搜档网
当前位置:搜档网 › 芯片设计和制造对铜丝键合工艺影响分析

芯片设计和制造对铜丝键合工艺影响分析

芯片设计和制造对铜丝键合工艺影响分析
芯片设计和制造对铜丝键合工艺影响分析

芯片设计和制造对铜丝键合工艺的影响分析

【摘要】以实际案例为基础分析,从三极管芯片设计和制造上解决铜丝键合工艺容易造成芯片弹坑损伤的问题。

【关键词】铜丝键合弹坑芯片结构

1 概要

在半导体铜丝键合工艺中讨论最多的都是在封装键合领域内讨

论如何改进设备,材料和工艺方法去匹配铜丝工艺,提升铜丝工艺的可靠性和实用性,但很少有讨论在芯片设计和制造方面能做多少改进。本文重点分析芯片设计制造对铜丝工艺的的影响。

从铜丝键合工艺主要的失效分析统计来看,铜丝工艺在铝层弹坑损伤上要比金丝工艺严重得多。弹坑损伤在封装工艺上总存在工艺宽容度窄,控制难度高的问题,容易影响三极管的良品率和可靠性。所以改进的目标就定在如何能把芯片键合区设计成能经受住铜丝

键合高强度冲击而又不容易发生弹坑损伤或是能够缓冲铜丝键合

冲击应力的键合区结构上。

2 键合区铝层的分析

键合区铝层是的主要作用是芯片电极的引出,作为芯片与铜线连接的地方,连接的好坏关系到芯片的电参数能否可靠输出。铝层除了起到连接作用外,在焊线键合当中还起到一个关键的缓冲作用。因为铝金属硬度比金,铜都低,所以在键合过程中,铝层像一张“海绵垫子”一样铺在材质脆弱的硅片上面,这样当坚硬的铜球快速打在硅片上时,巨大能量和作用力才不能直接接触硅片,而是大部分

铜丝键合工艺在微电子封装中的应用

铜丝键合工艺在微电子封装中的应用 赵钰 1引言 当今半导体行业的一些显著变化直接影响到IC互连技术,其中有3大因素推动着互连技术的发展。第一是成本,也是主要因素,目前金丝键合长度超过5mm,引线数达到400以上,封装成本超过0.20美元。而采用铜丝键合新工艺不但能降低器件制造成本,而且其互连强度比金丝还要好。它推动了低成本、细间距、高引出端数器件封装的发展。第二是晶片线条的尺寸在不断缩小,器件的密度增大、功能增强。这就需要焊区焊点极小的细间距、高引出端数的封装来满足上述要求。第三是器件的工作速度,出现了晶片铝金属化向铜金属化的转变。因为晶片的铜金属化可以使电路密度更高、线条更细。对于高速器件的新型封装设计来说,在封装市场上选择短铜丝键合并且间距小于50μm的铜焊区将成为倒装焊接工艺强有力的竞争对手。表1列出铜作为键合材料用于IC封装中的发展趋势。 表1材料组合 细引线晶片上的焊区金属化应用时间 铜(Cu)Al 1989年 金(Au) Cu+溅射铝(Al)的焊区 2000年 Au Cu+镀镍/金(Ni/Au)焊区2000年 Au Cu+OP2(抗氧化工艺) 2001年 Cu Cu 2002年~将来 2铜丝键合工艺的发展 早在10年前,铜丝球焊工艺就作为一种降低成本的方法应用于晶片上的铝焊区金属化。当时,行业的标准封装形式为18个~40个引线的塑料双列直插式封装,其焊区间距为150μm~200μm,焊球尺寸为100μm~125μm,丝焊的长度很难超过3mm。与现在的金丝用量相比,在当时的封装中金丝用得很少。所以,实际上金的价格并不是主要问题。此外,在大批量、高可靠的产品中,金丝球焊工艺要比铜丝球焊工艺更稳定更可靠。然而,随着微电子行业新工艺和新技术的出现及应用,当今对封装尺寸和型式都有更高、更新的要求。首先是要求键合丝更细,封装密度更高而成本更低。一般在细间距的高级封装中,引出端达500个,金丝键合长度大于5mm,其封装成本在0.2美元以上。与以前相比,丝焊的价格成为封装中的重要问题。表2列出铜和金的封装成本比较。由此,专家们又看中了铜丝,在经过新工艺如新型EFO(电子灭火)、OP2(抗氧化工艺)及MRP(降低模量工艺)(这些工艺在下文中将作详细说明)的改进后,使铜丝键合比金丝键合更牢固、更稳定。尤其是在大批量的高引出数、细间距、小焊区的IC封装工艺中,成为替代 金丝的最佳键合材料。 表2长5mm、直径为1μm的金丝和铜丝封装成本比较

铜线键合注意

铜丝键合工艺及操作注意事项 对键合铜丝产生弹坑问题的相关原理的解释 键合铜丝作为微电子工业的新型材料,已经成功替代键合金丝应用于半导体器件后道封装中。随着单晶铜材料特性的提升和封装键合工艺技术及设备的改进,铜丝在硬度,延展性等指标方面已逐渐适应了半导体的封装要求。其应用已从低端产品向中高端多层线、小间距焊盘产品领域扩展。因而,在今后的微电子封装发展中,铜丝焊将会成为主流技术。采用铜丝键合工艺不但能降低半导体器件制造成本,更主要的是作为互连材料,铜的物理特性优于金。目前,铜丝键合工艺中有两个方面应予以高度重视:一是铜丝储存及使用条件对环境要求高,特别使用过程保护措施不当易氧化;二是铜丝材料特性选择、夹具选择、设备键合参数设置不当在生产制造中易造成芯片焊盘铝挤出、破裂、弹坑、焊接不良等现象发生,最终将导致产品电性能及可靠性问题而失效。因此,铜丝键合应注意以下工艺操作事项及要求,以确保铜丝键合的稳定及可靠性。 1、铜焊线的包装和存放:铜具有较强的亲氧性,在空气中铜丝容易氧化,所以铜丝必须存放于密封的包装盒中以减少环境空气中带来的氧化现象。于是要求各卷铜焊线必须采用吸塑包装,并在塑料袋内单独密封。贮藏时间一般为在室温(20~25℃)下4~6个月。铜丝一旦打开包装放于焊线机上,铜丝暴露于空气中即可产生氧化。原则上要求拆封的铜丝在48小时(包括焊线机上的时间)内用完为好,最长不超过72小时。 2、惰性保护气体:对于铜丝球焊来说,在成球的瞬间,放电温度极高,由于剧烈膨胀,气氛瞬时呈真空状态,但这种气氛很快和周围的大气相混合,常造成焊球变型或氧化。氧化的焊球比那些无氧化层的焊球明显坚硬,而且不易焊接。目前,铜丝键合新型EFO工艺增加了一套铜丝专用装置(K&S公司配置相对封闭的防氧化保护装置),是在成球及楔线过程中增加惰性气体保护功能,以确保在成球的一瞬间与周围的空气完全隔离,以防止焊球氧化。通常保护气体有两种防氧化方式:一种是采用纯度为5个“9”以上的100%氮气作为保护气体;另一种是采用90~95%氮气和5~10%氢气的保

钢丝生产工艺流程图

钢丝 百科名片 钢丝是钢材的板、管、型、丝四大品种之一,是用热轧盘条经冷拉制成的再加工产品。 目录 钢丝 钢丝的生产 烘干处理 热处理 镀层处理 钢丝的分类 编辑本段 钢丝 From 中国食品百科全书 Jump to: navigation, search [中文]: 钢丝

[英文]: steel wire [说明]: 钢丝是钢材的板、管、型、丝四大品种之一,是用热轧盘条经冷拉 钢丝 制成的再加工产品。按断面形状分类,主要有圆、方、矩、三角、椭圆、扁、梯形、Z字形等;按尺寸分类,有特细<0.1毫米、较细0.1~0.5毫米、细0.5~1.5毫米、中等1.5~3.0毫米、粗3.0~6.0毫米、较粗6.0~8.0毫米,特粗>8.0毫米;按强度分类,有低强度<390兆帕、较低强度390~785兆帕、普通强度785~1225兆帕、较高强度1225~1960兆帕、高强度1960~3135兆帕、特高强度>3135兆帕;按用途分类有:普通质量钢丝包括焊条、制钉、制网、包装和印刷业用钢丝,冷顶锻用钢丝供冷镦铆钉、螺钉等,电工用钢包括生产架空通讯线、钢芯铝绞线等用专用钢丝,纺织工业用钢丝包括粗梳子、综013、针布和针用钢丝,制绳钢丝专供生产钢丝绳和辐条,弹簧钢丝包括弹簧和弹簧垫圈用、琴用及轮胎、帘布和运输胶带用钢丝,结构钢丝指钟表工业、滚珠、自动机易切削用钢丝,不锈钢丝包括上述各用途的不锈钢丝及外科植入物钢丝,电阻合金丝供加热器元件、电阻元件用,工具钢丝包括钢筋钢丝和制鞋钢丝。 编辑本段 钢丝的生产 钢丝生产的主要工序包括原料选择、清除氧化铁皮、烘干、涂层处理、热处理、拉丝、镀层处理等。 原料选择见钢丝原料。 清除氧化铁皮指去除盘条或中间线坯表面的氧化铁皮,目的是防止拉拔时氧化铁皮损伤模具和钢丝表面,为后继的涂或镀层处理准备良好的表面条件以及减小拉拔时的摩擦降低拉拔力。清除氧化铁皮的方法有化学法和机械法两大类,见盘条化学除鳞和盘条机械除鳞。 编辑本段

铜丝引线键合技术的发展

铜丝引线键合技术的发展 摘要铜丝引线键合有望取代金丝引线键合,在集成电路封装中获得大规模应用。论文从键合工艺﹑接头强度评估﹑键合机理以及最新的研究手段等方面简述了近年来铜丝引线键合技术的发展情况,讨论了现有研究的成果和不足,指出了未来铜丝引线键合技术的研究发展方向,对铜丝在集成电路封装中的大规模应用以及半导体集成电路工业在国内高水平和快速发展具有重要的意义。 关键词集成电路封装铜丝引线键合工艺 1.铜丝引线键合的研究意义 目前超过90%的集成电路的封装是采用引线键合技术。引线键合(wire bonding)又称线焊,即用金属细丝将裸芯片电极焊区与电子封装外壳的输入/输出引线或基板上的金属布线焊区连接起来。连接过程一般通过加热﹑加压﹑超声等能量借助键合工具(劈刀)实现。按外加能量形式的不同,引线键合可分为热压键合﹑超声键合和热超声键合。按劈刀的不同,可分为楔形键合(wedge bonding)和球形键合(ball bonding)。目前金丝球形热超声键合是最普遍采用的引线键合技术,其键合过程如图1所示。 由于金丝价格昂贵﹑成本高,并且Au/Al金属学系统易产生有害的金属间化合物,使键合处产生空腔,电阻急剧增大,导电性破坏甚至产生裂缝,严重影响接头性能。因此人们一直尝试使用其它金属替代金。由于铜丝价格便宜,成本低,具有较高的导电导热性,并且金属间化合物生长速率低于Au/Al,不易形成有害的金属间化合物。近年来,铜丝引线键合日益引起人们的兴趣。 但是,铜丝引线键合技术在近些年才开始用于集成电路的封装,与金丝近半个世纪的应用实践相比还很不成熟,缺乏基础研究﹑工艺理论和实践经验。近年来许多学者对这些问题进行了多项研究工作。论文将对铜丝引线键合的研究内容和成果作简要的介绍,并从工艺设计和接头性能评估两方面探讨铜丝引线键合的研究内容和发展方向。

拉丝生产工艺

拉丝生产工艺

拉丝生产工艺 一、塑料扁丝的生产程序 塑料原料被烘干后,加入料斗,原料进入料筒的螺杆螺槽中,由螺杆的不断旋转,从螺纹方向被强制地推到机头去。 塑料被挤出来时,带着粘流态的膜片状物立即进入冷却水箱进行急骤冷却来定型成薄膜,通过划切再经过两组烘箱背部热板的热处理,在拉伸牵引力的作用下,扁丝拉长分子发生取向作用,使扁丝纵向强度增加,然后收卷。 二、开机前准备工作 2.1领取所需的原辅材料,如聚丙烯颗粒或粉剂、再生回收料颗粒、填充母料、着色颜料、过滤网、双面刀片等。领取专用工具及其它操作工具。 2.2开启各组电热开关,检查各组电热是否通电,检查温度表是否正常,一旦发现异常现象马上进行修复。如果一切正常,首先加热三通、模头温度(因三通、模头温度升温慢)。当三通、模头温度达到一定温度时(靠平时经验及记录掌握数据),再开启机筒加热器,最后开启两烘箱的加热器。 2.3将各加热控制温度调到所需温度。挤出机的温度由传感器的位置、塑料的特性和回收料的比例需作相应的更改(靠平时经验及记录掌握数据)。烘箱的温度要看传感器的位置和牵伸倍数拟定,总之牵伸倍数高而上升,低而下调。 2.4装好分切架的刀片,刀片一般选用双面刀片。 2.5调整好卷绕机的导丝头松紧和收丝绽的张力。 三、拉丝生产操作 3.1开机前的操作 3.1.1称或计量所需的原辅材料进行干燥搅拌。若掺有回收料粒子的原料,首先把回收料粒子加入干燥搅拌机内进行拌热。回收料粒子拌热温度约控制在80℃,到温度定值时放出在拌料盒内散热。再把新料加入干燥搅拌机内搅拌温度到80℃时,加入填充母料继续搅拌,母料变成粉末。需加着色颜料的及时加所需的着色颜料,约搅拌1min放出在拌料盒内与回收料粒子搅拌均匀。 如果原材料是粉剂掺回收料粒子的,先把回收料粒子拌热到约70℃加入填充母料继续搅拌,到温度定值时打出放在拌料盒内与后放出的粉剂进行搅拌均匀待用。 3.1.2向挤出机料斗内加入所配好的树脂。 3.1.3打开水箱的冷却水阀门。 3.1.4当挤出温度达到规定要求后,恒温15min。

铜丝在引线键合技术的发展及其合金的应用

铜丝在引线键合技术的发展及其合金的应用 一、简介 目前超过90%的集成电路的封装是采用引线键合技术,引线键合,又称线焊。即用金属细丝将裸芯片电极焊区与电子封装外壳的输入,输出引线或基板上的金属布线焊区连接起来。连接过程一般通过加热、加压、超声等能量,借助键合工具“劈刀”实现。按外加能量形式的不同,引线键合可分为热压键合、超声键合和热超声键合。按劈刀的不同,可分为楔形键合和球形键合。 引线键合工艺中所用导电丝主要有金丝、铜丝和铝丝,由于金丝价格昂贵、成本高,并且Au/Al金属学系统易产生有害的金属间化合物,使键合处产生空腔,电阻急剧增大,导电性破坏甚至产生裂缝,严重影响接头性能。因此人们一直尝试使用其它金属替代金,由于铜丝价格便宜、成本低、具有较高的导电导热性,并且Cu/Al金属间化合物生长速于Au/Al,不易形成有害的金属间化合物。近年来,铜丝引线键合日益引起人们的兴趣。 二、铜丝键合的工艺 当今,全球的IC制造商普遍采用3种金属互连工艺,即:铜丝与晶片铝金属化层的键合工艺,金丝与晶片铜金属化层的键合工艺以及铜丝与晶片铜金属化层的键合工艺。近年来第一种工艺用得最为广泛,后两者则是今后的发展方向。 1. 铜丝与晶片铝金属化层的键合工艺 近年来,人们对铜丝焊、劈刀材料及新型的合金焊丝进行了一些新的工艺研究,克服了铜易氧化及难以焊接的缺陷。采用铜丝键合不但使封装成本下降,更主要的是作为互连材料,铜的物理特性优于金。特别是采用以下’3种新工艺,更能确保铜丝键合的稳定性。 (1)充惰性气体的EFO工艺:常规用于金丝球焊工艺中的EFO是在形成焊球过程中的一种电火花放电。但对于铜丝球焊来说,在成球的瞬间,放电温度极高,由于剧烈膨胀,气氛瞬时呈真空状态,但这种气氛很快和周围的大气相混合,常造成焊球变形或氧化。氧化的焊球比那些无氧化层的焊球明显坚硬,而且不易焊接。新型EFO工艺是在成球过程中增加惰性气体保护功能,即在一个专利悬空管内充入氮气,确保在成球的一瞬间与周围的空气完全隔离,以防止焊球氧化,焊球质量极好,焊接工艺比较完善。这种新工艺不需要降低周围气体的含氧量,用通用的氮气即可,因此降低了成本。

金线键合工艺的质量控制-KSY版-2012

金线键合工艺的质量控制 孙伟(沈阳中光电子有限公司辽宁沈阳) 摘要:本文介绍引线(Au Wire)键合的工艺参数及其作用原理,技术要求和相关产品品质管控规范,讨论了劈刀、金线等工具盒原材料对键合质量的影响。 关键词:半导体器件(LED),键合金丝;键合功率;键合时间;劈刀;引线支架 一引言 半导体器件(光电传感器)LED芯片是采用金球热超声波键合工艺,即利用热能、压力、超声将芯片电极和支架上的键合区利用Au线及Ag线试作中(Cu 线也在试验中)对应键合起来,完成产品内、外引线的连接工作。也是当今半导体IC行业的主要技术课题,因为在键合技术中,会出现设备报警NSOP/NSOL等常规不良,焊接过程中的干扰性等不良,在半导体行业中,键合工艺仍然需要完善,工艺参数需要优化等,键合工艺技术在随着全球经济危机下,随着原材料工艺变革和价格调整下不断探索Bonding新领域的发展。已经建立了相对晚上的Bonding优化条件的体系中,在原材料的经济大战中,工艺技术将进一步推动优化Bonding条件体系 二技术要求 2.1 键合位置及焊点形状要求 (1)键合第一焊点金球Ball不能有1/4的Bonding到芯片电极之外,不能触及到P型层与N型层分界线。如下图1所示为GaAs单电极芯片Bonding 状态对比

Photo: (2) 第二焊点不得超过支架键合区域范围之内,如图2所示. (3)第一焊点球径A约是引线丝直径?的3.5倍(现行1.2MIL金线使用,Ball Size 中心值控制在105um)左右,金球Ball形变均匀良好,引线与球同心,第二焊点形状如楔形,其宽度D约是引线直径?的4倍(即目标值:120um)左右,球型厚度H为引线直径?的0.6~0.8倍。金球根部不能有明显的损伤或者变细的现象,第二焊点楔形处不能有明显裂纹。 图3为劈刀作用金球形变Ball形态的示意图。图4 第二焊点形状:

芯片和键合考题

芯片和键合考题

一、粘片 1、芯片质量检验 采用目检的方法,可以检验出芯片中存在的掩膜缺陷、金属化层缺陷、绝缘电阻以及在各金属化层布线之间、引线之间或引线与芯片边缘之间的缺陷、扩散和钝化层缺陷、划片和芯片缺陷。 2、芯片粘接剪切强度与器件可靠性的关系 1)芯片剪切强度小,粘接机械强度低,器件的耐机械冲击、耐振动、耐离心加速度的能力就小,严重时在进行上述试验时会使芯片脱落,造成器件致命性失效。 2)器件的内热阻会增大。 3)耐热冲击和温度循环能力差,间歇工作寿命(抗热疲劳、热循环次数)小。4)通常芯片剪切强度差,热阻大,结温高,也会造成器件电性能变差。 3、影响芯片粘接剪切强度的因素 芯片在剪切力作用下可能发生断裂的界面和材料如图所示 硅片 芯片背面金属化层 底座镀层 底座 图1芯片可能发生断裂的界面和材料 只有经检验确定剪切试验时断裂面两边材料的性质,才能找到剪切强度低和剪切力分散的原因,继而找出解决办法。 可能发生断裂或脱层的材料为下列5种: 1)硅片。脆性材料,易裂。 2)芯片背面多层金属层。很薄的多层金属材料,工艺不良时易分层。 3)芯片焊层(粘接层)。

4)底座镀层。 5)底座。 正常情况下,这些材料的抗剪强度都大于芯片粘接剪切强度的要求。可能发生断裂或脱层的材料界面为下列5种: 1)硅芯片与芯片背面多层金属层之间。 2)芯片背面多层金属层内各金属层之间。 3)芯片背面金属层与焊层之间。 4)芯片焊层与底座镀层之间。 5)底座镀层与底座基材之间。 剪切强度低的器件,断裂通常发生在材料的界面。 4、芯片装配通用工艺文件和管芯粘片、键合检验工艺文件。 二、键合 1、键合线和键合点的形状、位置检测

铜线键合氧化防止技术

铜线键合氧化防止技术 [摘要] 铜线以其相较传统金线更加良好的电器机械性能和低成本特点,在半导体引线键合工艺中开始广泛应用。但铜线易氧化的特性也在键合过程中容易带来新的失效问题。文中对这种失效机理进行了分析,并对防止铜线键合氧化进行了实验和研究。 [关键词] 铜线键合氧化失效 1、引言 半导体引线键合(Wire Bonding)的目的是将晶片上的接点以极细的连接线(18~50um)连接到导线架的内引脚或基板的金手指,进而籍此将IC晶片之电路讯号传输到外界。引线键合所使用的连接线一般由金制成。近年来,金价显著提升,而半导体工业对低成本材料的需求更加强烈。铜线已经在分离器件和低功率器件上成功应用。随着技术的进步,细节距铜引线键合工艺已得到逐步的改进与完善。铜作为金线键合的替代材料已经快速取得稳固地位。但由于铜线自身的高金属活性也在键合过程中容易带来新的失效问题。 引线键合技术又称为焊线技术,根据工艺特点可分为超声键合、热压键合和热超声键合。由于热超声健合可降低热压温度,提高键合强度,有利于器件可靠性,热超声键合已成为引线键合的主流。本文所讨论的内容皆为采用热超声键合。 2、铜线键合的优势与挑战 与金线连接相比,铜线连接主要有着成本低廉并能提供更好电气性能的优点。最新的研究工作已经扩展到了多节点高性能的应用。这些开发工作在利用铜线获得成本优势的同时,还要求得到更好的电气性能。随着半导体线宽从90纳米降低到65甚至45纳米,提高输入输出密度成为必需,要提高输入输出密度需要更小键合间距,或者转向倒装芯片技术。铜线连接是一个很好的解决方案,它可以规避应用倒装芯片所增加的成本。以直径20um为例,纯铜线的价格是同样直径的金线的10%左右,镀钯铜线的价格略高,但仍仅是同样直径的金线的20%左右。 如图1所示,除了较低的材料成本之外,铜线在导电性方面也优于金线。就机械性能而言,根据Khoury等人的剪切力和拉伸力实验,铜线的强度都大于金线的强度。而实验结果显示铜线的电阻率是 1.60 (μΩ/cm),电导率是0.42 (μΩ/cm)-1. 这些结果说明铜线比金线导电性强33%。铜线形成高稳定线型的能力强过金线,特别是在模压注塑的过程中,当引线受到注塑料的外力作用时,铜线的稳定性强过金线。原因是因为铜材料的机械性能优于金材料的机械性能。 另一方面,由于铜线自身的高金属活性,铜线在高压烧球时极易氧化。氧化物的存在对于键合的结合强度是致命的。氧化铜阻碍铜与铝电极之间形成共金化

芯片和键合考题

一、粘片 1、芯片质量检验 采用目检的方法,可以检验出芯片中存在的掩膜缺陷、金属化层缺陷、绝缘电阻以及在各金属化层布线之间、引线之间或引线与芯片边缘之间的缺陷、扩散和钝化层缺陷、划片和芯片缺陷。 2、芯片粘接剪切强度与器件可靠性的关系 1)芯片剪切强度小,粘接机械强度低,器件的耐机械冲击、耐振动、耐离心加速度的能力就小,严重时在进行上述试验时会使芯片脱落,造成器件致命性失效。 2)器件的内热阻会增大。 3)耐热冲击和温度循环能力差,间歇工作寿命(抗热疲劳、热循环次数)小。4)通常芯片剪切强度差,热阻大,结温高,也会造成器件电性能变差。 3、影响芯片粘接剪切强度的因素 芯片在剪切力作用下可能发生断裂的界面和材料如图所示 硅片 芯片背面金属化层 底座镀层 底座 图芯片可能发生断裂的界面和材料 只有经检验确定剪切试验时断裂面两边材料的性质,才能找到剪切强度低和剪切力分散的原因,继而找出解决办法。 可能发生断裂或脱层的材料为下列种: 1)硅片。脆性材料,易裂。 2)芯片背面多层金属层。很薄的多层金属材料,工艺不良时易分层。 3)芯片焊层(粘接层)。

4)底座镀层。 5)底座。 正常情况下,这些材料的抗剪强度都大于芯片粘接剪切强度的要求。可能发生断裂或脱层的材料界面为下列种: 1)硅芯片与芯片背面多层金属层之间。 2)芯片背面多层金属层内各金属层之间。 3)芯片背面金属层与焊层之间。 4)芯片焊层与底座镀层之间。 5)底座镀层与底座基材之间。 剪切强度低的器件,断裂通常发生在材料的界面。 4、芯片装配通用工艺文件和管芯粘片、键合检验工艺文件。 二、键合 、键合线和键合点的形状、位置检测

引线键合工艺

MEMS器件引线键合工艺(wire bonding) 2007-2-1 11:58:29 以下介绍的引线键合工艺是指内引线键合工艺。MEMS芯片的引线键合的主要技术仍然采用IC芯片的引线键合技术,其主要技术有两种,即热压键合和热超声键合。引线键合基本要求有: (1)首先要对焊盘进行等离子清洗; (2)注意焊盘的大小,选择合适的引线直径; (3)键合时要选好键合点的位置; (4)键合时要注意键合时成球的形状和键合强度; (5)键合时要调整好键合引线的高度和跳线的成线弧度。 常用的引线键合设备有热压键合、超声键合和热超声键合。 (1)热压键合法:热压键合法的机制是低温扩散和塑性流动(Plastic Flow)的结合,使原子发生接触,导致固体扩散键合。键合时承受压力的部位,在一定的时间、温度和压力的周期中,接触的表面就会发生塑性变形(Plastic Deformation)和扩散。塑性变形是破坏任何接触表面所必需的,这样才能使金属的表面之间融合。在键合中,焊丝的变形就是塑性流动。该方法主要用于金丝键合。

(2)超声键合法:焊丝超声键合是塑性流动与摩擦的结合。通过石英晶体或磁力控制,把摩擦的动作传送到一个金属传感器(Metal“HORN”)上。当石英晶体上通电时,金属传感器就会伸延;当断开电压时,传感器就会相应收缩。这些动作通过超声发生器发生,振幅一般在4-5个微米。在传感器的末端装上焊具,当焊具随着传感器伸缩前后振动时,焊丝就在键合点上摩擦,通过由上而下的压力发生塑性变形。大部分塑性变形在键合点承受超声能后发生,压力所致的塑变只是极小的一部分,这是因为超声波在键合点上产生作用时,键合点的硬度就会变弱,使同样的压力产生较大的塑变。该键合方法可用金丝或铝丝键合。 (3)热超声键合法这是同时利用高温和超声能进行键合的方法,用于金丝键合。三种各种引线键合工艺优缺点比较: 1、引线键合工艺过程 引线键合的工艺过程包括:焊盘和外壳清洁、引线键合机的调整、引线键合、检查。外壳清洁方法现在普遍采用分子清洁方法即等离子清洁或紫外线臭氧清洁。 (1)等离子清洁——该方法采用大功率RF源将气体转变为等离子体,高速气体离子轰击键合区表面,通过与污染物分子结合或使其物理分裂而将污染物溅射除去。所采用的气体一般为O2、Ar、N2、80%Ar+20%O2,或80%O2+20%Ar。另外O2/N2等离子也有应用,它是有效去除环氧树脂的除气材料。 (2)外线臭氧清洁通过发射184.9mm和253.7mm波长的辐射线进行清洁。过程如下: 184.9 nm波长的紫外线能打破O2分子链使之成原子态(O+O),原子态氧又与其它氧分子结合形成臭氧O3。在253.7nm波长紫外线作用下臭氧可以再次分解为原子氧和分子氧。水分子可以被打破形成自由的OH-根。所有这些均可以与碳氢化合物反应以生成CO2+H2O,并最终以气体形式离开键合表面。253.7nm波长紫外线还能够打破碳氢化合物的分子键以加速氧化过程。尽管上述两种方法可以去除焊盘表面的有机物污染,但其有效性强烈取决于特定的污染物。例如,氧等离子清洁不能提高Au厚膜的可焊性,其最好的清洁方法是O2+Ar 等离子或溶液清洗方法。另外某些污染物,如Cl离子和F离子不能用上述方法去除,因为可形成化学束缚。

试谈半导体铜线工艺流程图

? ? 半导体铜线工艺流程 时间:2010-09-03 剩余:0天浏览: 37 次收藏该信息 一、铜线键合工艺

A、铜线工艺对框架的特殊要求-------铜线对框架的的要求主要有以下几点: 1、框架表面光滑,镀层良好; 2、管脚共面性良好,不允许有扭曲、翘曲等不良现象 管脚粗糙和共面性差的框架拉力无法保证且容易出现翘丝和切线造成的烧球不良,压焊过程中容易断丝及出现tail too short ; B、保护气体----安装的时候保证E-torch上表面和right nozzle 的下表面在同一个平面上.才能保证烧球的时候,氧化保护良好.同时气嘴在可能的情况下尽量靠近劈刀,以 保证气体最大围的保护 C、劈刀的选用——同金线相比较,铜线选用劈刀差别不是很大,但还是有一定的差异: 1、铜线劈刀T 太小2nd容易切断,造成拉力不够或不均匀 2、铜线劈刀CD不能太大,也不能太小,不然容易出现不粘等现象 3、铜线劈刀H与金线劈刀无太大区别(H比铜丝直径大8µm即可,太小容易从颈部拉断) 4、铜线劈刀CA太小线弧颈部容易拉断,太大易造成线弧不均匀; 5、铜线劈刀FA选用一般要求8度以下(4-8度) 6、铜线劈刀OR选用小异 D压焊夹具的选用 铜线产品对压焊夹具的选用要求非常严格,首先夹具制作材料要选用得当,同时夹具表面要光滑,要保证载体和管脚无松动要,否则将直接影响产品键合过程中烧球不良、断线、翘丝等一系列焊线问题。 二、铜线的特性及要求 切实可行的金焊线替代产品。 细铜焊线(<1.3mil) 铜焊线,机械、电气性质优异,适用于多种高端、微间距器件,引线数量更高、焊垫尺寸更小。 铜焊线(1.3-4mil) 铜焊线,不仅具有铜焊线显著的成本优势,而且降低了铜焊点中的金属间生长速度,这样就为大功率分立封装带来了超一流的可靠性。 铜焊线的成本优势 由于铜的成本相对较低,因此人们更愿意以铜作为替代连接材料。对于1mil焊线,成本最高可降低75%*,2mil可达90%*,具体则取决于市场状况。 铜焊线的优异性能 铜线的导热导电性能显著优于金线和铝线,因此能够以更细的焊线直径达到更好的散热性能及更高的额定功率。与金相比,铜的机械性质更强,这样在模压和封闭过程中可以得到优异的球颈强度和较高的弧线稳 铜焊线的优点(与金焊线相比) 材料成本低 • 降低单位封装成本,提高

拉丝生产工艺

拉丝生产工艺 一、塑料扁丝的生产程序 塑料原料被烘干后,加入料斗,原料进入料筒的螺杆螺槽中,由螺杆的不断旋转,从螺纹方向被强制地推到机头去。 塑料被挤出来时,带着粘流态的膜片状物立即进入冷却水箱进行急骤冷却来定型成薄膜,通过划切再经过两组烘箱背部热板的热处理,在拉伸牵引力的作用下,扁丝拉长分子发生取向作用,使扁丝纵向强度增加,然后收卷。 二、开机前准备工作 2.1领取所需的原辅材料,如聚丙烯颗粒或粉剂、再生回收料颗粒、填充母料、着色颜料、过滤网、双面刀片等。领取专用工具及其它操作工具。 2.2开启各组电热开关,检查各组电热是否通电,检查温度表是否正常,一旦发现异常现象马上进行修复。如果一切正常,首先加热三通、模头温度(因三通、模头温度升温慢)。当三通、模头温度达到一定温度时(靠平时经验及记录掌握数据),再开启机筒加热器,最后开启两烘箱的加热器。 2.3将各加热控制温度调到所需温度。挤出机的温度由传感器的位置、塑料的特性和回收料的比例需作相应的更改(靠平时经验及记录掌握数据)。烘箱的温度要看传感器的位置和牵伸倍数拟定,总之牵伸倍数高而上升,低而下调。 2.4装好分切架的刀片,刀片一般选用双面刀片。 2.5调整好卷绕机的导丝头松紧和收丝绽的张力。 三、拉丝生产操作 3.1开机前的操作 3.1.1称或计量所需的原辅材料进行干燥搅拌。若掺有回收料粒子的原料,首先把回收料粒子加入干燥搅拌机内进行拌热。回收料粒子拌热温度约控制在80℃,到温度定值时放出在拌料盒内散热。再把新料加入干燥搅拌机内搅拌温度到80℃时,加入填充母料继续搅拌,母料变成粉末。需加着色颜料的及时加所需的着色颜料,约搅拌1min放出在拌料盒内与回收料粒子搅拌均匀。 如果原材料是粉剂掺回收料粒子的,先把回收料粒子拌热到约70℃加入填充母料继续搅拌,到温度定值时打出放在拌料盒内与后放出的粉剂进行搅拌均匀待用。 3.1.2向挤出机料斗内加入所配好的树脂。 3.1.3打开水箱的冷却水阀门。

新型半导体封装材料--键合铜丝产业化融资投资立项项目可行性研究报告(中撰咨询)

新型半导体封装材料--键合铜丝产业化立项投资融资项目 可行性研究报告 (典型案例〃仅供参考) 广州中撰企业投资咨询有限公司

地址:中国〃广州

目录 第一章新型半导体封装材料--键合铜丝产业化项目概论 (1) 一、新型半导体封装材料--键合铜丝产业化项目名称及承办单位 .. 1 二、新型半导体封装材料--键合铜丝产业化项目可行性研究报告委托编制单位 (1) 三、可行性研究的目的 (1) 四、可行性研究报告编制依据原则和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制原则 (2) (三)可行性研究报告编制范围 (4) 五、研究的主要过程 (5) 六、新型半导体封装材料--键合铜丝产业化产品方案及建设规模 .. 6 七、新型半导体封装材料--键合铜丝产业化项目总投资估算 (6) 八、工艺技术装备方案的选择 (6) 九、项目实施进度建议 (6) 十、研究结论 (7) 十一、新型半导体封装材料--键合铜丝产业化项目主要经济技术指标 (9) 项目主要经济技术指标一览表 (9) 第二章新型半导体封装材料--键合铜丝产业化产品说明 (15) 第三章新型半导体封装材料--键合铜丝产业化项目市场分析预测 (15) 第四章项目选址科学性分析 (16) 一、厂址的选择原则 (16) 二、厂址选择方案 (17) 四、选址用地权属性质类别及占地面积 (17)

五、项目用地利用指标 (17) 项目占地及建筑工程投资一览表 (18) 六、项目选址综合评价 (19) 第五章项目建设内容与建设规模 (20) 一、建设内容 (20) (一)土建工程 (20) (二)设备购臵 (20) 二、建设规模 (21) 第六章原辅材料供应及基本生产条件 (21) 一、原辅材料供应条件 (21) (一)主要原辅材料供应 (21) (二)原辅材料来源 (21) 原辅材料及能源供应情况一览表 (22) 二、基本生产条件 (23) 第七章工程技术方案 (24) 一、工艺技术方案的选用原则 (24) 二、工艺技术方案 (25) (一)工艺技术来源及特点 (25) (二)技术保障措施 (25) (三)产品生产工艺流程 (26) 新型半导体封装材料--键合铜丝产业化生产工艺流程示意简图 (26) 三、设备的选择 (27) (一)设备配臵原则 (27) (二)设备配臵方案 (28) 主要设备投资明细表 (28) 第八章环境保护 (29) 一、环境保护设计依据 (29)

WB铜线工艺

铜线键合工艺2 Y( O% Q9 h9 l& \$ a0 ?4 U2 B A、铜线工艺对框架的特殊要求-------铜线对框架的的要求主要有以下几点:7 P. @ \9 Y# X3 a! 1、框架表面光滑,镀层良好;* y/ I! I; ~) M# \' F7 a3 k3 W5 x6 j( h; _5 H3 Z% A1 Q I 2、管脚共面性良好,不允许有扭曲、翘曲等不良现象 管脚粗糙和共面性差的框架拉力无法保证且容易出现翘丝和切线造成的烧球不良,压焊过程中容易断丝及出现tail too short ; B、保护气体----安装的时候保证E-torch上表面和right nozzle 的下表面在同一个平面上.才能保证烧球的时候,氧化保护良好.同时气嘴在可能的情况下尽量靠近劈刀,以保证气体最大范围的保护 C、劈刀的选用——同金线相比较,铜线选用劈刀差别不是很大,但还是有一定的差异: 1、铜线劈刀T 太小2nd容易切断,造成拉力不够或不均匀 2、铜线劈刀CD不能太大,也不能太小,不然容易出现不粘等现象 3、铜线劈刀H与金线劈刀无太大区别(H比铜丝直径大8µm即可,太小容易从颈部拉断) 4、铜线劈刀CA太小线弧颈部容易拉断,太大易造成线弧不均匀;! U. L. c P& f, H9 V- h8 X+ K 5、铜线劈刀FA选用一般要求8度以下(4-8度) 6、铜线劈刀OR选用大同小异 D压焊夹具的选用4 @: n* Y/ `9 l- X4 k 铜线产品对压焊夹具的选用要求非常严格,首先夹具制作材料要选用得当,同时夹具表面要光滑,要保证载体和管脚无松动要,否则将直接影响产品键合过程中烧球不良、断线、翘丝等一系列焊线问题。c( P% B1 W 二、铜线的特性及要求 切实可行的金焊线替代产品。 铜焊线,机械、电气性质优异,适用于多种高端、微间距器件,引线数量更高、焊垫尺寸更小。) l: @( H" f) M 铜焊线,不仅具有铜焊线显著的成本优势,而且降低了铜焊点中的金属间生长速度,这样就为大功率分立封装带来了超一流的可靠性。 铜焊线的成本优势:由于铜的成本相对较低,因此人们更愿意以铜作为替代连接材料。对于1mil焊线,成本最高可降低75%*,2mil可达90%*,具体则取决于市场状况。 铜焊线的优异性能:铜线的导热导电性能显著优于金线和铝线,因此能够以更细的焊线直径达到更好的散热性能及更高的额定功率。与金相比,铜的机械性质更强,这样在模压和封闭过程中可以得到优异的球颈强度和较高的弧线稳铜焊线的包装与存放& {& z4 t! p2 K* T4 D铜具有较强的亲氧性,因此必须对铜焊线进行保护以延长其保存期。为此各卷铜焊线均采用吸塑包装,并在塑料袋内单独密封; 除了以上优点为,铜线还有以下特性: 1.铜线易氧化,原则上拆封的铜线48小时用完。 2.铜线硬度高,容易产生弹坑、不粘、断丝、、烧球不良K: t$ w4 ]; {% q5 M 三、铜线和金线在键合工艺参数的区别6 ~, z( W' g: f6 H7 i; H9 \ 1.铜线压焊工艺参数与金线相比较最大的变化是加大了contact force,以增加产品的可焊性,为了减小弹坑风险,一般情况下1mil以下铜线采用LOW-Power模式,而1.2mil以上一般采用High-power模式 球不良原因:吹气保护不好 铜线开封后防止时间太长.线有氧化(72小时) Tail length 不稳定导致烧球不好 Capillary 选择型号不对

拉丝生产工艺

拉丝生产工艺 一、塑料扁丝的生产程序塑料原料被烘干后,加入料斗,原料进入料筒的螺杆螺槽中,由螺杆的不断旋转,从螺纹方向被强制地推到机头去。 塑料被挤出来时,带着粘流态的膜片状物立即进入冷却水箱进行急骤冷却来定型成薄膜,通过划切再经过两组烘箱背部热板的热处理,在拉伸牵引力的作用下,扁丝拉长分子发生取向作用,使扁丝纵向强度增加,然后收卷。 二、开机前准备工作 2.1领取所需的原辅材料,如聚丙烯颗粒或粉剂、再生回收料颗粒、填充母料、着色颜料、过滤网、双面刀片等。领取专用工具及其它操作工具。 2.2开启各组电热开关,检查各组电热是否通电,检查温度表是否正常,一旦发现异常现象马上进行修复。如果一切正常,首先加热三通、模头温度(因三通、模头温度升温慢)。当三通、模头温度达到一定温度时(靠平时经验及记 录掌握数据),再开启机筒加热器,最后开启两烘箱的加热器。 2.3将各加热控制温度调到所需温度。挤出机的温度由传感器的位置、塑料的特性和回收料的比例需作相应的更改(靠平时经验及记录掌握数据)。烘箱的温度要看传感器的位置和牵伸倍数拟定,总之牵伸倍数高而上升,低而下调。 2.4装好分切架的刀片,刀片一般选用双面刀片。 2.5调整好卷绕机的导丝头松紧和收丝绽的张力。 三、拉丝生产操作 3.1 开机前的操作 3.1.1称或计量所需的原辅材料进行干燥搅拌。若掺有回收料粒子的原料,首先把回收料粒子加入干燥搅拌机内进行拌热。回收料粒子拌热温度约控制在80℃,到温度定值时放出在拌料盒内散热。再把新料加入干燥搅拌机内搅拌温度到80℃时,加入填充母料继续搅拌,母料变成粉末。需加着色颜料的及时加所需的着色颜料,约搅拌1min 放出在拌料盒内与回收料粒子搅拌均匀。 如果原材料是粉剂掺回收料粒子的,先把回收料粒子拌热到约70℃加入填充母料继续搅拌,到温度定值时打出放在拌料盒内与后放出的粉剂进行搅拌均匀待用。 3.1.2向挤出机料斗内加入所配好的树脂。 3.1.3打开水箱的冷却水阀门。 3.1.4当挤出温度达到规定要求后,恒温15min。

晶片键合基础介绍

晶片键合基础介绍 选择键合技术的程序通常依赖于一系列要求,如温度限制、密闭性要求和需要的键合后对准精度。键合的选择包括标准工业工艺,如阳极键合、玻璃浆料键合和黏着键合,以及新发展的低温共晶键合,金属扩散(共熔晶)键合和特定应用中的硅熔融键合。探索每一种方法的优势和劣势可以帮助我们对于某种应用采用何种键合技术做出更合理地决策。表1概括了晶片级键合的可供选项。 玻璃浆料键合广泛应用于加速度计的制造和微机电系统的生产。玻璃浆料是一种浆状物质,由铅硅酸玻璃颗粒、钡硅酸盐填充物、浆料和溶剂组成。常见的应用方法是通过丝网印刷技术。通常情况下,图形化后的浆料在每个芯片周围,覆盖30-200微米宽的环形区域,厚度为10-30微米。多余的溶剂在图形化后通过烘烤浆料去除。在晶片对准后进行热压键合。在实际的玻璃浆料键合过程中,玻璃融化并与其中的填充物熔合,从而形成了具有极好密闭性的无空洞封接。 玻璃浆料键合的优势是人们熟悉的它的工艺流程和键合界面特性。融化的浆料和浆状的初始状态使工艺可以允许颗粒或者其他微小的表面缺陷。通过键合机上所加力的不同可以控制浆料线的压缩,通常是40%。浆料键合两个最大的缺点是洁净度 较低、密封圈占用面积较大。也许,浆料键合最主要的缺点还在于不能实现高精度的对准,因为在键合过程中,玻璃浆料软化并开始黏性流动从而引起晶片发生滑动。 阳极键合与玻璃浆料键合两种方法,占生产中微机电系统键合应用的80%。阳极键合的机理决定了它只能应用于玻璃和硅片键合。其机理是在穿过玻璃和硅片的界面的电场辅助作用下,离子向界面发生扩散。这种技术可以用于表面为多晶硅层或玻璃层的基底。有一些键合设备也支持三层的叠层键合。 阳极键合的优势包括有成熟的工艺和可接受的密封寿命,玻璃可以和很多种基底实现热匹配可用于对器件实现真空封装或者压力封装,并可以接受5nm或更差的微粗糙度。它的劣势是工艺过程中采用了电压而不能兼容CMOS电路,同时具有可移动的Na+离子的应用,当钠聚集在阳极上及其外表面时会污染对离子敏感的其他电路。 金属键合属于基于扩散的和共晶的方法。扩散键合在390-450℃的温度下完成,需要相对较大的压力来实现表面的紧密接触。在金属键合中,必须控制表面的粗糙度以及晶片的翘曲度。金属合金在键合过程中会熔解并实现界面的平坦化。液态的界面使共晶键合需要施加相对较小却要一致的压力。在不同的冶金学系统中,如铜-锡,金-锡或金-硅,共晶合金形成

键合铜丝

单晶铜丝 各种音频视频信号在传输过程中通过晶界时,都会产生反射、折射等现象使信号变形、失真衰减,而单晶铜极少的晶界或无晶界使传输质量得到根本改善。因此,单晶铜在音视频信号传输方面得到广泛的应用。同样情况,由于芯片输入已高达数千输入引脚的大量增加,使原来的金、铝键合丝的数量及长度也大大增加,致使引线电感、电阻很高,从而也难以适应高频高速性能的要求,在这种情况下,我们同样采取了性价比都优于金丝的单晶铜(ф0.018mm)进行了引线键合,值得可贺的是键合后结果取得了预想不到的成功。作为半导体封装的四大基础材料之一的键合金丝,多年来虽然是芯片与框架之间的内引线,是集成电路封装的专用材料,但是随着微电子工业的蓬勃发展,集成电路电子封装业正快速的向体积小,高性能,高密集,多芯片方向推进,从而对集成电路封装引线材料的要求特细(¢0.016mm),而超细的键合金丝在键合工艺中已不能胜任窄间距、长距离键合技术指标的要求。 特别令我们高兴的是,这种期待与渴望,在“2007年中国半导体封装测试技术与市场研讨会”上,我们公司的单晶铜键合引线新产品被行业协会的专家“发现”,并立即得到大会主席及封装分会理事长毕克允教授的充分肯定和支持。其集成度也达到数千万只晶体管至数亿只晶体管,布线层数由几层发展至10层,布线总长度可高达1.4Km。

作为导体主要材料的铜线,线径要求也越来越细,无氧铜杆由于其多晶组织,就不可避免存在缺陷及在晶界处的氧化物等,从而影响其进一步的拉细加工目前单晶铜线最细可拉到直径0.016mm,基本满足最高要求。为促进技术成果尽快向产业化转移,促进生产力的发展,为此,我们一直期待着能早日为集成电路封装业高尖端技术的应用做出应有的贡献。随着电子工业的迅猛发展,各种电子元件都趋向于微型化、轻量化。 集成电路时信息产品的发展基础,信息产品是集成电路的应用和发展的动力。特别是低弧度超细金丝,大部份主要依赖于进口,占总进口量的45%以上。从此我们将在分会的领导下,将这一新兴的单晶铜键合丝新产品尽早做强做大,走在全国的前列并瞄准国际市场,以满足即将到来的单晶铜键合引线的大量需求。 近几年来,根据国内外集成电路封装业大踏步的快速发展,我公司紧跟这一发展趋势,在全国率先研发生产出单晶铜键合丝,其直径规格最小为ф0.016mm,可达到或超过传统键合金丝引线ф0.025mm 和缉拿和硅铝丝ф0.040mm质量水平。

铜线键合的优势与局限

铜线键合的优势与局限 发布时间:2009-07-12 铜线的优势 随着金价的持续上涨(目前每盎司已超过800美元),金线的价格也不断高升。虽然采用金线和铜线的制造成本基本是一样的,但是金线的材料成本却要高得多。根据市场的行情,1mil 铜线能够节省成本高达75%,2mil 的铜线高达90%。在功率封装中,要求使用大直径导线来达到电力负荷,这样铜线就可以为半导体封装公司节约相当可观的成本费用。即使对于具有多达1000根(每根长达6 米)的某些精确节距封装,采用铜线也可以明显降低成本。例如,一个精确节距QFP 或BGA 封装可能需要5 米多长的导线,而采用铜线来代替金线就可以降低大量的成本。 除了较低的成本外,铜线优良的机械和电学特性使它可以用在具有更高引线数和更小焊盘尺寸的各种高端精确节距器件中。由于铜比金和铝的强度高50%,刚度高30%,所以它能提高优良球颈的抗拉强度,并在低长环的塑膜或封装期间能更好的控制环。更高的抗拉强度使在精确节距应用中的一些操用于精确节距工艺的作变得更加容易。 在导线直径相同的情况下,铜的导电性要高出23%,这样在获得同等的导电性时,可采用更细的铜线。所以,更细的铜导线可以取代更粗直径的金线功率器件,铜线的这部分提高的导电性具有明显优势。在精确节距封装中,采用铜就可以使用更细的导线而不会影响电学性能。 在铜线键合中金属间的生长也比在金线键合中的生长慢得多,这样,在IC 寿命周期内,可以增加键合稳定性和器件性能。铜- 铝金属间也会形成化合物,但比形成金- 铝金属间化合物所需的温度高。随着目前器件工作温度变得更高,更慢的金属间化合物生长速率、更高的强度和更优良的电和热传导性这些优势结合起来,就为超精确节距、高可靠性线键合提供了一种效果优异,成本低廉的方法。 克服铜的局限性 虽然铜有着许多优势,但它本身也有两个值得注意的局限点:硬度大和易被腐蚀。由于铜本身的硬度比金大(纯度99.99% 的退火过的铜要比纯度99.99% 的掺杂金的硬度大很多),所以铜更容易损坏微芯片的表面。由于铜线本身比金线不容易变形,所以它对焊盘的应力更大。含有更精确导线、低K 介质和BOAC 的更新型的器件结构要求灵敏的键合条件。 铜很容易腐蚀和发生相互反应。在自由空气小球形成期间的铜氧化反应会导致导线键合球的大小和形状发生变化。大小和形状的改变会产生不规则键合,会使键合力和焊盘形变很难控制。为了消除氧化反应的影响,铜必须被一层封装胶囊保护起来以提供可靠的互连接。

相关主题