搜档网
当前位置:搜档网 › 散热器热工性能实验报告 (1)

散热器热工性能实验报告 (1)

散热器热工性能实验报告 (1)
散热器热工性能实验报告 (1)

实验二 散热器性能实验

班级: 姓名: 学号:

一、实验目的

1、通过实验了解散热器热工性能测定方法及低温水散热器热工实验装置的结构。

2、测定散热器的散热量Q ,计算分析散热器的散热量与热媒流量G 和温差T 的关系。 二、 实验装置

1.水位指示管

2.左散热器

3. 左转子流量计

4. 水泵开关及加热开关组

5. 温度压差巡检仪

6.温度控制仪表

7. 右转子流量计

8. 上水调节阀

9.右散热器 10. 压差传感器 11.温度测点T1、T2、T3、T4

图1散热器性能实验装置示意图

三、实验原理

本实验的实验原理是在稳定的条件下测定出散热器的散热量:

Q=GC P (t g -t h ) [kJ/h]

式中:G ——热媒流量, kg/h ;

C P ——水的比热, kJ/Kg.℃; t g 、t h ——供回水温度, ℃。

散热片共两组:一组散热面积为:1m 2

二组散热面积为:0.975 m 2

上式计算所得散热量除以3.6即可换算成[W]。

低位水箱内的水由循环水泵打入高位水箱,被电加热器加热,并由温控器控制其温度在某一固定温度波动范围,由管道通过转子流量计流入散热器中,经其传热将一部分热量散入房间,降低温度后的回水流入低位水箱。流量计计量出流经每个散热器在温度为t g 时的体积流量。循环泵打入高位水箱的水量大于散热器回路所需的流量时,多余的水量经溢流管流回低位水箱。

四、实验步骤

1、测量散热器面积。

2、系统充水,注意充水的同时要排除系统内的空气。

3、打开总开关,启动循环水泵,使水正常循环。

4、将温控器调到所需温度(热媒温度)。打开电加热器开关,加热系统循环水。

5、根据散热量的大小调节每个流量计入口处的阀门,使之流量、温差达到一个相对稳定的值,如不稳定则须找出原因,系统内有气应及时排除,否则实验结果不准确。

6、系统稳定后进行记录并开始测定:

当确认散热器供、回水温度和流量基本稳定后,即可进行测定。散热器供回水温度

t

g 与t

h

及室内温度t均采用pt100.1热电阻作传感器,配数显巡检测试仪直接测量,

流量用转子流量计测量。温度和流量均为每10分钟测读一次。

G

t

=L/1000=L·10-3 m3/h

式中:L——转子流量计读值; l/h;

G

t ——温度为t

g

时水的体积流量;m3/h

G=G

t

·ρ

t

(kg/h)

式中:G——热媒流量,(kg/h);

ρt——温度为t g时的水的密度,(kg/ m3)。

7、改变工况进行实验:

a、改变供回水温度,保持水量不变。

b、改变流量,保持散热器平均温度不变。

即保持

2h

g p t

t t +

=恒定8、求散热器的传热系数K

根据Q=KA(t

p -t

其中:Q——为散热器的散热量,W

K——散热器的传热系数,W/m2.℃

A ——散热器的面积,一种为0.975 m2,另一种为1 m2

t

p

——供回水平均温度,℃

t

——室内温度,℃

9、实验测定完毕:

a、关闭电加热器;

b、停止运行循环水泵;

c、检查水、电等有无异常现象,整理测试仪器。

五、注意事项

1、测温点应加入少量机油,以保持温度稳定;

2、上水箱内的电热管应淹没在水面下时,才能打开,本实验台有自控装置;但亦应经常检查。

六、实验内容及数据处理

由Q=GC

P (t

g

-t

h

),代入第一组数据,得到

Q

1

=102.4*4.18*(61.1-60.2)=385.2 kj/h=107.0W

Q

2

=100.8*4.18*(61.2-60.3)=379.2 kj/h=105.3W

Q

1

=101.2*4.18*(61.3-60.2)=465.3 kj/h=129.3W

由Q=KA(t

p -t

),t

p1

=60.65℃, t

p2

= t

p3

=60.75℃,算的

K1=107.0/(0.825*(60.65-22))=3.4 W/m2.℃

K2=105.3/(0.825*(60.75-22))=3.3W/m2.℃

K3=129.3/(0.825*(60.75-22))=4.0 W/m2.℃

七、思考题

1.分析实验误差产生的原因?

答:在改变流量,测定供给水温度时,未能够是散热器的平均温度保持绝对的恒定

2.如何减小或避免实验误差?

答:测温点应加入少量机油

散热器热工性能实验报告 (1)

实验二 散热器性能实验 班级: 姓名: 学号: 一、实验目的 1、通过实验了解散热器热工性能测定方法及低温水散热器热工实验装置的结构。 2、测定散热器的散热量Q ,计算分析散热器的散热量与热媒流量G 和温差T 的关系。 二、 实验装置 1.水位指示管 2.左散热器 3. 左转子流量计 4. 水泵开关及加热开关组 5. 温度压差巡检仪 6.温度控制仪表 7. 右转子流量计 8. 上水调节阀 9.右散热器 10. 压差传感器 11.温度测点T1、T2、T3、T4 图1散热器性能实验装置示意图 三、实验原理 本实验的实验原理是在稳定的条件下测定出散热器的散热量: Q=GC P (t g -t h ) [kJ/h] 式中:G ——热媒流量, kg/h ; C P ——水的比热, kJ/Kg.℃; t g 、t h ——供回水温度, ℃。 散热片共两组:一组散热面积为:1m 2 二组散热面积为:0.975 m 2 上式计算所得散热量除以3.6即可换算成[W]。 低位水箱内的水由循环水泵打入高位水箱,被电加热器加热,并由温控器控制其温度在某一固定温度波动范围,由管道通过转子流量计流入散热器中,经其传热将一部分热量散入房间,降低温度后的回水流入低位水箱。流量计计量出流经每个散热器在温度为t g 时的体积流量。循环泵打入高位水箱的水量大于散热器回路所需的流量时,多余的水量经溢流管流回低位水箱。

四、实验步骤 1、测量散热器面积。 2、系统充水,注意充水的同时要排除系统内的空气。 3、打开总开关,启动循环水泵,使水正常循环。 4、将温控器调到所需温度(热媒温度)。打开电加热器开关,加热系统循环水。 5、根据散热量的大小调节每个流量计入口处的阀门,使之流量、温差达到一个相对稳定的值,如不稳定则须找出原因,系统内有气应及时排除,否则实验结果不准确。 6、系统稳定后进行记录并开始测定: 当确认散热器供、回水温度和流量基本稳定后,即可进行测定。散热器供回水温度 t g 与t h 及室内温度t均采用pt100.1热电阻作传感器,配数显巡检测试仪直接测量, 流量用转子流量计测量。温度和流量均为每10分钟测读一次。 G t =L/1000=L·10-3 m3/h 式中:L——转子流量计读值; l/h; G t ——温度为t g 时水的体积流量;m3/h G=G t ·ρ t (kg/h) 式中:G——热媒流量,(kg/h); ρt——温度为t g时的水的密度,(kg/ m3)。 7、改变工况进行实验: a、改变供回水温度,保持水量不变。 b、改变流量,保持散热器平均温度不变。 即保持 2h g p t t t + =恒定8、求散热器的传热系数K 根据Q=KA(t p -t ) 其中:Q——为散热器的散热量,W K——散热器的传热系数,W/m2.℃ A ——散热器的面积,一种为0.975 m2,另一种为1 m2 t p ——供回水平均温度,℃ t ——室内温度,℃ 9、实验测定完毕: a、关闭电加热器; b、停止运行循环水泵; c、检查水、电等有无异常现象,整理测试仪器。 五、注意事项 1、测温点应加入少量机油,以保持温度稳定; 2、上水箱内的电热管应淹没在水面下时,才能打开,本实验台有自控装置;但亦应经常检查。

热工过程控制实验报告——姜栽沙

热工过程控制工程 实验报告 专业班级:新能源1402班 学生姓名:姜栽沙 学号:1004140220 中南大学能源学院 2017年1月

实验一热工过程控制系统认识与MCGS应用 组号______ 同组成员李博、许克伟、成绩__________ 实验时间__________ 指导教师(签名)___________ 一、实验目的 通过实验了解几种控制系统(基于智能仪表、基于计算机)的组成、工作原理、控制过程特点;了解计算机与智能仪表的通讯方式。了解组态软件的功能和特点,熟悉MCGS组态软件实现自动控制系统的整个过程。掌握MCGS组态软件提供的一些基本功能,如基本画面图素的绘制、动画连接的使用、控制程序的编写、构造实时数据库。 二、实验装置 1、计算机一台 2、MCGS组态软件一套 3、对象:SK-1-9型管状电阻炉一台;测温热电偶一支(K型)。 4、AI818/宇电519/LU-906K智能调节仪组成的温控器一台。 5、THKGK-1型过程控制实验装置(含智能仪表、PLC、变频器、控制阀)一套 6、CST4001-6H电阻炉检定炉(含电阻炉、温度控制器、测温元件、接口)一套 7、电阻炉温度控制系统接线图和方框图如图1-1、1-2所示。 三、实验内容 1、电阻炉温度控制系统(液位、流量、压力) 被控过程: 电阻炉被控变量: 电阻炉温度 操纵变量: 电阻炉的功率主要扰动:环境温度变化,电压值,电流值2、带检测控制点的流程图 3、控制系统方框图

4、控制系统中所用的仪表名称、型号(检测仪表、控制器、执行器、显示仪表)。 检测仪表:CST4001-6H电阻炉检定炉 控制器:AI818/宇电519/LU-906K智能调节仪组成的温控器 执行器:THKGK-1型过程控制实验装置(含智能仪表、PLC、变频器、控制阀) 显示仪表:计算机 5、智能仪表与计算机是怎样进行通讯?有哪几种方式? 智能仪表与计算机通讯一般有三种方式,分别为USB接口,485接口,232接口,通过这些接口进行信号传输,计算机得以对仪表进行温控。 6、什么是组态软件? 组态软件是指对系统的各种资源进行配置,达到系统按照预定设置,自动执行特定任务,满足使用者要求的目的的应用软件。 四、MCGS组态界面 提供电阻炉温度控制系统一套完整组态界面图(共6个图),包括主界面、运行界面、设备工况、存盘数据、实时曲线、历史数据。

热工测试课后练习答案

热工测试作业 第一章 1-1、测量方法有哪几类,直接测量与间接测量的主要区别是什么?(P1-2) 答:测量的方法有:1、直接测量;2、间接测量;3、组合测量。 直接测量与间接测量的主要区别是直接测量中被测量的数值可以直接从测量仪器上读得,而间接测量种被测量的数值不能直接从测量仪器上读得,需要通过直接测得与被测量有一定函数关系的量,然后经过运算得到被测量的数值。 1-2、简述测量仪器的组成与各组成部分的作用。(P3-4) 答:测量仪器由感受器、中间器和效用件三个部分组成。 1、感受器或传感器:直接与被测对象发生联系(但不一定直接接触),感知被测参数的变化,同时对外界发出相应的信号; 2、中间器或传递件:最简单的中间件是单纯起“传递”作用的元件,它将传感器的输出信号原封不动地传递给效用件; 3、效用件或显示元件:把被测量信号显示出来,按显示原理与方法的不同,又可分模拟显示和数字显示两种。 1-3、测量仪器的主要性能指标及各项指标的含义是什么?(P5-6) 答:测量仪器的主要性能指标有:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间等。 1、精确度:表示测量结果与真值一致的程度,它是系统误差与随机误差的综合反映; 2、恒定度:仪器多次重复测试时,其指示值的稳定程度,通常以读数的变差来表示; 3、灵敏度:以仪器指针的线位移或角位移与引起这些位移的被测量的变化值之间的比例来表示。 4、灵敏度阻滞:又称感量,是以引起仪器指针从静止到作极微小移动的被测量的变化值。 5、指示滞后时间:从被测参数发生变化到仪器指示出该变化值所需的时间。 1-4、说明计算机测控系统基本组成部分及其功能。(P6-7) 答:计算机测控系统基本组成部分有:传感器、信号调理器、多路转换开关、模/数(A/D)和数/模(D/A)转换及微机。 1、信号调理器:完成由传感器输出信号的放大、整形、滤波等,以保证传感器输出信号成为A/D转换器能接受的信号; 2、实现多路信号测量,并由它完成轮流切换被测量与模/数转换器的连接; 3、采样保持器:保证采样信号在A/D转换过程中不发生变化以提高测量精度; 4、A/D转换器:将输入的模拟信号换成计算机能接受的数字信号; 5、D/A转换器:将输入的数字信号换成计算机能接受的模拟信号。 1-5、试述现代测试技术及仪器的发展方向。(P6、P9) 答:计算机、微电子等技术迅速发展,推动了测试技术的进步,相继出现了智能测试仪、总线仪器、PC仪器、虚拟仪器、网络化仪器等微机化仪器及自动化测试系统。随着计算机网络技术、多媒体技术、分布式技术等手段的迅速发展,测试技术与计算机相结合已成为当前测试技术的主流,测试技术的虚拟化和网络化的时代已经不远了。 第二章 2-1、试述测量仪器的动态特性的含意和主要研究内容,它在瞬变参数测量中的重要意义。(P11、P16) 答:测量仪器或测量系统的动态特性的分析就是研究动态测量时所产生的动态误差,它主要用以描述在动态测量过程中输入量与输出量之间的关系,或是反映系统对于随机时间变化的输入量响应特性。从而能够选择合适的测量系统并于所测参数相匹配,使测量的动态误差限制在试验要求的允许范围内,这便是动态测量技术中的重要研究课题。在瞬变参数动态测量中,要求通过测量系统所获得的输出信号能准确地重现输入信号的全部信息,而测量系统的动态响应正是用来评价系统正确传递和显示输入信号的重要指标。

热工实验报告剖析

目录 常功率平面热源法同时测定绝热 (1) 数据处理: (1) [1]原始数据整理:(原始数据表格见附录) (1) [2]关于高斯误差补函数的方程编写 (2) 高斯误差补函数的一次积分 (2) 高斯误差补函数的一次积分的反函数 (2) [3]数据处理脚本 (2) [4]结果表格 (3) 曲线绘制 (3) [1]热源温度t1和距热源x1处温度t2随时间τ的变化关系 (3) [2]导热系数lamda随时间的变化 (4) [3]导热系数a随时间的变化 (4) 理解分析 (5) [1]改变导热系数lamda对温升曲线的影响 (5) [2]改变导温系数a对温升曲线的影响 (6) 空气横掠单圆管时强迫对流换热实验 (6) 数据处理 (6) [1]原始数据整理:(原始数据表格见附录) (6) [2]结果表格 (7) [3]曲线拟合 (7) 总结讨论 (9) [1]实验偏差讨论 (9) [2]为什么忽略Pr (9) [3]截面小的地方流速大,测量相对误差值小。 (9) 常功率平面热源法同时测定绝热 材料的导热系数λ和导温系数a 数据处理:

高斯误差补函数的一次积分 高斯误差补函数的一次积分的反函数 [3]数据处理脚本

[4] [1]热源温度t1和距热源x1处温度t2随时间τ的变化关系

[2]导热系数lamda随时间的变化 [3]导热系数a随时间的变化

可以看出λ和a均随时间先降低后升高。因为导热初期,温差小,恒定热流,所以传热快,随着时间的增加,导热变慢。当温度增加到一定 程度,温差缩小,导热又逐渐变快。 理解分析 [1]改变导热系数lamda对温升曲线的影响

散热器生产word版

散热器生产 ——金.旗.舰.温暖家居倡导者散热器生产工艺介绍、散热器生产工艺特点介绍、散热器生产金旗舰介绍 铜铝复合型散热器,包括铜铝复合柱翼型散热器和铜管铝片对流散热器两大类。 铜铝复合柱翼型散热器,是我国近几年来研制和发展起来的一种新型散热器,具有中国特色。 铜管铝片对流散热器,是近十年从国外引进并发展生产的一种轻型散热器,为有罩型对流散热器。 铜铝复合柱翼型散热器和铜管铝片对流散热器,这两种铜铝复合散热器的共同特点,是其过水部件均为铜管,而散热部件主要是铝板翼片或铝翼管。 铜铝复合柱翼型散热器和铜管铝片对流散热器,这两种铜铝复合散热器,充分发挥了铜材在一般供暖水质中耐蚀能力大大高于钢材,大约为钢材的25倍左右,及铝材易成型、

热工性能好的优点,具有承压能力及寿命长的特点,符合对轻型散热器

“安全可靠、轻薄美新”的综合要求。 “安全可靠、轻薄美新”这一要求中,安全可靠是必要的前提条件,内容包括在有效使用内不漏水、热工性能稳定及不对人体有伤害隐患因素等各方面。在此前提下,才能谈轻、薄、美、新的问题。 国家“采暖通风及空气调节设计规范”(GB 50019-2003)第4.3.1条,也对工程设计中选用散热器作了规定,共有七款,其中第3、5、6、7款是分别对于放散粉尘的工业厂房、钢制散热器、铝制散热器和铸铁散热器的相关规定,其余第1、2、4三款,与本文所述的散热器有关,现分述如下: 第一,民用建筑宜采用外形美观,易于清扫的散热器 第二,散热器的工作压力,应满足系统的工作压力,并符合国家现行有关产品标准的规定; 第三,具有腐蚀性气体的工业建筑或相对湿度较大的房间,应采用耐腐蚀的散热器(笔者认为是指散热器的外表面耐腐蚀)。 可以看出,这三款规定与前述的安全可靠,轻薄美新的原则要求,是完全一致的。就本文所述的两种散热器而言,通过选材及多年的工业制造技术方面的研究,已能保证产品的承压能力及耐久使用。尽管在具体的制造技术本身还有很多值得改进和提高的地方。而对

工热热力学实验报告1

工程热力学实验报告 学院 年级专业 学生姓名 学号 2016年12月21日

实验一:气体定压比热的测定 一、实验目的和要求 1. 了解气体比热测定装置的基本原理和构思。 2. 熟悉本实验中的测温、测压、测热、测流量的方法。 3. 掌握由基本数据计算出比热值和求得比热公式的方法。 4. 分析本实验产生误差的原因及减小误差的可能途径。 二、实验内容 通过测定空气的温度、压力流量,掌握计算热量的方法,从而求得比热值和求得比热公式的方法。 三、数据记录 四、实验方法、步骤及测试数据处理 1.接通电源及测量仪表,选择所需的出口温度计插入混流网的凹槽中。 2.摘下流量计上的温度计,开动风机,调节节流阀,使流量保持在额定值附 近。测出流量计出口空气的干球温度(t0)。 3.将温度计插回流量计,调节流量,使它保持在额定值附近。逐渐提高电热 器功率,使出口温度升高至预计温度。 可以根据下式预先估计所需电功率: τt W ?≈12 式中:W为电热器输入电功率(瓦);

Δt 为进出口温度差(℃); τ为每流过10升空气所需的时间(秒)。 估算过程:W=m ×Cp ×(T2-T1)=ρ×V ×Cp ×(T2-T1) =ρ×(10/1000τ) ×Cp ×Δt=1.169×(10/1000τ) ×1.004×Δt =11.7/1000×Δt/τ(kW)=11.7Δt/τ(w) 式中ρ—kg/m3; Cp—kJ/kg ·k; 4. 待出口温度稳定后(出口温度在10分钟之内无变化或有微小起伏,即可视为稳定),读出下列数据,每10升空气通过流量计所需时间(τ,秒);比热仪进口温度——即流量计的出口温度(t 1,℃)和出口温度(t 2℃);当时相应的大气压力(B ,毫米汞柱)和流量计出口处的表压(Δh ,毫米水柱);电热器的输入功率(W ,瓦)。 5. 根据流量计出口空气的干球温度和湿球温度,从湿空气的干湿图查出含湿量(d,克/公斤干空气),并根据下式计算出水蒸气的容积成分: 622 /1622 /d d r w += 推导:对于理想气体混合物,摩尔比等于体积比,由分压力定律可知,理想气体摩尔比等于压力比,因此体积比等于压力比。根据含湿量定义d=m v /m a =n v M v /n a M a =0.622 (v v /v a )。因此:r w =v a /v=v v /(v v +v a )=1/(1+0.622/d)=d/0.622/(1+ d/0.622) 6. 根据电热器消耗的电功率,可算出电热器单位时间放出的热量: 3 10 1868.4?=W Q & (kcal/s )[1w=1J/s=1/1000kJ/s=1/4186.6kcal/s] 7. 干空气流量(质量流量)为: ) 15.273(2871000/103.133)6.13/)(1(00+???+-== t h B r T R V P G w g g g τ&& ) 15.273()6.13/)(1(106447.403+?+-?= -t h B t w τ (kg/s ) 8. 水蒸气流量为: ) 15.273(5.4611000/103.133)6.13/(00+???+== t h B r T R V P G w w w w τ&&

最新 热工学与流体力学试卷答案

《热工学与流体力学》课程第 1 页 共 4 页 课程考试试卷 课程名称:热工学与流体力学 考核方式: 一、填空题:(每空格1分,共20分) 1.水蒸汽在T-S 图和P-V 图上可分为三个区,即___________区,___________ 区和 ___________ 区。 2.一般情况下,液体的对流放热系数比气体的___________,同一种液体,强迫流动放热比自由流动放热___________。 3.水蒸汽凝结放热时,其温度___________,主要是通过蒸汽凝结放出___________而传递热量的。 4.管道外部加保温层使管道对外界的热阻___________,传递的热量__________。 5.炉受热面外表面积灰或结渣,会使管内介质与烟气热交换时的热量___________,因为灰渣的___________小。 6.根据传热方程式,减小___________,增大___________,增大___________,均可以增强传热。 7.相同参数下,回热循环与朗肯循环相比,汽耗率__________________,给水温度___________,循环热效率___________,蒸汽在汽轮机内作功___________。 8. ___________压力小于___________大气压力的那部分数值称为真空。 二、选择题(每小题3分,共30分) 1、同一种流体强迫对流换热比自由流动换热( )。 A 、不强烈; B 、相等; C 、强烈; D 、小。 2、热导率大的物体,导热能力( ) A.大; B.小; C.不发生变化。 3.流体流动时引起能量损失的主要原因是( ) A 、流体的压缩性 B 、流体的膨胀性 C 、流体的粘滞性 4.朗肯循环是由( )组成的。 A 、两个等温过程,两个绝热过程 B 、两个等压过程,两个绝热过程 C 、两个等压过程,两个等温过程 D 、两个等容过程,两个等温过程。 5.省煤器管外是( )。 A.沸腾换热; B.凝结换热; C.水强制流动对流换热; D.烟气强制流动对流换热 6.下列几种对流换热系数的大小顺序排列正确的是:( )。 A.α水强制>α空气强制>α空气自然>α水沸腾; B.α水沸腾>α空气强制>α水强制>α空气自然; C.α水沸腾>α水强制>α空气强制>α空气自然。 7.当物体的热力学温度升高一倍时,其辐射能力将增大到原来的( )倍: A.四倍; B.八倍; C.十六倍。 8.在锅炉中,烟气以对流换热为主的部位是( )。 A.炉膛; B.水平烟道; C.垂直烟道 9.稳定流动时,A 断面直径是B 断面的2 倍,B 断面的流速是A 断面流速( )倍。 A.1; B.2; C.3; D.4。 10.当管排数相同时,下列哪种管束排列方式的凝结换热系数最大:( ) A 、叉排; B 、顺排; C 、辐向排列; D 、无法判断 考生注意: 1.学号、姓名、专业班级等应填写准确。 2.考试作弊者,责令停考,考生签名,成绩作废

小型燃气锅炉热工性能实验修改指导书

《燃烧学》实验指导书2 刘湘云 广东工业大学材料与能源学院 二00六年七月印刷

一、实验目的: 通过测定锅炉热效率与烟气中有害物含量,了解气体燃烧的热工特性,同时学习如何调整燃料与空气的配比,使燃烧保持最佳状态。另外通过锅炉热平衡计算,可以确定最佳工况,从而保证锅炉在热效率最高、有害物排出量最小的条件下工作。 二、实验设备 实验台由小型燃气锅炉;进口板式换热器;进口循环水泵;热电阻及热电偶测温;额定流量4m3/h干式气煤气表;U型压力计; 0.4级标准压力表;转子流量计;万能输入8点巡检仪等组成(不包括热值仪、烟气分析等分析仪)。 图一、小型燃气锅炉热工性能测试实验台结构简 三、实验原理 (一)、系统流程 1、燃气系统 燃气通过流量、压力、温度的测量后,由燃烧机(燃烧器)与空气混合并点燃,产生的热量与锅炉中的水进行交换,降温后的烟气通过烟气成分分析后排出锅炉。 2、锅炉水循环系统 锅炉中的水吸收燃气燃烧放出的热量温度增高,在出口测量供水温度,通过管道进入板式换热器,与板式换热器的自来水换热(模拟采暖用户)而降温,然后经过浮子流量计计量循环流量,测量回水温度后,由循环水泵泵入锅炉进行循环。 3、生活用热水系统

生活热水是靠自来水本身的压力(标准规定的压力0.1Ma ),测量温度后,进入锅炉本身的水—水换热器与锅炉中的热水进行换热,在出口测量热水温度,然后经过浮子流量计计量流量排进水盆。 4、测量系统 燃气流量用煤气表计量,压力用U 型压力计测量。循环水流量、生活用水流量用浮子流量计计量(流量计可由用户用重量法进行标定),生活用水入炉压力用压力表测量。温度使用热电阻传感器测量,由巡检仪显示。 燃气锅炉的热流量、热平衡、热效率及卫生指标的测试 (二)、测定锅炉的热流量(热负荷) 单位时间内,进入燃烧设备的燃气燃烧所放出的热量称为热流量(热负荷)。 热流量等于燃气消耗量与燃气低位热值的乘积。 φ = q v ? Q C (1) φ —燃气燃烧所放出的热量 v q —试验时试验气的消耗量, m3/h (由煤气表读出); Q C —测试时采用的基准干燃气的低位热值MJ/Nm3。 (三)、锅炉热效率 1、锅炉热平衡方程式 为了计算方便,对于燃气锅炉的热平衡,应以每标3 m 燃气为基础进行计算。一般锅炉的热平衡方程式如下: 12345Q Q Q Q Q Q =++++ (2) 式中 Q —相当每标3m 燃气的输入热量(kJ/标3 m ); 1Q —相当每标3m 燃气的有效输出热量(kJ/标3 m ) 2Q —相当每标3 m 燃气的排烟损失热量(kJ/标3 m ) 3Q —相当每标3 m 燃气的化学未完全燃烧损失热量(kJ/标3 m ) 4Q —相当每标3m 燃气的机械未完全燃烧损失热量(kJ/标3 m ) 5Q —相当每标3 m 燃气的锅炉本体的散热损失热量(kJ/标3 m ) 用Q 值除式(11-3),可得以百分数的热平衡方程式如下: 12345100% q q q q q ++++= (3)

热工基础报告

热工基础在工业中的应用 姓名: 学号: 班级:

目录 一:热工基础的发展历史 (1) 1、热力学发展 (1) 2、传热学发展 (1) 二、工业中的应用概述 (3) 1、传热学在传统工业机械领域和农业机械领域中的应用 (3) 2、在机械高新技术领域中的应用 (3) 三、真空井式退火炉 (5) 型号简介 (5) 结构简介 (5)

一:热工基础的发展历史3 1、热力学发展 古代人类早就学会了取火和用火,不过后来才注意探究热、冷现象的实质。但直到17世纪末,人们还不能正确区分温度和热量这两个基本概念的本质。在当时流行的“热质说”统治下,人们误认为物体的温度高是由于储存的“热质”数量多。1709~1714年华氏温标和1742~1745年摄氏温标的建立,才使测温有了公认的标准。随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。 1798年,朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头和筒身都升温。1799年,英国人戴维用两块冰相互摩擦致使表面融化,这显然无法由“热质说”得到解释。1842年,迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。 英国物理学家焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。1850年,焦耳的实验结果已使科学界彻底抛弃了“热质说”。公认能量守恒、能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳就是以他的名字命名的。 热力学的形成与当时的生产实践迫切要求寻找合理的大型、高效热机有关。1824年,法国人卡诺提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限,这实质上已经建立起热力学第二定律。但受“热质说”的影响,他的证明方法还有错误。1848年,英国工程师开尔文根据卡诺定理制定了热力学温标。1850年和1851年,德国的克劳修斯和开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。 1850~1854年,克劳修斯根据卡诺定理提出并发展了熵的概念。热力学第一定律和第二定律的确认,对于两类“永动机”的不可能实现作出了科学的最后结论,正式形成了热现象的宏观理论热力学。同时也形成了“工程热力学”这门技术科学,它成为研究热机工作原理的理论基础,使内燃机、汽轮机、燃气轮机和喷气推进机等相继取得迅速进展。 与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律。1906年,德国的能斯脱在观察低温现象和化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。 二十世纪初以来,对超高压、超高温水蒸汽等物性,和极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。

流体静力学+热工1003+14+

中国石油大学(华东)工程流体力学实验报告 实验日期:2012年3月14日成绩: 班级:热工10-3班学号:10123314 姓名:张有福教师:王连英 同组者:毛欢、白申杰 实验一、流体静力学实验 一、实验目的:填空 1.掌握用液式测压计测量流体静压强的技能; 2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解; 3. 观察真空度(负压)的产生过程,进一步加深对真空度的理解; 4.测定油的相对密度; 5.通过对诸多流体静力学现象的实验分析,进一步提高解决解决静力学实际问题的能力。 二、实验装置 1、在图1-1-1下方的横线上正确填写实验装置各部分的名称 本实验的装置如图所示。 1.测压管; 2.带标尺的测压管; 3.连通管; 4.通气阀; 5.加压打气球; 6.真空测压管; 7.截止阀;8. U形测压管;9.油柱; 10. 水柱;11.减压放水阀 图1-1-1 流体静力学实验装置图

2、说明 1.所有测管液面标高均以标尺(测压管2) 零读数为基准; 2.仪器铭牌所注B ?、C ?、D ?系测点B 、C 、D 标高;若同时取标尺零点作为静力 学基本方程的基准,则B ?、C ?、D ?亦为B z 、C z 、D z ; 3.本仪器中所有阀门旋柄均顺 管轴线为开。 三、实验原理 在横线上正确写出以下公式 1.在重力作用下不可压缩流体静力学基本方程 形式之一: const p z =+ γ (1-1-1a ) 形式之二: h p p γ+=0 (1-1b ) 式中 z ——被测点在基准面以上的位置高度; p ——被测点的静水压强,用相对压强表示,以下同; 0p ——水箱中液面的表面压强; γ——液体重度; h ——被测点的液体深度。 2. 油密度测量原理 当U 型管中水面与油水界面齐平(图1-1-2),取其顶面为等压面,有 01w 1o p h H γγ== (1-1-2) 另当U 型管中水面和油面齐平(图1-1-3),取其油水界面为等压面,则有 02w o p H H γγ+= 即 02w 2o w p h H H γγγ=-=- (1-1-3)

热工学实践实验报告

2016年热工学实践实验内容 实验3 二氧化碳气体P-V-T 关系的测定 一、实验目的 1. 了解CO 2临界状态的观测方法,增强对临界状态概念的感性认识。 2. 巩固课堂讲授的实际气体状态变化规律的理论知识,加深对饱和状态、临界状态等基本概念的理解。 3. 掌握CO 2的P-V-T 间关系测定方法。观察二氧化碳气体的液化过程的状态变化,及经过临界状态时的气液突变现象,测定等温线和临界状态的参数。 二、实验任务 1.测定CO 2气体基本状态参数P-V-T 之间的关系,在P —V 图上绘制出t 为20℃、31.1 ℃、40℃三条等温曲线。 2.观察饱和状态,找出t 为20℃时,饱和液体的比容与饱和压力的对应关系。 3.观察临界状态,在临界点附近出现气液分界模糊的现象,测定临界状态参数。 4.根据实验数据结果,画出实际气体P-V-t 的关系图。 三、实验原理 1. 理想气体状态方程:PV = RT 实际气体:因为气体分子体积和分子之间存在相互的作用力,状态参数(压力、温度、比容)之间的关系不再遵循理想气体方程式了。考虑上述两方面的影响,1873年范德瓦尔对理想气体状态方程式进行了修正,提出如下修正方程: ()RT b v v a p =-??? ? ?+2 (3-1) 式中: a / v 2 是分子力的修正项; b 是分子体积的修正项。修正方程也可写成 : 0)(23 =-++-ab av v RT bp pv (3-2) 它是V 的三次方程。随着P 和T 的不同,V 可以有三种解:三个不等的实根;三个相等的实 根;一个实根、两个虚根。 1869年安德鲁用CO 2做试验说明了这个现象,他在各种温度下定温压缩CO 2并测定p 与v ,得到了P —V 图上一些等温线,如图2—1所示。从图中可见,当t >31.1℃时,对应每一个p ,可有一个v 值,相应于(1)方程具有一个实根、两个虚根;当t =31.1℃时,而p = p c 时,使曲线出现一个转折点C 即临界点,相应于方程解的三个相等的实根;当t <31.1℃时,实验测得的等温线中间有一段是水平线(气体凝结过程),这段曲线与按方程式描出的曲线不能完全吻合。这表明范德瓦尔方程不够完善之处,但是它反映了物质汽液两相的性质和两相转变的连续性。 2.简单可压缩系统工质处于平衡状态时,状态参数压力、温度和比容之间有确定的关系,可表示为: F (P ,V ,T )= 0

供热实验指导书

实验十二 热水散热器性能实验 一、实验目的 1、掌握用热水作热媒时散热器传热系数的测试原理和方法。 2、用实验方法求出以热水为热媒时散热器的传热系数K 值,并找出它与传热温差⊿T 之间的关系K~⊿T 。 二、实验原理 热水散热器热工性能是在根据ISO 标准制造的实验台上,按统一的测试条件对散热器进行性能测试。 (一) 散热器的散热量测试 该实验台采用水冷却方式,散热器热媒为大气压下低于沸点的低温水,在稳定条件下,散热器散热量通过测量散热器进、出水温和水量计算得出,即, )(21T T C M Q S S S ?=ρ (12-1) 式中: Q ——散热器的散热量,W ; ρS ——水的密度,1000kg/m 3; C S ——水的比热,取常量4187J/kg ·℃; M S ——散热器的水流量,m 3/s ; T 1——散热器的进口温度,℃; T 2——散热器的出口温度,℃。 ISO 标准要求,热媒为低温热水时,至少要进行三个工况的测试,散热器进、出口热水平均温度取80℃±3℃、65℃±5℃、50℃±5℃。每次测试在相同流量下进行,每一工况下测试时间不少于1h ,每次测试间隔时间不大于10min 。 (二) 散热器热工性能评定指标 在规定条件下,测得散热器的散热量后,必须将结果整理成公式(12-2)的表达式,即 B n pj B T T A T A Q )(?=?= (12-2) 式中: Q ——散热器的散热量,W ; T pj ——散热器的进、出口热水平均温度,℃;

T pj取算术平均值:22 1T T T pj + = ; T n——测试室基准点空气温度,℃。 当散热器进、出口热水平均温度与基准点空气温度之差⊿T=64.5℃(即所谓的标准工况,对应进水温度95℃、回水温度70℃、室温18℃),由公式(12-2)计算得出的散热量即为标准散热量,用该标准散热量作为散热器的热工性能指标,来评价、对比散热器热工性能的优劣。 三、实验装置 热水散热器性能实验装置如图12-1所示。 图12—1 热水散热器性能实验装置示意图 如图12-1所示,热水由电加热器供给,电功率为14kW。为使系统的流量稳定,设置了高位水箱,利用水泵和循环管使两水箱内的水温保持恒定。 从高位水箱中流出来的水送入被测散热器中,然后通过转子流量计返回。系统中水温是由自控装置控制的。 被测散热器放于恒温小室中,恒温小室的围护结构采用水冷却方式控制室温。 在测试过程中所有的温度测点均使用铂电阻传感器,热水散热器性能实验的温度测量系统由铂电阻测量传感器、温度变送器、A/D转换器和微型计算机组成。按ISO标准要求温度测量的精度为±0.1℃,为此该实验台采用铂电阻为温度测量传感器,最小分辨率约为校

对流传热实验实验报告

实验三 对流传热实验 一、实验目的 1.掌握套管对流传热系数i α的测定方法,加深对其概念和影响因素的理解,应用线性回归法,确定关联式4.0Pr Re m A Nu =中常数A 、m 的值; 2.掌握对流传热系数i α随雷诺准数的变化规律; 3.掌握列管传热系数Ko 的测定方法。 二、实验原理 ㈠ 套管换热器传热系数及其准数关联式的测定 ⒈ 对流传热系数i α的测定 在该传热实验中,冷水走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ; L i —传热管测量段的实际长度,m 。

由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m +=为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 ⒉ 对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=Pr 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 ㈡ 列管换热器传热系数的测定 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,

热工基础报告

热工基础在工业中的应用 姓名: 学号: 班级: 目录 一:热工基础的发展历史 (1) 1、热力学发展 (1) 2、传热学发展 (1) 二、工业中的应用概述 (3) 1、传热学在传统工业机械领域与农业机械领域中的应用 (3) 2、在机械高新技术领域中的应用 (3) 三、真空井式退火炉 (5) 型号简介 (5) 结构简介 (5) 一:热工基础的发展历史1 1、热力学发展 古代人类早就学会了取火与用火,不过后来才注意探究热、冷现象的实质。但直到17世纪末,人们还不能正确区分温度与热量这两个基本概念的本质。在当时流行的“热质说”统治下,人们误认为物体的温度高就是由于储存的“热质”数量多。1709~1714年华氏温标与1742~1745年摄氏温标的建立,才使测温有了公认的标准。随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。 1798年,朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头与筒身都升温。1799年,英国人戴维用两块冰相互摩擦致使表面融化,这显然无法由“热质说”得到解释。1842年,迈尔提出了能量守恒理论,认定热就是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。

英国物理学家焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。1850年,焦耳的实验结果已使科学界彻底抛弃了“热质说”。公认能量守恒、能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳就就是以她的名字命名的。 热力学的形成与当时的生产实践迫切要求寻找合理的大型、高效热机有关。1824年,法国人卡诺提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限,这实质上已经建立起热力学第二定律。但受“热质说”的影响,她的证明方法还有错误。1848年,英国工程师开尔文根据卡诺定理制定了热力学温标。1850年与1851年,德国的克劳修斯与开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。 1850~1854年,克劳修斯根据卡诺定理提出并发展了熵的概念。热力学第一定律与第二定律的确认,对于两类“永动机”的不可能实现作出了科学的最后结论,正式形成了热现象的宏观理论热力学。同时也形成了“工程热力学”这门技术科学,它成为研究热机工作原理的理论基础,使内燃机、汽轮机、燃气轮机与喷气推进机等相继取得迅速进展。 与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应与溶液特性方面所遵循的各种规律。1906年,德国的能斯脱在观察低温现象与化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。 二十世纪初以来,对超高压、超高温水蒸汽等物性,与极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。 2、传热学发展 传热学作为学科形成于19世纪。在热对流方面,英国科学家牛顿于1701年在估算烧红铁棒的温度时,提出了被后人称为牛顿冷却定律的数学表达式,不过它并没有揭示出对流换热的机理。 对流换热的真正发展就是19世纪末叶以后的事情。1904年德国物理学家普朗特的边界层理论与1915年努塞尔的因次分析,为从理论与实验上正确理解与定量研究对流换热奠定了基础。1929年,施密特指出了传质与传热的类同之处。在热传导方面,法国物理学家毕奥于1804年得出的平壁导热实验结果就是导热定律的最早表述。稍后,法国的傅里叶运用数理方法,更准确地把它表述为后来称为傅里叶定律的微分形式。 热辐射方面的理论比较复杂。1860年,基尔霍夫通过人造空腔模拟绝对黑体,论证了在相同温度下以黑体的辐射率(黑度)为最大,并指出物体的辐射率与同温度下该物体的吸收率相等,被后人称为基尔霍夫定律。 1878年,斯忒藩由实验发现辐射率与绝对温度四次方成正比的事实,1884年又为玻耳兹曼在理论上所证明,称为斯忒藩-玻耳兹曼定律,俗称四次方定律。1900年,普朗克在研究空腔黑体辐射时,得出了普朗克热辐射定律。这个定律不仅描述了黑体辐射与温度、频率的关系,还论证了维恩提出的黑体能量分布的位移定律。 20世纪以前,传热学就是作为物理热学的一部分而逐步发展起来的。20世纪

热工课后题答案

习题及部分解答 第一篇工程热力学 第一章基本概念 1. 指出下列各物理量中哪些是状态量,哪些是过程量: 答:压力,温度,位能,热能,热量,功量,密度。 2. 指出下列物理量中哪些是强度量:答:体积,速度,比体积,位能,热能,热量,功量,密 度。 3. 用水银差压计测量容器中气体的压力,为防止有毒的水银蒸汽产生,在水银柱上加一段水。 若水柱高mm 200,水银柱高mm 800,如图2-26所示。已知大气压力为mm 735Hg ,试求容器中气体的绝对压力为多少kPa ?解:根据压力单位换算 4. 锅炉烟道中的烟气常用上部开口的斜管测量,如图2-27所示。若已知斜管倾角ο30=α ,压 力计中使用3 /8.0cm g =ρ的煤油,斜管液体长度mm L 200=,当地大气压力 MPa p b 1.0=,求烟气的绝对压力(用MPa 表示)解: 5.一容器被刚性壁分成两部分,并在各部装有测压表计,如图2-28所示,其中C 为压力表,读数为kPa 110,B 为真空表,读数为kPa 45。若当地大气压kPa p b 97=,求压力表A 的读数(用kPa 表示)kPa p gA 155= 6.试述按下列三种方式去系统时,系统与外界见换的能量形式是什么。 (1).取水为系统; (2).取电阻丝、容器和水为系统; (3).取图中虚线内空间为系统。 答案略。 7.某电厂汽轮机进出处的蒸汽用压力表测量,起读数为MPa 4.13;冷凝器内的蒸汽压力用真空表测量,其读数为mmHg 706。若大气压力为MPa 098.0,试求汽轮机进出处和冷凝器内的蒸汽的绝对压力(用MPa 表示)MPa p MPa p 0039.0;0247.021== 8.测得容器的真空度mmHg p v 550=,大气压力MPa p b 098.0=,求容器内的绝对压力。若 大气压变为MPa p b 102.0=',求此时真空表上的读数为多少mmMPa ?MPa p MPa p v 8.579,0247.0='= 9.如果气压计压力为kPa 83,试完成以下计算: (1).绝对压力为11.0MPa 时的表压力; (2).真空计上的读数为kPa 70时气体的绝对压力; (3).绝对压力为kPa 50时的相应真空度(kPa ); (4).表压力为MPa 25.0时的绝对压力(kPa )。

建筑物理实验报告

建筑物理实验报告 班级:建筑112 姓名:刘伟 学号: 01111218 指导教师:周洪涛 建筑物理实验室 2014年10月15日 小组成员:张思俣;郭祉良;李照南;刘伟;王可为;

第三篇建筑热工实验 一、实验一建筑热工参数测定实验 二、实验目的 1、了解热工参数测试仪器的工作原理; 2、掌握温度、湿度、风速的测试方法,达到独立操作水平; 3、利用仪器测量建筑墙体内外表面温度场分布,检验保温设计效果; 4、测定建筑室内外地面温度场分布; 5、可通过对室外环境的观测,针对住宅小区或校园内地形、地貌、生物生活对气候 的影响,进而研究在这个区域内的建筑如何应用有力的气候因素和避免不利的气 候影响。 三、实验仪器概述 I.WNY —150 数字温度仪 ●用途:用于对各种气体、液体和固体的温度测量。 ●特点:采用先进的半导体材料为感温元件,体积小,灵敏度高,稳定性好。温度值 数字显示,清晰易读,测温范围:-50℃~150℃,分辨力:0.1℃。 ●测试方法及注意事项: 1.取下电池盖将6F22,9V叠层电池装入电池仓。 2.按ON键接通电源,显示屏应有数字显示。 3.插上传感器,显示屏应显示被测温度的数值。 4.显示屏左上方显示LOBAT时,应更换电池。 5.仪器长期不用时,应将电池取出,以免损坏仪表。 II.EY3-2A型电子微风仪 ●用途:本产品是集成电子化的精密仪器,适用于工厂企业通风空调,环境污染监测, 空气动力学试验,土木建筑,农林气象观测及其它科研等部门的风速测量,用途十分广泛。 ●特点: 1.测量范围宽,微风速灵敏度高,最小分度值为0.01m/s。 2.高精度,高稳定度,使用时可连续测量,不须频繁校准 3.仪器热敏感部件,最高工作温度低于200℃,使用安全可靠,在环境温度为 -10℃~40℃内可自动温度补偿。 4.电源电压适用范围宽:4.5V~10V功耗低。 ●主要技术参数: 1.测量范围:0.05~1m/s 1~30m/s(A型) 2.准确度:≤±2﹪F.S。 3.工作环境条件:温度-10℃~+40℃相对湿度≤85%RH。 4.电源:R14型(2#)电池4节 ●工作原理:本仪器根据加热物体在气流中被冷却,其工作温度为风速函数这一原理设 计。仪器由风速探头及测量指示仪表两部分组成。 ●测试方法及注意事项:

相关主题