搜档网
当前位置:搜档网 › 常微分方程解题方法总结.docx

常微分方程解题方法总结.docx

常微分方程解题方法总结.docx
常微分方程解题方法总结.docx

常微分方程解题方法总结

来源:文都教育

复习过半,课本上的知识点相信大部分考生已经学习过一遍 . 接下来,如何将零散的知识点有机地结合起来,而不容易遗忘是大多数考生面临的问题 . 为了加强记忆,使知识自成体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴,他强调读

书要 “由薄到厚、由厚到薄 ”,对同学们的复习尤为重要 .

以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、

高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多,

遇到具体的题

目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法

. 下面以表格的形

式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询

.

常微分方程

通解公式或解法

( 名称、形式 )

当 g( y)

0 时,得到

dy f (x)dx ,

g( y)

可分离变量的方程

dy f ( x) g( y)

两边积分即可得到结果;

dx

当 g( 0 )

0 时,则 y( x)

0 也是方程的

解 .

解法:令 u

y xdu udx ,代入

,则 dy

齐次微分方程

dy g( y

)

x

dx

x

u g (u) 化为可分离变量方程

得到 x

du

dx

一 阶

线 性 微

dy

P ( x)dx

P ( x) dx

Q(x)

y ( e

Q( x)dx C )e

P( x) y

dx

伯努利方程解法:令

dy P( x) y Q( x) y n(n≠0,1)

代入得到dx

—u y1 n,有 du(1 n) y n dy ,

du(1 n) P(x)u(1 n)Q(x) dx

求解特征方程:

2pq 0三种情况:

二阶常系数齐次线性微分方程

y p x y q x y0

二阶常系数非齐次线性微分方程y p x y q x y f ( x)

(1)两个不等实根: 1 ,2

通解: y c1 e 1x c2 e 2x

(2)两个相等实根:12

通解: y c1c2 x e x

(3)一对共轭复根:i ,

通解: y e x c1 cos x c2 sin x

通解为y p x y q x y 0 的通解与

y p x y q x y f ( x) 的特解之和.

常见的 f (x) 有两种情况:

x

( 1)f ( x)e P m ( x)

若不是特征方程的根,令特解y Q m ( x)e x;若是特征方程的单根,令特

解 y xQ m ( x)e x;若是特征方程的重根,

令特解 y*x2Q m (x)e x;

(2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

当i不是特征值时,令

欢迎下载2

y*e x[ Q ( x)cos x Q ( x)sin x],当

n n

2

1

i是特征值时,令

y*xe x [Q n (x) cos x Q n ( x)sin x]以上以常微分方程为例总结了一些常见题型的解题方法,对于其他知识点也可用类似的

形式进行总结,一方面加深印象,另一方面梳理清楚知识点之间的联系,这也是复习中比较

实用的方法 .

欢迎下载3

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

(完整版)常微分方程的大致知识点

= + ?x = + ?x = + ?x 常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有 x 或 y 的项) y x 4、一阶线性非齐次方程 常数变易法,或 y = e ? a ( x )dx [? b (x )e -? a ( x )dx dx + C ] 5、伯努力方程 令 z = y 1-n ,则 dz = (1 - n ) y -n dy ,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 dx 6、全微分方程 若?M ?y 若 ?M ?y dx = ?N ,则u (x , y ) = C ,(留意书上公式) ?x ≠ ?N ,则找积分因子,(留意书上公式) ?x f (x f ( y , (二)毕卡序列 x y 1 y 0 0 x f (x , y 0 )dx , y 2 y 0 0 x f (x , y 1 )dx , y 3 y 0 0 f (x , y 2 )dx ,其余类推 (三)常系数方程 1、常系数齐次L (D ) y = 0 方法:特征方程 7、可降阶的二阶微分方程 d 2 y = , dy ) ,令 dy = d 2 y p ,则 = dy dx 2 d 2 y = dx dy ) ,令 dx dy = p ,则 dx 2 d 2 y dx = p dp dx 2 dx dx dx 2 dy 8、正交轨线族

? ? dy 单的实根, , y = C e 1x + C e 2 x 1 2 1 2 单的复根1, 2 = ± i , y = e x (C cos x + C 2 sin x ) 重的实根 = = , y = (C + C x )e x 1 2 1 2 重的复根1, 2 = ± i ,3, 4 = ± i , y = e x [(C + C 2 x ) c os x + (C 3 + C 4 x ) sin x ] 2、常系数非齐次L (D ) y = 方法:三部曲。 f (x ) 第一步求L (D ) y = 0 的通解Y 第二步求L (D ) y = f (x ) 的特解 y * 第三步求L (D ) y = f (x ) 的通解 y = Y + y * 如何求 y * ? 当 f (x ) = P m (x )e x 时, y * = x k Q (x )e x 当 f (x ) = P m (x )e ux cos vx + Q (x )e ux sin vx 时, y * = x k e ux (R (x ) cos vx + S m (x ) sin vx ) 当 f (x ) 是一般形式时, y * = ? x W (x ,) f ()d ,其中 W(.)是郎斯基行列式 x 0 W () (四)常系数方程组 方法:三部曲。 第一步求 dX dt = A (t ) X 的通解, Φ(t )C 。利用特征方程 A - I = 0 ,并分情况讨论。 第二步求 dX dt 第三步求 dX dt = A (t ) X + f (t ) 的特解, Φ(t )?Φ-1 (s ) f (s )ds ,(定积分与不定积分等价) = A (t ) X + f (t ) 的通解, Φ(t )C + Φ(t )?Φ-1 (s ) f (s )ds (五)奇点与极限环 ? dx = ax + b y dt ? ? = cx + dy 1、分析方程组? dt 的奇点的性质,用特征方程: A - I = 0 特征方程的根有 3 种情况:相异实根、相异复根、相同实根。第一种情况:相异实根,1 ≠ 2 1 1 m m m

常微分方程的大致知识点

常微分方程的大致知识点Last revision on 21 December 2020

常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有x y y x 或的项) 4、一阶线性非齐次方程 常数变易法,或])([)()(?+??=-C dx e x b e y dx x a dx x a 5、伯努力方程 令n y z -=1,则dx dy y n dx dz n --=)1(,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 6、全微分方程 若x N y M ??=??,则C y x u =),(,(留意书上公式) 若 x N y M ??≠??,则找积分因子,(留意书上公式) 7、可降阶的二阶微分方程 ),(22dx dy x f dx y d =,令dx dy dx y d p dx dy ==22,则 ),(22dx dy y f dx y d =,令dy dp p dx y d p dx dy ==22,则 8、正交轨线族 (二)毕卡序列 ?+=x x dx y x f y y 0),(001,?+=x x dx y x f y y 0),(102,?+=x x dx y x f y y 0),(203,其余类推 (三)常系数方程 1、常系数齐次0)(=y D L 方法:特征方程 单的实根21,λλ,x x e C e C y 2121λλ+= 单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+= 重的实根λλλ==21,x e x C C y λ)(21+= 重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=

常微分方程的初等解法与求解技巧

师大学本科毕业论文(设计) 常微分方程的初等解法与求解技巧 姓名娟 院系数学与计算机科学学院 专业信息与计算科学 班级12510201 学号1251020126 指导教师王晓锋 答辩日期 成绩

常微分方程的初等解法与求解技巧 容摘要 常微分方程在数学中发挥着举足轻重的作用,同时它的应用在日常生活里随处可见,因此掌握常微分方程的初等解法与求解技巧是非常必要的.本论文主要论述了其发展、初等解法与求解技巧,前者主要有变量分离、积分因子、一阶隐式微分方程的参数表示,通过举例从中总结出其求解技巧,目的是掌握其求解技巧. 【关键词】变量分离一阶隐式微分方程积分因子求解技巧

Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations take up significant position in mathematics, and at the same time, the application of it can be seen everywhere in our daily life, therefore, it’s necessary to grasp the elementary solution of ordinary differential equations and solving skills. This paper mainly introduced the definition of ordinary differential equations, elementary solution method and solving skills, the former mainly included the separation of variables, integral factor, a parameter-order differential equations implicit representation, by way of examples to sum up their solving skills, the purpose is to master the skills to solve. 【Key Words】the separation of variables the first order implicit differential equation integrating factor solution techniques

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

常微分方程简明教程-王玉文等编-习题解答-(1)

1.4习题答案 1. (1) 12150, (2) 2.52. 2(1) 0,200P P = =, (2) 0200P <<, (3) 200P >. 3.(1) 0,50,200P P P = = =, (2) 50200P <<, (3) 050,200P P << >. 4.解: 因为当 0dy dt =时, ()y t 将保持不变; 当0dy dt >时, ()y t 将增加; 当0dy dt <时, ()y t 将减少. 由3220dy y y y dt =--知, (1) 当3 2 200y y y --=, 即0,4,5y y y = =-=时, ()y t 将保持不变. (2) 当3 2 200y y y -->, 即40y -<< 或5y > 时, ()y t 将增加. (3) 当3 2 200y y y --<, 即4y <- 或05y << 时, ()y t 将减少. 5. 7071. 6.解: (1) 设 ()N t 为在时刻t 的放射性同位素质量. 则模型为dN kN dt =-, 0k >为比例系数, 方程的解为 ()kt N t ce -=, 由0t = 时, (0)50N =, 得(0)50N c ==,于是 ()50kt N t e -=, 又因为 2t = 时, (2)50(110%)45N =?-=, 得 24550k e -=, 110 ln 0.05329 k =≈, 因此 0.053()50t N t e -=. (2) 当 4t = 时, 0.0534 (4)5040.5N e -?== (3) 质量减半时 ()25N t =, 得1 0.053ln 2 t -=, 13t ≈. 7. (1) ln 20.000125730≈, (2) ln 2 0.866438 ≈, (3) 一样. 8.(1) 1065, (2) 17669, (3) 32600, (4) 168 9. 解: (1) (1)10dS S k S dt N =--. (2) 1 (1)3dS S k S S dt N =--. (3) (1)dS S k S dt N =--其中 l 是捕获量与总量平方根的比例系数. 10.(1) 趋向于2000, (2) 鱼的数量递减趋于0. 11.2()23y t t =+. 12.()ln ,0g t t t t =- >.

2018年电大第三版常微分方程答案知识点复习考点归纳总结参考

习题1.2 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为:

dx dy =- y x y x +- 令x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1 dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0 解:原方程为:dx dy =y e y 2e x 3 2 e x 3-3e 2y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为: dx dy =x y ln x y 令 x y =u ,则dx dy =u+ x dx du

常微分方程解题方法总结.docx

常微分方程解题方法总结 来源:文都教育 复习过半,课本上的知识点相信大部分考生已经学习过一遍 . 接下来,如何将零散的知识点有机地结合起来,而不容易遗忘是大多数考生面临的问题 . 为了加强记忆,使知识自成体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴,他强调读 书要 “由薄到厚、由厚到薄 ”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 dy P ( x)dx P ( x) dx Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程解法:令 dy P( x) y Q( x) y n(n≠0,1) 代入得到dx —u y1 n,有 du(1 n) y n dy , du(1 n) P(x)u(1 n)Q(x) dx 求解特征方程: 2pq 0三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程y p x y q x y f ( x) (1)两个不等实根: 1 ,2 通解: y c1 e 1x c2 e 2x (2)两个相等实根:12 通解: y c1c2 x e x (3)一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x] 当i不是特征值时,令 欢迎下载2

(整理)常微分方程(含解答)

第八章 常微分方程 【教学要求】 一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。 二、熟练掌握一阶可分离变量微分方程的解法。 三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+' 的解法——常数变易法和公式法。 四、理解线性微分方程解的性质和解的结构。 五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。 会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。 六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'' )(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。 所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数 或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。 关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。 【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。 【典型例题】 。的阶数是微分方程例)(e )(12x y y y =-'+'' 2.1.B A 4. 3.D C 解:B 。的特解形式是微分方程例)( e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++ x x c b ax D cx b ax C e ).(e ).(++++ 解:C 是一阶线性微分方程。下列方程中例)( ,3 x x y y x B y A y x cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0 . 解:B ???=='++1)1(0)1(4y y x y y 求解初值问题例 ??-=+x x y y y d )1(d 解:由变量可分离法得 c x y y ln ln 1ln +-=+∴ 代入上式得通解为由21ln ln 1)1(=?=c y x y y 211=+ 的特解。满足求解微分方程例1)0(e 252==-'y x y y x 解:由公式法得 ]d e e 2[e d 12d 1c x x y x x x +???=---?

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

常微分方程期末试题知识点复习考点归纳总结参考

期末考试 一、填空题(每空2 分,共16分)。 1.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 2. 方程组 n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 维空间中的一条积分曲线. 3.),(y x f y '连续是保证方程),(d d y x f x y =初值唯一的 条件. 4.方程组???????=-=x t y y t x d d d d 的奇点)0,0(的类型是 5.方程2)(2 1y y x y '+'=的通解是 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是 7.二阶线性齐次微分方程的两个解)(1x y ?=,)(2x y ?=成为其基本解组的充要条件是 8.方程440y y y '''++=的基本解组是 二、选择题(每小题 3 分,共 15分)。 9.一阶线性微分方程 d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( ) (A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程 11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( ). (A) 1±=x (B)1±=y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( )奇解. (A )有一个 (B )有无数个 (C )只有两个 (D )无 三、计算题(每小题8分,共48分)。 14.求方程22 2d d x y xy x y -=的通解 15.求方程0d )ln (d 3=++y x y x x y 的通解 16.求方程2 221)(x y x y y +'-'=的通解

办公室工作总结及工作计划表格

办公室工作总结及工作计划表格 综合办公室是公司总经理室直接领导下的综合管理部门,是承上启下、沟通内外、协调左右、联系四面八方的枢纽,工作也千头万绪,有文书处理、档案管理、文件批转、人事管理、薪资管理、采购管理等。工作虽然繁杂琐碎,综合办公室三名人员各司其职,分管行政、人事、采购工作,人员虽然很少,综合办公室人员工却分工不分家,在工作上相互鼓励,相互学习。 过去的一年,综合办公室在公司领导的关心和帮助下,在全体员工的不懈努力下,各项工作有了一定的进展,为XX年工作奠定了基础,创造了良好的条件。为了总结经验、寻找差距,促进部门各项工作再上一个台阶,现将XX年工作总结汇报如下。 一、综合办公室行政管理工作: 1、认真做好综合办公室的文件整理工作 XX年1月至11月,按照公司要求拟定综合性文件、报告96份;整理对外发文167份;整理外部收文125份,综合办公室已认真做好相关文件的收、发、登记、分发、文件和督办工作,以及对文件资料的整理存档工作。 2、协助公司领导,完善公司制度 根据公司运行工作实际,协助公司领导相继完善了《规章制度汇编》、《员工手册》等规章制度。通过这些制度,规范了

公司员工的行为,增加了员工的责任心。 3、完成公司资产变更、年审工商登记、组织机构代码证、资质证书等工作 由于公司发展需要,资产变更故需进行变更工商登记。于XX 年6月5日顺利完成工商登记和组织机构代码证变更工作,为公司顺利经营打下基础。于XX年9月完成资质证书变更工作,为公司顺利发展打下基础。 4、顺利完成各项会议、接待工作 对在公司召开的会议,会前做好签到本、茶水、椅子、会议通知、车辆接送等各项准备工作,保证会议按时召开。会后完成记录报总经理室。对在公司外召开的会议及接待,及时按照通知要求做好酒店、车辆等预定工作,并做好相关费用的结算工作。 5、组织安排各项活动 XX年综合办公室组织安排了各种形式的活动,得到了各部门、项目部的支持。元月份组织各部门、项目部员工参加抗雪救灾活动;4月份在指挥部领导下组织了公司团员参加了植物认养活动;5月份起组织全体员工向地震灾区捐款的活动,三次募捐共筹得善款一万三千余元,物资若干;6月份组织员工参加迎奥运火炬方队,为奥运圣火在合肥的顺利传递贡献了自己的力量,同期,组织各项目员工开展“从细节入手,提高服务质量”大讨论活动。

常微分方程基本知识点

常微分方程基本知识点 第一章 绪论 1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要) 例:03)(22=-+y dx dy x dx dy (1阶非线性); x e dx y d y =+22sin 。 2.运用导数的几何意义建立简单的微分方程。(以书后练习题为主) (习题1,2,9题) 例:曲线簇cx x y -=3满足的微分方程是:__________. 第二章 一阶方程的初等解法 1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要) 2.齐次方程的解法(变量代换);(重要) 3.线性非齐次方程的常数变易法; 4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要); 例题:(1).经变换_____y c u os =___________后, 方程1cos sin '+=+x y y y 可化为___线性_____方程; (2).经变换_____y x u 32-=____________后, 方程1 )32(1 '2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。

(4).方程221 'y x y -=为:线性方程。 5.积分因子的概念,会判断某个函数是不是方程的积分因子; 6.恰当方程的解法(分项组合方法)。(重要) 第三章 一阶方程的存在唯一性定理 1.存在唯一性定理的内容要熟记,并能准确确定其中的h ; 2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题 3.1的1,2,3题) 第四章 高阶微分方程 1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质; 2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系; 3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要) 4.n 阶线性非齐次微分方程的常数变易法(了解); 5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型? (习题4.2相关题目) 6.2阶线性方程已知一个特解的解法(作线性齐次变换)。(重要) 7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate. Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method 1. 引言 一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解. 2. 一般变量分离 2.1 变量可分离方程 形如 ()()dy f x g y dx = (1.1) 或 1122()()()()M x N y dx M x N y dy = (1.2) 的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和 微分形式变量可分离方程[1] . (1) 显式变量可分离方程的解法 在方程(1.1)中, 若()0g y ≠,(1.1)变形为 ()() dy f x dx g y =

常微分方程初值问题的数值解法

第七章 常微分方程初值问题的数值解法 --------学习小结 一、本章学习体会 通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。 在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。 二、本章知识梳理 常微分方程初值问题的数值解法一般概念 步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000 '(,),()y f t y t t T y t y =≤≤?? =?的数值解法的一般形式是 1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-

编译原理简明教程答案.doc

编译原理简明教程答案 【篇一:8000 份课程课后习题答案与大家分享~~】 > 还有很多,可以去课后答案网 (/bbs )查找。 ################## 【公共基础课-答案】 #################### 新视野大学英语读写教程答案(全) 【khdaw 】 /bbs/viewthread.php?tid=108fromuid=1429267 概率论与数理统 计教程(茆诗松著) 高等教育出版社课后答案 /bbs/viewthread.php?tid=234fromuid=1429267 高等数学(第五 版)含上下册高等教育出版社课后答案 d.php?tid=29fromuid=1429267 新视野英语听力原文及答案课后答 案 【khdaw 】 /bbs/viewthread.php?tid=586fromuid=1429267 线性代数(同济 大学应用数学系著) 高等教育出版社课后答案 /bbs/viewthread.php?tid=31fromuid=1429267 21 世纪大学英语 第3 册(1-4)答案 【khdaw 】 /bbs/viewthread.php?tid=285fromuid=1429267 概率与数理统计 第二,三版(浙江大学盛骤谢式千潘承毅著) 高等教育出版社课后答案 d.php?tid=32fromuid=1429267 复变函数全解及导学[西安交大第四版] 【khdaw 】 /bbs/viewthread.php?tid=142fromuid=1429267 大学英语精读第 三版2 册课后习题答案 /bbs/viewthread.php?tid=411fromuid=1429267 线性代数(第二版) 习题答案 /bbs/viewthread.php?tid=97fromuid=1429267 21 世纪(第三册) 课后答案及课文翻译(5-8)【khdaw 】 /bbs/viewthread.php?tid=365fromuid=1429267 大学英语精读第 2 册课文翻译(上外)

《常微分方程》知识点

《常微分方程》复习资料 1.(变量分离方程)形如 ()()dy f x y dx ?=(1.1)的方程,称为变量分离方程,这里(),()f x y ?分别是,x y 的连续函数. 解法:(1)分离变量,当()0y ?≠时,将(1.1)写成 ()() dy f x dx y ?=,这样变量就“分离”了; (2)两边积分得 ()()dy f x dx c y ?=??+(1.2) ,由(1.2)所确定的函数(,)y x c ?=就为(1.1)的解. 注:若存在0y ,使0()0y ?=,则0y y =也是(1.1)的解,可能它不包含在方程(1.2)的通解中,必须予以补上. 2.(齐次方程)形如 (dy y g dx x =的方程称为齐次方程,这里是u 的连续函数. ()g u 解法:(1)作变量代换(引入新变量)y u x =,方程化为()du g u u dx x -=,(这里由于dy du x u dx dx =+); (2)解以上的分离变量方程; (3)变量还原. 3.(一阶线性微分方程与常数变异法)一阶线性微分方程() ()()0dy a x b x y c x dx ++=在的区间上可写成()0a x ≠()()dy P x y Q x dx =+(3.1),这里假设在考虑的区间上是(),()P x Q x x 的连续函数.若,则(3.1)变为()0Q x =()dy P x y dx =(3.2),(3.2)称为一阶齐次线性方程.若()0Q x ≠,则(3.1)称为一阶非齐次线性方程. 解法:(1)解对应的齐次方程()dy P x y dx =,得对应齐次方程解()p x y ce dx ?=,为任意常数; c (2)常数变异法求解(将常数变为c x 的待定函数,使它为(3.1)的解):令为(3.1)的 解,则 ()c x ()()p x dx y c x e ?=()()()()()p ??p x dx p x dy dc x e c x x e dx dx =+dx ,代入(3.1)得()() ()p x dx dc dx x Q x e -?=),积分得; ()p x dx c ?=+ ()()c x Q x e -?(3)故(3.1)的通解为()()(()p x dx p x dx y e Q x e dx -??c =+? . 4.(伯努利方程)形如 ()()n dy P x y Q x y dx =+的方程,称为伯努利方程,这里为(),()P x Q x x 的连续函数. 解法:(1)引入变量变换,方程变为1n z y -=(1)()(1)()dz n P x z n Q x dx =-+-; (2)求以上线性方程的通解; (3)变量还原. 5.(可解出的方程)形如y (,)dy y f x dx =(5.1)的方程,这里假设(,)f x y '有连续的偏导数. 解法:(1)引进参数dy p dx = ,则方程(5.1)变为(,)y f x p =(5.2); (2)将(5.2)两边对x 求导,并以dy p dx =代入,得f f p p x p x ???=+???(5.3),这是关于变量,x p 的一阶微分方 程; (3)(i )若求得(5.3)的通解形式为(,)p x c ?=,将它代入(5.2) ,即得原方程(5.1)的通解(,(,))y f x x c ?=,为任意常数; c

相关主题