成时间上离散、幅值等于采样时刻该信号瞬时值的一组方波序列信号,即采样信号。

高速数据采集技术发展综述

高速数据采集技术发展综述 摘要:高速数据采集系统广泛应用于军事、航天、航空、铁路、机械等诸多行业。区别于中速及低速数据采集系统,高速数据采集系统内部包含高速电路,电路系统1/3以上数字逻辑电路的时钟频率>=50MHz;对于并行采样系统,采样频率达到50MHz,并行8bit以上;对于串行采样系统,采样频率达到200MHz,目前广泛使用的高速数据采集系统采样频率一般在200KS/s~100MS/s,分辨率16bit~24bit。本篇文章主要简单介绍高速数据采集技术的发展,高速数据采集系统的结构、功能、原理、实现形式以及一些主要的应用。 关键词:高数数据采集系统、系统结构、系统原理、系统功能、实现形式、应用举例。 引言:高速数据采集技术在通信、航天、雷达等多个领域中广泛应用。随着软件无线电、通信技术、图像采集等技术的发展,对数据采集系统的要求越来越高,不仅要求较高的采集精度和采样速率,还要求采集设备便携化、网络化与智能化,并且需要将采集信息稳定的传输到计算机,进行显示与数据处理。同时,以太网协议已经成为当今局域网采用的最通用的通信协议标准。在嵌入式领域中,将以太网协议与数据采集系统相结合,形成局域网,实现方便可靠的数据传输与控制,是当前的研究热点。 1. 高速数据采集的发展 数据采集系统起始于20世纪50年代,由于数据采集测试系统具有高速性和~定的灵活性,可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。到了70年代中后期,在数据采集系统发展过程中逐渐分为两类,一类是实验室数据采集系统,另一类是工业现场数据采集系统。就使用的总线而言,实验室数据采集系统多采用并行总线,工业现场数据采集系统多采用串行数据总线。随着微型机的发展,诞生了采集器、仪表等同计算机融为一体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自动检测仪表和专用数据采集系统,因此获得了惊人的发展他3。随着计算机的普及应用,数据采集系统得到了极大的发展,基于标准总线并带有高速DSP的高速数据采集板卡产品也越来越多,技术先进、市场主流的厂商主要有Spectrum Signal Processing,SPEC,Signatec,Acquisition Logic,Blue Wave等公司 2001年Acquisition logic公司推出了基于PCI总线,采样率为500MS/s,1GS/s的8bit数据采集板卡AL500和AL51G,它的存储深度分别为64MB,256MB和1000MB三种。PCI 总线为主模式,数据宽度32bit,时钟频率33MHz,在突发模式下传输速率可达到133MB /s。两种板卡还同时具有数字信号处理功能:通过板卡上的现场可编程门阵列FPGA来实

数据采集系统设计

目录 摘要 (1) 1 引言 (2) 1.1 数据采集系统的简介. (2) 1.2 课程设计内容和要求 (3) 1.3 设计工作任务及工作量的要求 (3) 2 内容提要 (3) 3 系统总体方案 (3) 3.1 系统设计思路 (3) 3.2 系统总体框图 (4) 4 硬件电路设计及描述 (4) 4.1 8253芯片及工作原理 (4) 4.1.1 基本组成及工作原理 (4) 4.1.2 8253与系统连接 (5) 4.2 ADC0809内部功能与引脚介绍 (5) 4.2.1 引脚排列及各引脚的功能 (6) 4.2.2 ADC0809工作方式 (7) 4.2.3 ADC0809与系统连接 (8) 4.3 单片机89C51的引脚与功能介绍 (8) 4.4 8255并行口芯片基本组成及工作原理 (10) 4.4.1 8255的内部结构 (11) 4.4.2 8255的工作方式 (12) 4.2.3 8255与系统连接 (12) 4.5 LED显示部分接线及工作原理 (13) 4.5.1 LED显示工作原理 (13) 4.5.2 LED显示部分接线 (14) 4.6 总体电路图 (14) 5 软件设计流程及描述 (15) 5.1 主程序设计思路 (15)

5.2 部分程序设计流程图 (16) 5.2.1 8253程序流程图 (16) 5.2.2 8255程序流程图 (17) 5.2.3 数据处理流程图 (17) 5.2.4 LED显示流程图 (17) 5.3 汇编语言程序清单 (18) 5.4 仿真结果 (21) 6 课程设计体会 (21) 参考文献 (23)

摘要 数据采集是从一个或多个信号获取对象信息的过程。随着微型计算机技术的飞速发展和普及,数据采集监测已成为日益重要的检测技术,广泛应用于工农业等需要同时监控温度、湿度和压力等场合。数据采集是工业控制等系统中的重要环节,通常采用一些功能相对独立的单片机系统来实现,作为测控系统不可缺少的部分,数据采集的性能特点直接影响到整个系统。 本课程设计采用89C51系列单片机,89C51系列单片机基于简化的嵌入式控制系统结构,具有体积小、重量轻,具有很强的灵活性。设计的系统由硬件和软件两部分构成,硬件部分主要完成数据采集,软件部分完成数据处理和显示。数据采集采用AD0809模数转换芯片,具有很高的稳定性,采样的周期由可编程定时/计数器8253控制。完成采样的数据后输入单片机内部进行处理,并送到LED显示。软件部分用Keil软件编程,操作简单,具有良好的人机交互界面。程序部分负责对整个系统控制和管理,采用了汇编语言进行了判别通道、数据采集处理、数据显示、数据通信等程序设计,具有较好的可读性。 随着计算机在工业控制领域的不断推广应用,将模拟信号转换成数字信号已经成为计算机控制系统中不可缺少的重要环节,因此数据采集系统有着重要的意义。

相关主题