搜档网
当前位置:搜档网 › 第三章 刚体力学习题答案

第三章 刚体力学习题答案

第三章     刚体力学习题答案
第三章     刚体力学习题答案

第三章 刚体力学习题答案

3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m ,

杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方

向成θ角时的角加速度.

解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为

2sin sin sin M mgl mgl mgl θθθ=-=

系统的转动惯量为两个小球(可视为质点)的转动惯量之和

2

2

2

23J ml ml ml =+=

应用转动定律 M J β=

有:2sin 3m gl m l θβ= 解得 sin 3g l

θβ=

3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为

M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面

与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m.

解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有

a m T g m 222=- ① a m T 11= ②

对滑轮运用转动定律,有

3-1

图3-2

β)2

1(

2

12Mr r T r T =- ③

又, βr a = ④ 联立以上4个方程,得

2

212s

m 6

.721520058.92002-?=+

+?=

+

+=

M m m g m a

3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动

力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图所示.

解:以飞轮为研究对象,飞轮的转动惯量2

12

J m R =,制动前角速度

为1000260

ωπ=?

rad/s ,制动时角加速度为t

ωβ-=

- 制动时闸瓦对飞轮的压力为N F ,闸

瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 2

12

f F R J

m R ββ-==

则 2N m R F t

ωμ=

以闸杆为研究对象,在制动力F 和飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75)l =+m 和1l =0-50m ,则有

10N Fl F l -=

110.50600.2521000

15720.500.75

20.4560

N l l mR F F l

l t

ωπμ???=

=

=

?

=+???N

图3-3

3-4 设有一均匀圆盘,质量为m ,半径为R ,可绕过盘中心的光滑竖直轴在水平桌面上转

动. 圆盘与桌面间的滑动摩擦系数为μ,若用外力推动它使其角速度达到0ω时,撤去外力,求:

(1) 此后圆盘还能继续转动多少时间? (2) 上述过程中摩擦力矩所做的功.

解:(1)撤去外力后,盘在摩擦力矩f M 作用下停止转动- 设盘质量密度为2

m

R

σπ=

,则

2

223

R f

M

g r dr m gR μπσμ=

=

?

根据转动定律 2

1,2

f

M J m R J

α-=

= 43g R

μα-=

034R t g

ωωα

μ-=

=

(2)根据动能定理有 摩擦力的功2

22

001102

4

f W J m R ωω=-=-

3-5 如题3-6图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆

于水平位置由静止开始摆下.求:

(1)初始时刻的角加速度; (2)杆转过θ角时的角速度.

解: (1)由转动定律,有

β)3

1(21

2

ml mg

= ∴ l

g 23=β

(2)由机械能守恒定律,有

图3-6

2

2

)3

1(21sin 2

ωθml l mg

=

∴ l

g θ

ωsin 3=

3-6 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如3-8图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =

2m .求:

(1)柱体转动时的角加速度; (2)两侧细绳的张力.

解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).

(a)图 (b)图

(1) 1m ,2m 和柱体的运动方程如下:

2222a m g m T =- ① 1111a m T g m =- ②

βI r T R T ='

-'21 ③

式中 ββR a r a T T T T ==='='122211,,,

而 2

2

2

12

1mr MR

I +

=

由上式求得

2

2

2

2

2

2

22

121s

rad 13.68.910

.0220.0210

.042

120

.0102

12

1.02

2.0-?=??+?+??+

???-?=

++-=g

r m R m I rm Rm β

(2)由①式

8.208.9213.610.02222=?+??=+=g m r m T βN

由②式

1.1713.6.

2.028.92111=??-?=-=βR m g m T N

3-7 一风扇转速为900r/min,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过

程中制动力做的功为44.4J,求风扇的转动惯量和摩擦力矩.

解:设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移2N θπ=,摩擦力矩所做的功为

2A M M N θπ=-=-

摩擦力所做的功应等于风扇转动动能的增量,即

2

102A J ω=-

2

2

22(44.4)0.01(9002/60)

A

J ω

π?-=-

=-

=?kg ?m 2

44.40.09422275

A M N

ππ-=-

=-=?N ?m

3-8 一质量为M 、半径为r 的圆柱体,在倾斜θ角的粗糙斜面上从距地面h 高处只滚不滑

而下,试求圆柱体滚止地面时的瞬时角速度ω.

解: 在滚动过程中,圆柱体受重力M g 和斜面的摩擦力F 作用,设 圆柱体滚止地面时,质心在瞬时速率为v ,则此时质心的平动动能为2

12

M v ,与此同时,圆柱体以角速度ω绕几何中心轴转

动,其转动动能为

2

12

J ω.将势能零点取在地面上,初始时刻圆柱体的势能为M gh ,由于

圆柱体只滚不滑而下,摩擦力为静摩擦力,对物体不做功,只有重力做功,机械能守恒,

于是有2

2

112

2

M gh M v J ω=+

式中 2

1,2

J M r v r ω==,代入上式得

2

22

11()22

M gh M r M r ω=

+

ω=

3-9 一个轻质弹簧的倔强系数 2.0k =N/m,它的一端固定,另一端通过一条细绳绕过一个

定滑轮和一个质量为m =80g 的物体相连,如图所示. 定滑轮可看作均匀圆盘,它的质

量为M =100g,半径r =0.05m. 先用手托住物体m ,使弹簧处于其自然长度,然后松手.求物体m 下降h =0.5m 时的速度为多大?忽略滑轮轴上的摩擦,并认为绳在滑轮边缘上不打滑.

解:由于只有保守力(弹性力、重力)做功,所以由弹簧、滑轮和物体m 组成的系统机械能守恒,故有

2

2

2

11122

2

m gh kh I m v ω=

+

+

2

1,2

v r I M r ω==

所以

1.48v =

=m/s

3-10 有一质量为1m 、长为l 的均匀细棒, 静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动. 另有一水平运动的质量为2m 的小滑块, 从侧面垂直于棒与棒的另一端A 相碰撞, 设碰撞时间极短. 已知小滑块在碰撞前后的速度分别为1V 和2V ,如图示,求碰撞后从细棒开始转动到停止转动的过程所需的时间(已知棒绕O

点的转动惯量2

113

J m l =).

图3-11

图3-12

解:对棒和滑块组成的系统,因为碰撞时间极短,所以棒和滑块所受的摩擦力矩远小于相互间的冲量矩,故可认为合外力矩为零,所以系统的角动量守恒,且碰撞阶段棒的角位移忽略不计,由角动量守恒得

2

2122113m v l m v l m l ω=-+

碰撞后在在转动过程中棒受到的摩擦力矩为 11

12

t f

m M

g

d x m g l

l

μμ

=

-=-

?

由角动量定理得转动过程中

2

1

103

t f

M

d t m l ω=-

?

联立以上三式解得:12

2

12V V t m m g

μ+=

3-11 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为1r =8.75×1010m 时的速率是1v =5.46×104m ·s -1,它离太阳最远时的速率是2v =9.08×102m ·s -1,这时它离太阳的距离2r 为多少?(太阳位于椭圆的一个焦点.)

解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 2211mv r mv r = ∴ m 10

26.510

08.910

46.510

75.812

2

4

10

2

112?=????=

=

v v r r

3-12 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球做匀速圆周运动,当半径为0r 时重物达到平衡.今在1M 的下方再挂一质量为2

M 的物体,如3-14图.试问这时小球做匀速圆周运动的角速度ω'和半径r '为多少?

图3-14

解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即

2

01ωmr g M =

挂上2M 后,则有

221)(ω''=+r m g M M ②

重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即 v m r mv r ''=00

ωω''=?2

02

0r r ③

联立①、②、③得

02

123

1120

2

)M M M M M r g r m ωωω=+'=

+'==

'

3-13 如图示, 长为l 的轻杆, 两端各固定质量分别为m 和2m 的小球, 杆可绕水平光滑轴在竖直平面内转动, 转轴O 距两端的距离分别为/3l 或2/3l . 原来静止在竖直位置. 今有一质量为m 的小球, 以水平速度0v 与杆下端的小球m 做对心碰撞, 碰后以0/2v 的速度返回, 试求碰撞后轻杆所获得的角速度ω.

解:将杆与两端的小球视为一刚体,水平飞来的小球m 与刚体视为一系统,在碰撞过程中,外力包括轴O 处的作用力和重力,均不产生力矩,故合外力矩为零,系统角动量守恒- 选逆时针转动为正方向,则由角动量守恒得 00

22323

v l l m v m

J ω=-+

2

22(

)2()33

l l J m m =+ 图3-13

解得 032v l

ω=

3-14 圆盘形飞轮A 质量为m , 半径为r , 最初以角速度0ω转动, 与A 共轴的圆盘形飞轮B

质量为4m ,半径为2r , 最初静止, 如图所示, 两飞轮啮合后, 以同一速度ω转动, 求ω及啮合过程中机械能的损失.

解:以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有

2

2

2

01114(2)2

2

2

m r m r m r ωωω=

+

得 0117

ωω=

初始机械能为 2

2

22

10011122

4

W m r m r ωω=

= 啮合后机械能为2

2

2

2

22

201111114(2)22

22

174W m r m r m r ωωω=

+

=

则机械能损失为 2

212016116174

17

W W W m r W ω?=-=

=

3-15 如图示,一匀质圆盘半径为r ,质量为1m ,可绕过中心的垂轴O 转动.初时盘静止,一质

量为2m 的子弹一速度v 沿与盘半径成160θ?

=的方向击中盘边缘后以速度/2v 沿与半径

方向成230θ?

=的方向反弹,求盘获得的角速度.

解:对于盘和子弹组成的系统,撞击过程中轴O 的支撑力的力臂为零,不提供力矩,其他外力矩的冲量矩可忽略不计,故系统对轴O 的角动量守恒,即

12L L =,初时盘的角动量为零,只有子弹有角动量,故

3-14

图3-15

12sin 60L m vr ?=

末态中盘和子弹都有角动量,设盘的角速度为ω,则 2

22

11s i n 302

2v

L m

r m r ω?

=+

故有 2

22

1

1s i n 60s i n 302

2

v

m vr m

r

m r ω??=+

可解得:211)2m v

m r

ω=

3-16 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略不计,人的质量

为'm ,转台的质量为10'm ,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.

解:以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得

0J m R v ω+= 人和转台的转动惯量'2'2

1102

J m R m R =

+,代入上式后得

'

6m v m R

ω=-

人的线速度为'

6m v v R m

ω==-

其中负号表示转台角速度转向和人的线速度方向与假设方向相反-

3-17 一人站在转台上,两臂平举,两手各握一个4m =kg,哑铃距转台轴00.8r =m,起初转台以02ωπ=rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r =0.2m,设人与转台的转动惯量不变,且5J =kg ?m 2,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?

解:以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有

2

2

00(2)(2)J m r J m r ωω+=+

22002

2

25240.8212.025240.2

J mr J mr

ωωπ++??=

=

?=++??rad/s

动能的增量为

2

2

22

00011(2)(2)2

2

W W W J m r J m r ωω?=-=

+-

+

22

22

11(5240.2)12(5240.8)(2)2

2

π=

?+???-

?+???

=183J

3-18 如3-20图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ30°处.

(1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?

解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒做弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:

mvl I l mv +=ω0 ① 2

2

2

02

12

121mv

I mv +

=

ω

上两式中2

3

1Ml I =

,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直

位置上摆到最大角度o 30=θ,按机械能守恒定律可列式:

)30cos 1(2

212

?-=l Mg

I ω

由③式得

21

2

1

)231(3)30cos 1(??????-=???????-=l

g I Mgl ω

由①式

ml

I v v ω-

=0 ④

由②式

m

I v v

2

2

2

ω-

= ⑤

所以

2

2

001)(2ωωm

v ml

I v -

=-

图18

求得

gl

m

M

m m M l ml

I l v +-=

+

=

+

=

312

32(6)311(2

)1(22

ω

(2)相碰时小球受到的冲量为

?-=?=0d mv mv mv

t F

由①式求得

ωωMl l

I mv mv t F 3

1d 0-

=-

=-=?

gl M

6

)32(6-

-

=

负号说明所受冲量的方向与初速度方向相反.

3-19如图示,一个转动惯量为I ,半径为R 的定滑轮上面绕有细绳,并沿水平方向拉着一个质量为M 的物体 A. 现有一质量为m 的子弹在距转轴

2

R 的水平方向以速度0v 射入并固定在定滑轮的边缘,使滑轮拖住A 在水平面上滑轮.求(1)子弹射入并固定在滑轮边缘后,滑轮开始转动时的角速度ω.(2)若定滑轮拖着物体A 刚好转一圈而停止,求物体A 与水平面间的摩擦系数μ(轴上摩擦力忽略不计).

解:(1)子弹射入定滑轮前后,子弹、定滑轮及物体A 构成的系统角动量守恒

2

2

[]2

R m v m R I M R ω=++

解得 02

2

2()

mv R mR I M R ω=

++

(2)定滑轮转动过程中物体A 受的摩擦力所做的功等于系统动能的增量 2

2

2

1()22

I m R M R M g R ω

μπ-

++=-?

解得 2

02

2

16()

m v R

M g m R M R I μπ=

++

3-20 行星在椭圆轨道上绕太阳运动,太阳质量为1m ,行星质量为2m ,行星在近日点和远

日点时离太阳中心的距离分别为1r 和2r ,求行星在轨道上运动的总能量.

解:将行星和太阳视为一个系统,由于只有引力做功,系统机械能守恒,设行星在近日点

图3-19

和远日点时的速率分别为1v 和2v ,有

2

2

12

1211221

2

112

2

m m m m m v G

m v G

r r -=

-

行星在轨道上运动时,受太阳的万有引力作用,引力的方向始终指向太阳,以太阳为参考点,行星所受力矩为零,故行星对太阳的角动量守恒 11122m r v m r v

=

行星在轨道上运动时的总能量为

2

2

12

1211221

2

112

2

m m m m E m v G

m v G

r r =

-=

-

联立以上三式得:1212

Gm m E r r =-

+

3-21 半径为R 质量为'm 的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动. 圆盘

边缘及/2R 处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿两轨道反向运行,相对于圆盘的线速度值同为v . 若圆盘最初静止,求两小车开始转动后圆盘的角速度.

解: 设两小车和圆盘运动方向如图所示,以圆盘转动方向为正向,外轨道上小车相对于地面的角动量为()mR R v ω-,内轨道上小车相对于地面的角动量为11(

)2

2

m R R v ω+,圆盘

的角动量为'2

12

J m R ωω=,由于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动

量守恒,得 '2

111()(

)02

2

2

m R R v m

R R v m R ωωω-+++

=

'

2(52)mv m m R

ω=+

3-22 如图示,一匀质圆盘A 作为定滑轮绕有轻绳,绳上挂两物体B 和C,轮A 的质量为1m ,

半径为r ,物体B 、C 的质量分别为2m 、3m ,且2m >3m . 忽略轴的摩擦,求物体B 由静止下落到t 时刻时的速度.

3-21

图3-22

解:把滑轮和两个物体作为一个系统,其运动从整体上看对定轴O 是顺时针方向的,即轮A 沿顺时针方向转动物体B 向下运动物体C 向上运动,故以顺时针方向的运动作为系统运动的正方向,根据角动量定理,得

t M d t L L

=-

?

(1) (1)式左边为系统受到的合外力矩对轴O 的冲量矩,由于轮A 所受重力和轴的作用力对轴

O 的力矩为零,故只有两物体所受重力提供力矩,注意到两个重力矩的方向相反,故合力矩为

2121()M m gr m gr m m gr =-=- (2)

(1)式右边为系统对轴O 的角动量的增量- 0t =时系统静止,角动量

00L = (3)

到t 时刻,A 、B 、C 三个物体均沿顺时针方向运动,角动量均为正- 设此时轮A 的角速度ω,B 、C 两物体速率相同设为v ,则有

2

12312

A B C L L L L m r m vr m vr ω=++=

++ (4)

把(2)、(3)、(4)式代入(1)式有

2

211231()2

m m grt m r m vr m vr ω-=

++

由于系统为一连接体,两物体的速率与轮边缘的速率相同,即有

v r ω= 把此式代入(5)式即可求得物体下落t 时的速度 21123

2()23m m gt v m m m -=++

第三章 刚体力学习题答案

第三章 刚体力学习题答案 3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m , 杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方 向成θ角时的角加速度、 解:系统受外力有三个,即A,B 受到的重力与轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用、 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩 为负,两个重力的力臂相等为sin d l θ=,故合力矩为 2sin sin sin M mgl mgl mgl θθθ=-= 系统的转动惯量为两个小球(可视为质点)的转动惯量之与 22223J ml ml ml =+= 应用转动定律 M J β= 有:2sin 3mgl ml θβ= 解得 sin 3g l θβ= 3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为 M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面 与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0、 1m 、 解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有 a m T g m 222=- ① a m T 11= ② 对滑轮运用转动定律,有 β)2 1(212Mr r T r T =- ③ 又, βr a = ④ 联立以上4个方程,得 2212s m 6.721520058.92002-?=++?=++=M m m g m a 图3-1 图3-2

3-3 飞轮质量为60kg,半径为0、25m,当转速为1000r/min 时,要在5s 内令其制动,求制动 力F ,设闸瓦与飞轮间摩擦系数μ=0、4,飞轮的转动惯量可 按匀质圆盘计算,闸杆尺寸如图所示、 解:以飞轮为研究对象,飞轮的转动惯量212J mR =,制动前角速度为1000260ωπ=?rad/s,制动时角加速度为t ωβ-=- 制动时闸瓦对飞轮的压力为N F ,闸瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 212f F R J mR ββ-== 则 2N mR F t ωμ= 以闸杆为研究对象,在制动力F 与飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75)l =+m 与1l =0-50m,则有 10N Fl F l -= 110.50600.252100015720.500.7520.4560 N l l mR F F l l t ωπμ???===?=+???N 3-4 设有一均匀圆盘,质量为m ,半径为R ,可绕过盘中心的光滑竖直轴在水平桌面上转 动、 圆盘与桌面间的滑动摩擦系数为μ,若用外力推动它使其角速度达到0ω时,撤去外力,求: (1) 此后圆盘还能继续转动多少时间? (2) 上述过程中摩擦力矩所做的功、 解:(1)撤去外力后,盘在摩擦力矩f M 作用下停止转动- 设盘质量密度为2m R σπ=,则有 20223 R f M g r dr mgR μπσμ==? 根据转动定律 21,2f M J mR J α-== 43g R μα-= 图3-3

刚体力学基础 习题 解答

衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题 命题教师:郑永春 试题审核人:张郡亮 一、填空题(每空1分) 1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__ 12 ma 2 _,对通过三角形中心与一个顶点的轴的转动惯量为J B =__ 2 1ma 2 。 2、两个质量分布均匀的圆盘A 与B 的密度分别为ρA 与ρB (ρA >ρB ),且两圆盘的总质量与厚度均相同。设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 与J B ,则有J A < J B 。 3、 一作定轴转动的物体,对转轴的转动惯量J =3、0 kg ·m 2,角速度ω0=6、0 rad/s.现对物体加一恒定的制动力矩M =-12 N ·m,当物体的角速度减慢到ω=2、0 rad/s 时,物体已转过了角度?θ=__ 4、0rad 4、两个滑冰运动员的质量各为70 kg,均以6、5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。 5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。 二、单项选择题(每小题2分) ( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的就是: A 、这两个力都平行于轴作用时,它们对轴的合力矩一定就是零; B 、这两个力都垂直于轴作用时,它们对轴的合力矩一定就是零; C 、当这两个力的合力为零时,它们对轴的合力矩也一定就是零; D 、当这两个力对轴的合力矩为零时,它们的合力也一定就是零。 ( C )2、一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体。物体所受重力为P ,滑轮的角加速度为α.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度α将 A 、不变; B 、变小; C 、变大; D 、如何变化无法判断。 ( C )3、关于刚体的转动惯量,下列说法中正确的就是 A 、只取决于刚体的质量,与质量的空间分布与轴的位置无关; B 、取决于刚体的质量与质量的空间分布,与轴的位置无关; C 、取决于刚体的质量、质量的空间分布与轴的位置; D 、只取决于转轴的位置,与刚体的质量与质量的空间分布无关。 ( C )4、一人造地球卫星到地球中心O 的最大距离与最小距离分别就是R A 与R B .设卫星对应的角动量分别就是L A 、L B ,动能分别就是E KA 、E KB ,则应有 A 、L B > L A ,E KA = E KB ; B 、L B < L A ,E KA = E KB ; C 、L B = L A ,E KA < E KB ; D 、L B = L A , E KA > E KB . ( C )5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图1射来两个质量 相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内, 则子弹射入后的瞬间,圆盘的角速度ω O M m m

大学物理第3章 刚体力学习题解答

第3章 刚体力学习题解答 3.13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23 212643ct bt ct bt a d d -==-+== ω θβω 3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量dI z 为 232..z dI r dm h r dr ρπ== 2 1 2222112..()2 r z r I h r r dr m r r ρπ== -? 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 , 求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过 轴的转动惯量为 1 2 mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为:21 4 AA I mR '=

第五章刚体力学参考答案

第五章 刚体力学参考答案(2014) 一、 选择题 [ C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【提示】: 逆时针转动时角速度方向垂直于纸面向外,由于m 1<m 2,实际上滑轮在作减速转动,角加速度方向垂直纸面向内,设滑轮半径为R,受右端绳子向下拉力为T 2,左端绳子向下拉力为T 1,对滑轮由转动定律得:(T 2-T 1)R=J [ D ]2、【基础训练3】如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A 端对墙壁的压力大 (A) 为 41mg cos . (B)为2 1 mg tg . (C) 为 mg sin . (D) 不能唯一确定 图5-8 【提示】: 因为细杆处于平衡状态,它所受的合外力为零,以B 为参考点,外力矩也是平衡的,则有: A B N f = A B f N mg += θθθlcon N l f l mg A A +=sin sin 2 三个独立方程有四个未知数,不能唯一确定。 [ C ] 3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 【提示】: 把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。 m 2 m 1 O 图5-7 O M m m 图5-11

刚体力学习题解答

第三章习题解答 3.13 某发动机飞轮在时间间隔t内的角位移为 。求t时刻的角速度和角加速度。 解: 3.14桑塔纳汽车时速为166km/h,车轮滚动半径为0.26m,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m,发动机转速为n1, 驱动轮转速为n2, 汽车速度为v=166km/h。显然,汽车前进的速度就是驱动轮边缘的线速度,,所以: 3.15 如题3-15图所示,质量为m的空心圆柱体,质量均匀分布,其内外半径为r1和r2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,密度为,则半径为r,厚为dr的薄圆筒的质量dm 为: 对其轴线的转动惯量为

3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O轴且垂直于圆形细杆所在平面的轴的转动惯量为mR2,根据垂直轴定理和问题的对称性知:圆形细杆对过 轴的转动惯量为mR2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为: 3.18 在质量为M,半径为R的匀质圆盘上挖出半径为r的两个圆孔,圆孔中心在半

径R的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动 惯量。 解:大圆盘对过圆盘中心o且与盘面垂直的轴线(以下简称o轴)的转动惯量为 .由于对称放置,两个小圆盘对o轴的转动惯量相等,设为I’,圆盘质量的面密度σ=M/πR2,根据平行轴定理, 设挖去两个小圆盘后,剩余部分对o轴的转动惯量为I” 3.19一转动系统的转动惯量为I=8.0kgm2,转速为ω=41.9rad/s,两制 动闸瓦对轮的压力都为392N,闸瓦与轮缘间的摩擦系数为μ=0.4,轮半径为r=0.4m,问从开始制动到静止需多长时间? 解:由转动定理: 制动过程可视为匀减速转动, 3.20一轻绳绕于r=0.2m的飞轮边缘,以恒力F=98N拉绳,如题3-20图

大学物理刚体力学基础习题思考题及答案

习题5 5-1.如图,一轻绳跨过两个质量为 m 、半径为r 的均匀圆盘状定滑轮,绳的两端 分别挂着质量为2m 和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定 滑轮的转动惯量均为 mr 2 / 2,将由两个定滑轮以及质量为 2m 和m 的重物组成 的系统从静止释放,求重物的加速度和两滑轮之间绳的力。 解:受力分析如图,可建立方程: 广 2mg T 2 2ma ① T1 mg ma ② J (T 2 T)r J ③ (T T 1)r J ④ 虹 a r , J mr 2/2 ⑤ 联立,解得:a 1g, T 4 上,设开始时杆以角速度 °绕过中心O 且垂直与桌面的轴转动,试求: (1)作 用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 解:(1)设杆的线密度为: d f dmg gd x, 微元摩擦力矩:d M g xd x , (2)根据转动定律 M J J 马, t 有: 0 Mdt Jd dt 1 . -mglt 1 [2 —m l 0, . . t _oL 4 12 3 g 或利用: M t J J 0,考虑到 0, J 1 | 2 一 ml , 12 有:t ol 。 11 a mg 5-2.如图所示,一均匀细杆长为 l ,质量为m ,平放在摩擦系数为 的水平桌面 一小质元dm dx,有微元摩擦力: 考虑对称性, l_ M 2 2 有摩擦力 矩: gxdx 1

5-3.如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量 可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M、半径为 R,其转动惯量为MR2/2,试求该物体由静止开始下落的过程中, 下落速度与时间的关系。 解:受力分析如图,可建立方程: r mg T ma ① * TR J ② —, 1 ~2 — k a R , J — mR —-③ 2 2mg Mmg 联立,解得:a ------------ — , T ----------- —, 考虑到a四,.?. v dv 「旦—dt,有:v dt 0 0 M 2m M 2m 5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M /4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M /4的重物,如图。已知滑轮对O 轴的转动惯量J MR2 /4 ,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度? 解一: 分别对人、滑轮与重物列出动力学方程 Mg T1Ma A人 T2M 4g M 心 a B物 4 T1R T2R J滑轮 由约束方程:a A a B R 和J MR2/4,解上述方程组 得到a —. 2 解二: 选人、滑轮与重物为系统,设 U为人相对绳的速度,V为重

大学物理 第三章 刚体力学

班级: 姓名: 一、选择题 1、一质点作匀速率圆周运动时,则质点的( ) (A)动量不变,对圆心的角动量也不变. (B)动量不变,对圆心的角动量不断改变. (C)动量不断改变,对圆心的角动量不变. (D)动量不断改变,对圆心的角动量也不断改变. 2、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 ( ) (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 3、刚体角动量守恒的充分而必要的条件是 ( ) (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变. 4、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系 统 ( ) (A) 动量守恒. (B) 机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都守恒. 二、填空题: 1. 一质量为m 的质点沿着一条曲线运动,其位置矢量在空间直角座标系中的表达式为 j t b i t a r ωωs i n c o s +=,其中a 、b 、ω皆为常量,则此质点对原点的角动量为_____ ;此质点所受对原点的力矩_____. 2、一正方形abcd 边长为L ,它的四个顶点各有 一个质量为m 的质点,此系统对下面三种转轴的 转动惯量: (1)Z 1轴: (2)Z 2轴: (3)Z 33、一人造地球卫星绕地球做椭圆轨道运动,则卫星的动量 ,动能 ,机械能 ,对地心的角动量 。(填“守恒”或“不守恒”) 4、刚体的转动惯量与 、 及 有关。 5、一质量为2kg 的质点在某一时刻的位置矢量为23r i j =+ (m ),该时刻的速度为32i j υ=+ (m/s ),则质点此时刻的动量p = ,相对于坐标 原点的角动量L = 。 三、简答题: 1、力学中常见三大守恒定律是什么? 2、试用所学知识说明(1)芭蕾舞演员、花样滑冰运动员在原地快速旋转动作;(2)为什么体操和跳水运动中直体的空翻要比屈体、团体的空翻难度大。

精选-《大学物理学》第二章 刚体力学基础 自学练习题

第二章 刚体力学基础 自学练习题 一、选择题 4-1.有两个力作用在有固定转轴的刚体上: (1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( ) (A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。 【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】 4-2.关于力矩有以下几种说法: (1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。 对上述说法,下述判断正确的是:( ) (A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。 【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】 3.一个力(35)F i j N =+v v v 作用于某点上,其作用点的矢径为m j i r )34(??? -=,则该力对 坐标原点的力矩为 ( ) (A )3kN m -?v ; (B )29kN m ?v ; (C )29kN m -?v ; (D )3kN m ?v 。 【提示:(43)(35)430209293 5 i j k M r F i j i j k k k =?=-?+=-=+=v v v v v v v v v v v v v 】 4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆 到竖直位置的过程中,下述说法正确的是:( ) (A )角速度从小到大,角加速度不变; (B )角速度从小到大,角加速度从小到大;

第三章 刚体力学 南京大学出版社 习题解答

第三章 习题解答 3.13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23 212643ct bt ct bt a d d -==-+== ω θβω 3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,密度为ρ,则半径为r ,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量OO dI '为 232..OO dI r dm h r dr ρπ'== 2 1 222 2112..()2 r OO r I h r r dr m r r ρπ'== -? 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端 轴 的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2, 根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为1 2mR 2, 由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为: 21 4 AA I mR '= 3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。 解:大圆盘对过圆盘中心o 且与盘面垂直的轴线(以下简称o 轴)的转动惯量为

大学物理刚体力学基础习题思考题及答案.docx

` 习题 5 5-1.如图,一轻绳跨过两个质量为 m 、半径为 r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为 2m 和 m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定 滑轮的转动惯量均为 mr 2 / 2 ,将由两个定滑轮以及质量为 2m 和 m 的重物组成 的系统从静止释放,求重物的加速度和两滑轮之间绳的力。 解:受力分析如图,可建立方程: 2mg T 2 2ma ┄① T 1 mg ma ┄② (T 2 T )r J ┄③ (T T 1 )r J ┄④ a r , J mr 2 / 2 ┄⑤ T 联立,解得: a 1 g , T 11 mg 。 4 8 5-2.如图所示,一均匀细杆长为 l ,质量为 m ,平放在摩擦系数为 的水平桌面 上,设开始时杆以角速度 0 绕过中心 O 且垂直与桌面的轴转动,试求: ( 1)作 用于杆的摩擦力矩; ( 2)经过多长时间杆才会停止转动。 解:( 1)设杆的线密度为: m ,在杆上取 l 一小质元 dm d x ,有微元摩擦力: d f dmg gd x , 微元摩擦力矩: d M g xd x , 考虑对称性,有摩擦力矩: l 1 M 2 2 g xd x mgl ; 0 4 J d M J t Mdt ( 2)根据转动定律 ,有: Jd , dt 1 mglt 1 2 0 ,∴ t 0 l 4 m l 。 12 3 g 或利用: M t J J 0 ,考虑到 0 , J 1 ml 2 , 0 l 12 有: t 3 。 g

大学物理第3章-刚体力学习题解答

第3章刚体力学习题解答 3.13某发动机飞轮在时间间隔t的角位移为 0 = at+ bt' -ct A(0 : radJ : 5)。求t时刻的角速度和角加速度。 解:co = ^ = a + 3bt- -4ct- P = ^ = 6ht-\2ct2 3.14桑塔纳汽车时速为166km/h,车轮滚动半径为0.26m,发动机转速与驱动轮转速比为0.909,问发动机转速为每分多少转? 解:设车轮半径为R=0.26m,发动机转速为n h驱动轮转速为n2,汽车速度为 v=166km/ho显然,汽车前进的速度就是驱动轮边缘的线速度, # = 2兀血2 =2兀&"0.909 ,所以: “=黠=?囁熠=9.24xl04 w//7 = 1.54x103rev/ min 3.15如题3-15图所示,质量为加的空心圆柱体,质量均匀分布,其外半径为门和厂2,求对通过其中心轴的转动惯量。 解:设圆柱体长为力,则半径为r,厚为dr的薄圆筒的质量dm为: dm = hp2mlr 对其轴线的转动惯量dl z?为 dl: = rdm = hplTV.r .dr 3.17如题3-17图所示,一半圆形细杆,半径为,质量为,求对 7二A 过细杆二端轴的转动惯量。 解:如图所示,圆形细杆对过O轴且垂直于圆形细杆所在平面的轴的转动惯量为mR2, 根据垂直轴定理/:=人+人和问题的对称性知:圆形细杆对过轴的转动惯量为|mR2, III 2 转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:I^=-mR2 3.18在质量为半径为R的匀质圆盘上挖出半径为r的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的 ____

(完整版)静力学基础测试题

静力学基础测试卷 姓名:成绩: 一、是非题(每题3分,30分) 1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。 ()2.在理论力学中只研究力的外效应。()3.两端用光滑铰链连接的构件是二力构件。()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。 ()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。() 9. 力偶只能使刚体发生转动,不能使刚体移动。() 10.固定铰链的约束反力是一个力和一个力偶。() 二、选择题(每题4分,24分) 1.若作用在A点的两个大小不等的力F 1和F2,沿同一直线但方向相反。 则其合力可以表示为。 ①F1-F2; ②F2-F1; ③F1+F2; 2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是 。 ①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。 ③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。 3.三力平衡定理是。 ①共面不平行的三个力互相平衡必汇交于一点; ②共面三力若平衡,必汇交于一点; ③三力汇交于一点,则这三个力必互相平衡。 4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢 关系如图所示为平行四边形,由此。 ①力系可合成为一个力偶; ②力系可合成为一个力; ③力系简化为一个力和一个力偶; ④力系的合力为零,力系平衡。

大学物理第3章 刚体力学习题解答

第3章 刚体力学习题解答 3、13 某发动机飞轮在时间间隔t 内得角位移为 。求t 时刻得角速度与角加速度。 解: 3、14桑塔纳汽车时速为166km/h,车轮滚动半径为0、26m,发动机转速与驱动轮转速比为0、909, 问发动机转速为每分多少转? 解:设车轮半径为R=0、26m,发动机转速为n 1, 驱动轮转速为n2, 汽车速度为v=166k m/h 。显然,汽车前进得速度就就是驱动轮边缘得线速度, ,所以: min /1054.1/1024.93426 .014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3、15 如题3-15图所示,质量为m得空心圆柱体,质量均匀分布,其内外半径为r 1与r 2,求对通过其中心轴得转动惯量。 解:设圆柱体长为h ,则半径为r ,厚为dr 得薄圆筒得质量dm 为: 对其轴线得转动惯量dI z 为 3、17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端 轴得转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面得轴得转动惯量为mR 2,根据垂直轴定理与问题得对称性知:圆形细杆对过 轴得转动惯量为mR 2,由转动惯量得可加性可求得:半圆形细杆对过细杆二端 轴得转动惯量为: 3、18 在质量为M,半径为R 得匀质圆盘上挖出半径为r得两个圆孔,圆孔中心在半径R 得中点,求剩余部分对过大圆盘中心且与盘面垂直得轴线得转动惯量。 解:大圆盘对过圆盘中心o且与盘面垂直得轴线(以下简称o 轴)得转动惯量为 、由于对称放置,两个小圆盘对o轴得转动惯量相等,设为I’,圆盘质量得面密度σ=M/πR 2,根据平行轴定理, 设挖去两个小圆盘后,剩余部分对o 轴得转动惯量为I” )/2('2"242221 22122124 R r r R M Mr MR I I I R r M --=--=-= 3、19一转动系统得转动惯量为I=8、0kgm 2,转速为ω=41、9r ad/s,两制动闸瓦对轮得压力都为392N,闸瓦与轮缘间得摩擦系数为μ=0、4,轮半径为r=0、4m,问从开始制动到静止需多长时间? 解:由转动定理:

3-刚体力学基础

图3-1 大 学 物 理 习 题 3.刚体力学基础 一、选择题 1.有些矢量是相对于一定点(或轴)而确定的,有些矢量是与定点(或轴)的选择无关的。下列给出的各量中,相对于定点(或轴)而确定的物理量是: A .矢径 B .位移 C .速度 D .动量 E .角动量 F .力 G .力矩 ( ) 2.在下列关于转动定律的表述中,正确的是: A .对作定轴转动的刚体而言,力矩不会改变刚体的角加速度; B .两个质量相等的刚体,在相同力矩的作用下,运动状态的变化情况一定相同; C .同一刚体在不同力矩作用下,必然得到不同的角加速度; D .作用在定轴转动刚体上的力越大,刚体转动的角加速度越大; E . 刚体定轴转动的转动定律为βJ M =,式中β,,J M 均对同一条固定轴而言的, 否则该式不成立。。 ( ) 3.工程技术上的摩擦离合器是通过摩擦实现传动的装置,其结构如图3-1所示。轴向作用力可以使A 、B 两个飞轮实现离合。当A 轮与B 轮接合通过摩擦力矩带动B 轮转动时,则此刚体系统在两轮接合前后 A .角动量改变,动能也改变; B .角动量改变,动能不变; C .角动量不变,动能改变; D .角动量不变,动能也不改变。 ( ) 4.一人开双臂手握哑铃坐在转椅上,让转椅转动起来,若此后无外力矩作用,则当此人收回双臂时,人和转椅这一系统的 A .转速加大,转动动能不变; B .角动量加大;

图3-3 C .转速和转动动能都加大; D .角动量保持不变。 ( ) 5.有a 、b 两个半径相同,质量相同的细圆环,其中a 环的质量均匀分布,而b 环的质量分布不均匀,若两环对过环心且与环面垂直轴的转动惯量分别为a J 和b J ,则 A .b a J J >; B .b a J J <; C .b a J J =; D .无法确定a J 与b J 的相对大小。 ( ) 6.在下列关于守恒的表述中,正确的是 A .系统的动量守恒,它的角动量也一定守恒; B .系统的角动量守恒,它的动量也必定守恒; C .系统的角动量守恒,它的机械能也一定守恒; D .系统的机械能守恒,它的角动量也一定守恒; E .以上表述均不正确。 ( ) 7.如图3-2所示,一悬线长为l ,质量为m 的单摆和一长度为 l 、质量为m 能绕水平轴自由转动的匀质细棒,现将摆球和细棒 同时从与竖直方向成θ角的位置由静止释放,当它们运动到竖直 位置时,摆球和细棒的角速度之间的关系为 A .ω1>ω2 ; B .ω1=ω2; C .ω1<ω2 。 ( ) 8.如图3-3所示,圆盘绕光滑轴O 转动,若同时对称地射来两颗质量相同,速度大小相同,方向相反且沿同一直线运动的子弹。射入后两颗子弹均留在盘,则子弹射入后圆盘的角速度ω将: 图 3-2

第3章刚体力学基础

第3章 刚体力学基础 一、基本要求 1.理解质点及刚体转动惯量、角动量的概念,并会计算质点及刚体(规则形状刚体)的转动惯量、角动量; 2.理解刚体绕定轴转动的转动定律,并应用它来求解定轴转动刚体力矩和角加速度等问题; 3.会计算力矩的功、刚体的转动动能、刚体的重力势能,会应用机械能守恒定律解答刚体定轴转动问题; 4.掌握刚体的角动量定理和角动量守恒定律,并会分析解决含有定轴转动刚体系统的力学问题(质点与刚体碰撞类问题等)。 二、基本内容 (一)本章重点和难点: 重点:刚体绕定轴转动定律及角动量守恒定律。 难点:刚体绕定轴转动系统的角动量守恒定律及其应用。 (二) 知识网络结构图: ?????? ???????????????????角动量守恒定律定轴转动定律基本定律转动动能角动量冲量矩转动惯量力矩基本物理量 (三)容易混淆的概念: 1.转动惯量和质量 转动惯量反映刚体转动状态改变的难易程度,即刚体的转动惯性大小的量度;质量反映质点运动状态改变的难易程度,即质点的惯性大小的量度。

2.平动动能和转动动能 平动动能是与质量和平动速度的平方成正比;转动动能是与转动惯量和角速度的平方成正比。 (四)主要内容: 1.描述刚体定轴转动的角位置θ,角位移θ?、角速度ω和角加速度α(β)等物理量 t t d d ,d d ωαθω== 角量与线量的关系: 2n t ωαω θr a r a r v r s ==== 2.转动惯量--转动质点对转轴的转动惯量,等于转动质点的质量m 成以质点到转轴的距离r 的平方。2J m r =? (1)质量连续分布的刚体: ?=m r J d 2 线分布:dl dm ?=λ λ-质量线分布刚体,单位长度的质量。 面分布:dS dm ?=σ σ- 质量面分布刚体,单位面积的质量。 体分布:dV dm ?=ρ ρ 质量体分布刚体,单位体积的质量。 (2)质量离散分布刚体的转动惯量:2 i J m r =?∑ (3)平行轴定理 2 C J J md =+ 3.刚体绕定轴转动的转动定律—刚体的合外力矩等于转动惯量乘以角加速度。 t J J M d d ω α== i i i M M r F ==?∑∑ 力矩:F r M ?= 力对轴的力矩大小:θsin rF M =

第三章 刚体力学习题答案

第三章 刚体力学习题答案 3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m ,杆可 绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方向成θ角时的角加速度. [ 解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为 2sin sin sin M mgl mgl mgl θθθ=-= 系统的转动惯量为两个小球(可视为质点)的转动惯量之和 22223J ml ml ml =+= 应用转动定律 M J β= 有:2 sin 3mgl ml θβ= 解得 sin 3g l θ β= 3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为 M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面与 物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m. 解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有 a m T g m 222=- ① a m T 11= ② 对滑轮运用转动定律,有 β)2 1 (212Mr r T r T =- ③ 图3-1 — 图3-2

又, βr a = ④ 联立以上4个方程,得 \ 221 2s m 6.72 15 20058 .92002 -?=+ +?= + += M m m g m a 3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动力 F ,设闸瓦与飞轮间摩擦系数μ=,飞轮的转动惯量可按匀质 圆盘计算,闸杆尺寸如图所示. 解:以飞轮为研究对象,飞轮的转动惯量21 2 J mR = ,制动前角速度为1000260ωπ=?rad/s ,制动时角加速度为t ω β-=- 制动时闸瓦对飞轮的压力为N F ,闸 瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 — 21 2 f F R J mR ββ-== 则 2N mR F t ω μ= 以闸杆为研究对象,在制动力F 和飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75)l =+m 和1l =0-50m ,则有 10N Fl F l -= 110.50600.252100015720.500.7520.4560 N l l mR F F l l t ωπμ???= ==?=+???N 图3-3

《大学物理学》第二章刚体力学基础自学练习题

《大学物理学》第二章刚体力学基础自学练 习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章 刚体力学基础 自学练习题 一、选择题 4-1.有两个力作用在有固定转轴的刚体上: (1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( ) (A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。 【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】 4-2.关于力矩有以下几种说法: (1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。 对上述说法,下述判断正确的是:( ) (A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。 【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】 3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34( -=,则 该力对坐标原点的力矩为 ( ) (A )3kN m -?; (B )29kN m ?; (C )29kN m -?; (D )3kN m ?。

大学物理 刚体力学基础习题思考题及答案

习题5 5-1.如图,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为2/2mr ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。 解:受力分析如图,可建立方程: ma T mg 222=-┄① ma mg T =-1┄② 2()T T r J β-=┄③ βJ r T T =-)(1┄④ βr a = ,2 /2J m r =┄⑤ 联立,解得:g a 4 1= ,mg T 8 11= 。 5-2.如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 解:(1)设杆的线密度为:l m = λ,在杆上取 一小质元d m d x λ=,有微元摩擦力: d f d m g g d x μμλ==, 微元摩擦力矩:d M g xd x μλ=, 考虑对称性,有摩擦力矩: 20 124 l M g x d x m g l μλμ== ?; (2)根据转动定律d M J J dt ω β==,有:0 0t M d t Jd ω ω-= ??, 2 0114 12 m g l t m l μω-=- ,∴03l t g ωμ= 。 或利用:0M t J J ωω-=-,考虑到0ω=,2 112 J m l = , 有:03l t g ωμ=。 T

5-3.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子的质量 可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M 、半径为 R ,其转动惯量为2/2 MR ,试求该物体由静止开始下落的过程中, 下落速度与时间的关系。 解:受力分析如图,可建立方程: m g T m a -=┄① βJ TR =┄② a R β= ,2 12 J m R = ┄③ 联立,解得:22m g a M m =+,2M m g T M m = +, 考虑到dv a dt = ,∴0 22v t m g dv dt M m =+?? ,有:22m g t v M m =+。 5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为4/M ,均 匀分布在其边缘上,绳子A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为4/M 的重物,如图。已知滑轮对O 轴的转动惯量4/2MR J =,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度? 解一: 分别对人、滑轮与重物列出动力学方程 A Ma T Mg =-1人 B a M g M T 442= - 物 αJ R T R T =-21滑轮 由约束方程: αR a a B A ==和4/2 MR J =,解上述方程组 得到2 g a =. 解二: 选人、滑轮与重物为系统,设u 为人相对绳的速度,v 为重

第三章 刚体力学习题答案

第三章 刚体力学习题答案 3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质 量为2m ,B 球质量为m ,杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方向成θ角时的角加速度. 解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为 2sin sin sin M mgl mgl mgl θθθ=-= 系统的转动惯量为两个小球(可视为质点)的转动惯量之和 22223J ml ml ml =+= 应用转动定律 M J β= 有:2 sin 3mgl ml θβ= 解得 sin 3g l θ β= 3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均 匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m. 图3-1 图3-2

解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有 a m T g m 222=- ① a m T 11= ② 对滑轮运用转动定律,有 β) 2 1 (212Mr r T r T =- ③ 又, βr a = ④ 联立以上4个方程,得 2212s m 6.72 15 20058 .92002 -?=+ +?= + += M m m g m a 3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动 力F ,设闸瓦与飞轮间摩擦系数μ=,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图所示. 解:以飞轮为研究对象,飞轮的转动惯量21 2 J mR = ,制动前角速度为1000260ωπ=? rad/s ,制动时角加速度为t ω β-=- 制动时闸瓦对飞轮的压力为N F ,闸瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 图3-3

相关主题