搜档网
当前位置:搜档网 › 音乐声学基础知识

音乐声学基础知识

音乐声学基础知识
音乐声学基础知识

音乐声学基础知识

音乐是一种艺术形式,一切艺术都包括两个方面,一是艺术表现,一是艺术感知,音乐这种艺术也概莫能外,它通过乐器(包括人的歌喉)所发出的声音来表现,依靠人耳之听觉来欣赏。这声音的产生和听觉的感知之间有什么关系呢?这是我们要讨论的第一个问题——音乐声学。

1、声音的产生与主客观参量的对应关系

关于声音的产生,国外有一个古老的命题:森林里倒了一棵大树,但没有人听见,这算不算有声音?这个命题首先点出了声音产生的两个必要条件,即声源和接收系统。所谓声源,就是能发出声响的本源。以音乐为例,一件正在演奏着的乐器就是声源,而观众的听觉器官就是接收系统。从哲学的角度讲,声源属于客观世界,而接收系统则属于主观世界,声音的产生正是主观世界对客观世界的反映。

但如果只有声源和接收系统,是否就能接到声音呢,并不是这样。如果没有传播媒介,人耳仍不能听到声音。一般来讲,物体都是在有空气的空间里振动,那么空气也就随之产生相应的振动,产生声波。正是声波刺激了人们的耳膜,并通过一系列机械和生物电的传导,最终使我们产生了声音的感觉。如果物体在真空中振动,由于没有传播媒介,就不会产生声波,人耳也就听不到声音。由此,我们可以说,任何声音的存在都离不开这三个基本条件:1)声源;2)媒介;3)接收器。

先来看看产生声音的客观方面——声源——都有哪些特征。

当我们弹一个琴键,通过钢琴机械传动装置,琴槌敲击琴弦,这时如果我们用手触弦,就会明显感到琴弦在振动。当我们拉一把二胡或小提琴时,也会感到琴弦的振动。振动是声源最基本的特征,也可以说是一切声音产生的基本条件。但如果没有我们手对琴键施加压力,使琴槌敲击琴弦,也不会产生振动。实际上,一个声源得以存在,还依赖于两个基本条件:其一是能够激励物体振动的装置(称激励器);其二是能够使装置运动起来的能量;演奏任何一件乐器都不能缺少这两个条件。例如,当我们敲锣打鼓时,锣槌或鼓槌便是激励器,能量则由我们的身体来提供。一架能自动演奏的电子乐器,也同样少不了这两个条件:电子振荡器就是激励器,能量则由电源来提供。

人们常用“频率”(frequecy,振动次数/1秒)来描述一个声源振动的速度。频率的单位叫“赫兹”(Hz),是以德国物理学家赫兹(H.R.Hertz)的名字命名。频率低(即振动速度慢)时,声音听起来低,反之则高。人耳对振动频率的感受有一定限度,实验证明:常人可感受的频率范围在20—20,000Hz左右,个别人可以稍微超出这个范围。音乐最常用的频率范围则在27.5Hz—4186Hz(即一架普通钢琴的音域)之间。超出此范围的乐音,其音高已不能被人耳清晰判别,因而很少用到。语言声的频率范围比音乐还要窄,一般在100Hz—8,000Hz范围内。

声音的强度与物体的振动幅度有关:“幅度越大,声音越强,反之则弱。”声学中用“分贝”(dB)作为计量声音强度的单位。通过实验,人们把普通人耳则能听到的声音强度定为1分贝。音乐上实际应用的音量大约在25分贝(小提琴弱奏)—100分贝(管弦乐队的强奏)之间。音乐声学中称声音强度的变化范围为“动态范围”,动态范围大与小,常常是衡量一件乐器的质量或乐队演奏水平的标志:高质量

乐器或高水平乐队能奏出动态范围较大的音乐音响,让人们听起来痛快淋漓,较差的乐器或乐队则无法做到这一点。图为普通人耳对音高和音强的最大可闻阈及音乐常用的音高和音强的范围。表为日常生活中几种典型音响的强度(分贝)。

图1

飞机起飞(60米处)120dB

打桩工地110dB

喊叫(1.5米处)100dB

重型卡车(15米处)90dB

城市街道80dB

汽车内70dB

普通对话(1米)60dB

办公室50dB

起居室40dB

卧室30dB

录音棚20dB

落叶声10dB

OdB

大多数物体在振动时,除了存在整体振动外,还伴随有不同部位的局部振动。一般把物体作整体运动时产生的声音叫做“基音”(Foundamental tone),局部振动产生的声音叫做“泛音”(Harmonics)。基音能量一般最强,因而往往决定一个乐音的主观音高。

声音可根据其所包含泛音的情况而分为“纯音”和“复合音”。所谓“纯音”(Pure tone),是指声音中只含有基音振动成份,例如我们常用的音叉所发出的声音就是纯音。当声音中既有基音又有泛音时,就称“复合音”(Compoundtone)。一般情况下,所有乐器(包括人声)发出的音都是复合音。如果泛音的频率与基音成倍数关系,这个复合音听起来就比较圆润,否则就比较粗糙。按照习惯分类方法,将前者称为“乐音”,后者称“噪音”。大多数管弦乐器发出的声音都属乐音范畴。

不同种类的乐器,其音响效果各不相同,我们把能代表某种声音特征的因素称为“音色”(Tone color或Timbre)。决定一件乐器音色的重要因素是声音的“频谱”。“频谱”(Spectrum)是指声音中所含泛音的数量以及各个泛音在强度上的相对关系。声音的频谱可以用专门的分析仪器显示出来。图2是钢琴与单簧管的频谱比较,如图所示:二者的基音频率都是100Hz,但泛音数量及各个泛音的强度(dB)却不一样,由此便导致音色上的差别。

除频谱外,另一个对音色有重要影响的因素是声音振动波形的包络(Envelope),尤其是包络的起始(俗称“音头”)和结束(俗称“音尾”)两个部分最重要,这个过程尽管非常短暂,而且几乎都是噪音成份,但对乐器的音色起着重要作用。有人曾做过实验,把一个小提琴音响中的起始瞬态过程去掉,其结果听起来很象管风琴的音响。许多电子乐器在模仿自然乐器声响时,由于只注意对频谱的模仿,但忽略了声音的起始瞬态过程这个问题,因而听起来总是不自然。这一点在弦乐器上尤其明显。

综上所述,可以认为,一个声源的基本特征可以由以下几个参量进行描述,即频率、声强、频谱和波形包络。

接下来再来看看产生声音的主观方面——人耳接收系统——具有哪些结构特征,以及与声源都有哪些对应关系。

图3为人耳剖面图。声波首先刺激耳鼓,通过听骨传到耳蜗,然后再由联结耳蜗的神经束将信号传至大脑中主管听觉的区域。通过研究,人们发现:耳廓具有集聚声波的功能,外耳道则对1000—4000Hz(约为小字二组b—小字四组b)左右的声波产生共振。所以,人们往往对这一频段内的声波反应更敏锐。中耳内的听骨对声压亦有放大作用。耳蜗中的基底膜上长有很多听觉神经纤毛,目前对这些纤毛的作用尚存不同见解。上个世纪的著名德国科学家黑尔姆霍兹(H.vonHelmholtz)认为这些纤毛与声波的频率之间有对应关系:长纤毛感应低频,短纤毛感应高频。但后人通过更精细的解剖研究发现:耳蜗内的听觉纤毛数量约为3百万根,已大大超过人耳所能接收的频率赫兹数(约2万Hz),对于这些纤毛的作用还有待进一步的验证。

实验证明,人耳对声波的接收并不是一个简单的被动过程,或者说是对客观事物的“真实写照”,这一点是人耳与声音测量仪器之间的最大区别。例如,在音高识别方面,一般情况下,如果某一个音的频率数比另外一个多一倍,那么在听觉上就会产生“高了一个八度”的印象。可是在高音区(1000Hz以上)和低音区(150H以下),

情况就有了变化:当人耳感觉两个音符合一个八度关系时,用仪器测量二者的频率就会发现,两个音已不是严格的倍数关系,而是比一倍稍多一点。

在音量的感觉上也有相似的情况:在大型管弦乐队以ff力度全奏之后,接着一个木管乐器以ff力度独奏,二者的声压比可达到100∶1,我们人耳却感觉不到那么大的差距。此次人们对音高和音乐响度的感知并非完全独立。力度的改变会引起音高感觉的变化:早在1935年,美国科学家司蒂文斯(Stevens)通过实验指出:在不改变频率的情况下,只改变声音的强度,人们也会感到音高有所改变。当时他使用纯音作为测试信号,他的结论是:当强度从40增加到90dB时,将会产生大约一个全音(200音分)的音高变化。其变化规律是:随着强度的增加,听到低频音会变得更低,高频音会变得更高,中频(1000—2000Hz)音只有微小变化。人们有时称此为“司蒂文斯定律”。后人在对司氏定律作验证工作时发现:如果用复合音做测试,其音高变化幅度要小一些。图4是德国科学家特尔哈特(Terhardt)1979年对15位参试者测试所得结果。

从人道主义的角度讲,不能用活体作人耳听觉系统的精细研究,所以至今还有许多关于人耳听觉特殊现象找不到确切答案。其中,人耳对低音的外推能力就是一例。我们或许都有戴耳机听音乐的经历,从耳机构造来讲,由于其振膜面积太小,根本不可能发出较低的声频(仪器测试也证明了这一点)。但我们人耳却依然能感觉到音乐中低音声部的鸣响,这就是人耳所具有的一种特殊能力。另外,人耳还具有“高度指向性”能力的接收系统。例如,在聆听一部交响曲时,我们往往可以把注意力完全集中在某一个声部或某一件乐器上,对其它乐器的音响“充耳不闻”。此时,我们的耳朵就象装上了一个“自动滤波器”,只让有用的信号进入,其它无用的声音信息则被“拒之门外”,今天再先进的仪器也无法做到这一点。

人耳对音色的辨别能力也有许多奥秒之处,其中较为突出的是“模糊识别”功能。例如,对于各种各样的二胡发出声响,如果用仪器测试,其结果往往大相径庭,但我们的听觉系统却可以把它们都归为二胡类。再有,当一个患了感冒,发音往往会有很大变化,但人们仍然能够凭借音色特征辨认出这个人的声音。

由于种种原因,人们对于产生声音的主观因素人耳听觉系统的研究,远不如对客观因素声源及媒介物研究那样全面和深入。从某种意义上说,这种状况也妨碍了音乐声学的深入发展,因为音乐声学这门学科与人的听觉密不可分,单纯从物理声学角度去

解释声音的属性并不能满足音乐工作者的要求,甚至会导致一种错误的认识,以为主观听觉就是对客观声波的如实反映,将人耳等同于测量仪器,因而凡事务求精确,圆满,其实这反而背离了科学研究的真谛。

2.音阶、律制与音准感

音乐声学注重从数理角度研究音阶和律制问题,而不去探讨其起源和发展史。目前我国音乐中最常用的音阶是大、小调音阶和我国的三种传统音阶,即新音阶、古音阶和清商音阶(又称燕乐音阶)。关于这些音阶的历史形成以及它们之间在音程方面的差异可参见有关的专门著作(如缪天瑞《律学》,人民音乐出版社,1983年增订版),在此不赘言。这里主要介绍的是与律学研究的听觉心理及音准感方面的最新研究成果。

古今中外的律学研究都在关心这样一个问题:如何找到最符合人类音准要求的律制,尽管有上下数千年的探索,但直到今天,什么是“最理想”、“最和谐”、“最纯净”的律制,人们依然众说纷纭。这种状况不能不引起人们的思考:从理论角度讲,各种律制的数学表达方式早已被我们的先人阐述清楚;从实践角度来讲,全世界的音乐活动从未因律制理论的不统一而中断,那么今天的律学研究对音乐实践来说究竟在起着什么作用?各种各样的律制理论又是如何与实践相联系的?

既然律学研究属于音乐声学的一个分支,就决定了这个学科也要重视人耳听觉特性的研究,特别要研究不同律制的音高差异在人的听觉中将产生什么影响?因为各种各样的律制理论正是通过人的听觉而与音乐实践相导通。不深入了解人耳对音高差的分辨能力,就不能真正搞清楚各种律制对音乐实践产生什么样的影响,从而真正体现出律学研究与音乐实践的紧密联系。解决上述问题的关键,是要搞清两个基本问题:其一是了解人耳的音差分辨阈,即人耳所能察觉到的最小音高差异;其二是了解人们在音乐生活中判断音准的尺度,可简称为音准感。

笔者之一为此曾在1988—1989年期间进行了一系列人耳听觉的实验工作,受试者共145名,全部是专业音乐工作者,其中大多数是从事指挥和乐队演奏,因为他们的音准感往往对他人的音准感有直接的影响。以下是此次实验工作取得的结果(有关实验的详细情况已发表在《中国音乐学》1992年第3期):

△对大多数音乐家来说,音差分辨阈值为6至8音分。个体差异中存在的极端值分为2音分和50音分。

△与常人相比,音乐家对音高差异具有较强的分辨能力,尤其是存在于中、低间区的音高差异。

△后天的听觉指向性的训练对人耳的音差分辨能力有一定影响。

△多数音乐家的同一性音准感具有-10至+10音分的宽容性。或者说对音准容解误差是±10音分。

△多数音乐家的和声性音准感具有-38至+14音分的宽容性。

△在各音乐专业中,指挥家的音准宽容度相对较小。

在上述这些感知中还包括了和声性音准感,这实际上把音乐声学的层面上升了一步,从单个乐音,上升到音群,对音准的感知则上升到对音乐美感的感受,这当中之主客体的相互作用更为突出,正如马克思所说:“对于没有音乐感的耳朵说来,最美

的音乐也毫无意义。”受过训练的耳朵,似乎不再是自然的耳朵,但通过学习能发现音乐中更深的美,却是一种自然规律。

早期反射声

在直达声以后到达的对房间的音质起到有利作用的所有反射声,称为早期反射声。时间范围一般取直达声以后50ms,也有人认为可取到95ms。早期反射声能与混响声能之比称为明晰度。明晰度高,语言清晰度也高,如明晰度达到50%,音节清晰度就可达90%以上。对听音乐来说,情况复杂得多,不仅要考虑早期反射声所占的比重,还要考虑从侧向来的早期反射声,能使声源的空间距离展宽,增加立体感,但侧向早期反射声过强,又会形成虚声源,造成移位错觉的不良后果。

声聚焦

指凹面对声波形成集中反射,使反射声聚焦与某个区域,造成声音在该区域特别响的现象,声聚造成声能过分集中,使声能汇聚点的声音。嘈杂,而其他区域听音条件变差,扩大了声场不均匀度,严重影响听众的听音条件。(室内声源发声,声波碰到墙壁、天花板、地板均会产生反射,声反射遵从反射定律,入射声波碰到反射体是凹形表面,反射声则会集中在一起,形成声聚焦,这与光聚焦类似。声聚焦现象使声场分布不均匀.)

基音

(Fundamental tone)一般的声音都是由发音体发出的一系列频率、振幅各不相同的振动复合而成的。这些振动中有一个频率最低的振动,由它发出的音就是基音,其余为泛音。也就是发音体整段振动。基音决定了音高。

泛音

泛音(Harmonics)除了发音体整体振动产生的最低的音是基音,以基音为标准,其余1/2、1/3、1/4等各部分也是同时振动,是泛音。泛音的组合决定了特定的音色,并能使人明确地感到基音的响度。乐器和自然界里所有的音都有泛音。也可以这么说:三角铁的声音“叮......”的一声,其中的“叮”音是基音,而“......”就是泛音。

泛音的原理是这样的:手指虚按在琴弦上(仅仅接触琴弦但不用力),琴弦的振动将受到限制,只有以此触点为节点的振动才被保留下来。如果触点在琴弦的1/2处,那么泛音频率就是琴弦基频的2倍,如果触点在琴弦的1/3或2/3处,那么泛音频率就是琴弦基频的3倍,依此类推。第三、四泛音有两个触点,前面(靠近弦枕)的触点比较容易演奏,后面(靠近琴马)的触点位置比实音略偏向琴马,找起来很麻烦。泛音级数越高,音色就越虚,更接近于笛声或唱歌时的假声,常用的泛音不超过第四泛音,第六泛音以上就几乎发不出声音了。

声音的三个主要的主观属性[即音量(也称响度)、音调、音色(也称音品)]之一。表示人的听觉分辨一个声音的调子高低的程度

音调主要由声音的频率决定,同时也与声音强度有关。对一定强度的纯音,音调随频率的升降而升降;对一定频率的纯音、低频纯音的音调随声强增加而下降,高频纯音的音调却随强度增加而上升。

一般说来,儿童说话的音调比成人的高,女子声音的音调比男子高。在小提琴的四根弦中,最细的弦,音调最高;最粗的弦音调最低。在键盘乐器中,靠左边的音调低,靠右边的音调高。

普通话中有四个声调:阴平、阳平、上声和去声,也是音调的重要形式,音高的变化决定了声调的性质。

音调

音调主要由声音的频率决定。对一定强度的纯音,音调随频率的升降而升降;对一定频率的纯音、低频纯音的音调随声强增加而下降,高频纯音的音调却随强度增加而上升。

音调的高低还与发声体的结构有关,因为发声体的结构影响了声音的频率。

大体上,2000 赫以下的低频纯音的音调随强度的增加而下降,3000 赫以上高频纯音的音调随强度的增加而上升。

对音调可以进行定量的判断。音调的单位称为美(mel):取频率1000赫、声压级为40 分贝的纯音的音调作标准,称为1000 美,另一些纯音,听起来调子高一倍的称为2000 美,调子低一倍的称为500 美,依此类推,可建立起整个可听频率内的音调标度。

音调还与声音持续的时间长短有关。非常短促(毫秒量级或更短)的纯音,只能听到像打击或弹指那样的“喀嚓”一响,感觉不出音调。持续时间从10 毫秒

音乐声学基础知识

音乐声学基础知识 音乐是一种艺术形式,一切艺术都包括两个方面,一是艺术表现,一是艺术感知,音乐这种艺术也概莫能外,它通过乐器(包括人的歌喉)所发出的声音来表现,依靠人耳之听觉来欣赏。这声音的产生和听觉的感知之间有什么关系呢?这是我们要讨论的第一个问题——音乐声学。 1、声音的产生与主客观参量的对应关系 关于声音的产生,国外有一个古老的命题:森林里倒了一棵大树,但没有人听见,这算不算有声音?这个命题首先点出了声音产生的两个必要条件,即声源和接收系统。所谓声源,就是能发出声响的本源。以音乐为例,一件正在演奏着的乐器就是声源,而观众的听觉器官就是接收系统。从哲学的角度讲,声源属于客观世界,而接收系统则属于主观世界,声音的产生正是主观世界对客观世界的反映。 但如果只有声源和接收系统,是否就能接到声音呢,并不是这样。如果没有传播媒介,人耳仍不能听到声音。一般来讲,物体都是在有空气的空间里振动,那么空气也就随之产生相应的振动,产生声波。正是声波刺激了人们的耳膜,并通过一系列机械和生物电的传导,最终使我们产生了声音的感觉。如果物体在真空中振动,由于没有传播媒介,就不会产生声波,人耳也就听不到声音。由此,我们可以说,任何声音的存在都离不开这三个基本条件:1)声源;2)媒介;3)接收器。 先来看看产生声音的客观方面——声源——都有哪些特征。 当我们弹一个琴键,通过钢琴机械传动装置,琴槌敲击琴弦,这时如果我们用手触弦,就会明显感到琴弦在振动。当我们拉一把二胡或小提琴时,也会感到琴弦的振动。振动是声源最基本的特征,也可以说是一切声音产生的基本条件。但如果没有我们手对琴键施加压力,使琴槌敲击琴弦,也不会产生振动。实际上,一个声源得以存在,还依赖于两个基本条件:其一是能够激励物体振动的装置(称激励器);其二是能够使装置运动起来的能量;演奏任何一件乐器都不能缺少这两个条件。例如,当我们敲锣打鼓时,锣槌或鼓槌便是激励器,能量则由我们的身体来提供。一架能自动演奏的电子乐器,也同样少不了这两个条件:电子振荡器就是激励器,能量则由电源来提供。 人们常用“频率”(frequecy,振动次数/1秒)来描述一个声源振动的速度。频率的单位叫“赫兹”(Hz),是以德国物理学家赫兹(H.R.Hertz)的名字命名。频率低(即振动速度慢)时,声音听起来低,反之则高。人耳对振动频率的感受有一定限度,实验证明:常人可感受的频率范围在20—20,000Hz左右,个别人可以稍微超出这个范围。音乐最常用的频率范围则在27.5Hz—4186Hz(即一架普通钢琴的音域)之间。超出此范围的乐音,其音高已不能被人耳清晰判别,因而很少用到。语言声的频率范围比音乐还要窄,一般在100Hz—8,000Hz范围内。 声音的强度与物体的振动幅度有关:“幅度越大,声音越强,反之则弱。”声学中用“分贝”(dB)作为计量声音强度的单位。通过实验,人们把普通人耳则能听到的声音强度定为1分贝。音乐上实际应用的音量大约在25分贝(小提琴弱奏)—100分贝(管弦乐队的强奏)之间。音乐声学中称声音强度的变化范围为“动态范围”,动态范围大与小,常常是衡量一件乐器的质量或乐队演奏水平的标志:高质量

《中国大百科音乐舞蹈卷》辞条定义-音乐声学

yinyue shengxue 音乐声学 acoustics of music 亦称“音乐音响学”。侧重研究与音乐所运用的声 音有关的各种物理现象,是音乐学的分支学科之一。由于音乐是有赖于声音振动这一物理现象而存在的,因此对声音的本性、其各个侧面的特性以及声音振动的前因后果的认识和理解,就影响到人类创造音乐时运用物质材料、物质手段的技术、技巧、艺术水平,也影响到人类认识自己的听觉器官对声音、音乐的生理、心理感受与反应的正确与深刻程度。由于这些原因,音乐声学作为音乐学与物理学的交缘学科,就成为音乐学的一个不可缺少的组成部分。音乐声学包括如下几个知识领域:一般声学作为物理学的一个分支的一般声学,是音乐声学的基础,它向人们提供有关的基础知识:声音作为物理现象的本质和本性是什么,乐音与噪声的区别何在,音高、音强和音色就其客观存在而言是一些什么样的物理量。古代人对音质音色的认识带有神秘感,只能借助各种类比词加以描述。用近代物理学方法进行分析的结果说明,每一种音色都是由许多不同频率(音高) 的振动叠加而成的复合振动状态,可采用频谱分析的方法对它们进行解剖式的科学描述。声音通常是通过在空气中的传播而到达人耳的,因此空气中的声波就是一般声学必须研究的对象,它在空气中的传播速度(声速)、波长,遇到障碍物之后的反射、绕射,所形成的行波、驻波,不同频率的声能在空气中自然消蚀的不同程度等等,在声学中都已得到研究。共振现象是声学中的重要研究课题,就能量传导而言,可有固体、气体、液体(内耳淋巴液)等不同的传导途径;就其强度与稳定程度,则涉及共振体的固有频率问题,激发与应随共振的两物体频率之间的整数比例关系问题,即与谐音列有关的谐振问题;这也是和谐感、音程协和性、律制生律法问题的一般物理学、数学基础。近半个世纪以来,电声学已成为一般声学中份量日益加重的组成部分,电鸣乐器的出现已使电磁振荡成为声源的一种,在日常生活中,音乐的保存、重放、传播也都借助于声波与电波的相互转化来实现,已使声与电紧密地联系在一起。因此在成熟的工业社会里,电声学也是音乐声学的基础。 听觉器官的声学研究人耳的构造属于生理学、解剖学的范围,但人耳何以能具有感受声波的功能,却还必须借助声学才能得到说明。况且由于听觉神经网络的构造过于精细,难以用神经系统解剖学的方法来研究,只

浅谈琵琶“弹”的声学特性

浅谈琵琶“弹”的声学特性 摘要:本文采用实验分析的方法对琵琶演奏时的“弹”进行分析,提取了 26个音的时长、能量、频谱的声学参数,结果显示:1)倍高音、高音、中音、低音、倍低音的时长依次增加;2)整体能量衰减速度减慢,并提出周期型、弧线形、直线型三种能量的衰减模式;3)对频谱进行研究,并分析出琵琶的谐波振动周期 性模式。本文首次将实验语音学研究方法引入琵琶的研究中,为琵琶演奏和教学提供理论依据。 关键词:琵琶;乐器声学;能量;时长;频谱 一、引言 “声学是音乐声学的根基,也是中国古代科学中最为发达的学科之一。宋代科学家沈括在《梦溪笔谈》中首先使用‘声学’一词,而有关音乐声学的理论则散见于经、史、子、集之中,历代史书中的‘律历制’或‘音乐制’,其中关于律学、乐器制造、音乐演奏和演唱技巧等的记述也多涉及音乐声学范畴”。戴念祖(中国物理史的专家),在他的《中国声学史》(1994)中系统地叙述了音乐对于声学发展的重要性。 中国古代音乐声学的研究中注重乐律的理论研究。早在春秋战国时代,中国已出现了成熟的乐律计算理论和乐器调音工具,可视为中国早期音乐声学的诞生。十九世纪下半叶,随着西方声学理论著作的传入,中国的音乐声学开始融入具有 现代科学意义的研究成分。在1893年出版的《声学揭要》一书中,除介绍了声学基本原理外还论及乐音和乐器发声原理等内容。当代也有一些论著,对音乐声学产生了影响,系统地介绍了现代音乐声学的发展历程。龚镇雄的《音乐声学—音响、乐器、计算机音乐、Mml、音乐厅声学原理及应用》(1995)是一本全新结构的音乐声学专著。另外,韩宝强的专著《音的历程—现代音乐声学导论》(20XX),唐林等著《音乐物理学导论》(1991)、朱起东著《音乐声学基础》(1988)、胡泽著《音乐声学》(20XX)等都是针对音乐声学研究做出了相关的研究。 乐器声学是音乐声学的一种,本文对乐器中的琵琶进行分析,以琵琶中的简单指法“弹”作为研究对象,提取时长、能量等声学参数,进行分析总结,通过对频谱的分析,研究琵琶演奏时的振动方式。琵琶声学分析的研究为音乐学研究提供客观数据,同时为乐器演奏和教学提供了理论依据。 二、琵琶的简介及发音特色 1.琵琶的简介

韩宝强声学研究教授

韩宝强,男,1956年生。1977年进入天津音乐学院作曲系学习作曲。1982年师从缪天瑞攻读民族音乐学律学方向硕士学位。1986年先后在中国艺术研究院、南京大学信息物理系、德国埃森大学音乐系攻读博士学位。1995年和2000年分别在德国Osnabrueck大学音乐系和美国斯坦福大学计算机音乐与声学研究中心(CCRMA)作高级访问学者。目前在中国音乐学院音乐科技系就职,任教授,博士生导师。研究方向为律学和音乐声学。 此次报告对以下问题进行全面的剖析: 乐器声学系统与空间音乐声学 一、乐器声学结构系统 任何乐器都可以从不同角度进行结构的分解。例如可以从演奏、制作工艺、零部件加工、乃至乐器修理等角度进行结构分解,都可以对乐器进行不同结构的分解。 以小提琴为例,演奏者将其分为琴身、琴马、琴弦和琴弓四个结构系统,因为演奏者经常要对这四个部件进行调整。而到了制琴者那里,则会从制作程序的角度对提琴结构进行分解,一般会分为背板、面板、侧板、琴头、指板等。其它部件,如琴弓、琴马、琴弦、弦钮、系弦板等,通常可以通过采购获得,故很少将其列入结构系统。 乐器声学系统(acoustic system of musical instruments),是从声学角度对乐器各部件加以区别的分类体系。 例如,单从演奏角度看,一把二胡可以分为琴弓、琴杆和琴筒三个部分,但从声学结构上却要分为5个系统: 1.振动系统 产生振动的物体,如弦乐器的琴弦、吹管乐器的簧片、空气漩流(就边棱音乐器而言),等等。 2.激励系统 能够激发振动的物体,如弦乐器的琴弓、扬琴的琴键,吹奏者和歌唱者胸腔中的气流等。 3.传导系统 将振动系统产生的振动传导至共鸣系统的装置,如京胡、二胡的琴马,筝、瑟的弦柱,琵琶、阮、古琴的弦枕、系弦板等。 4.共鸣系统 能够迅速扩散振动体振动能量的物体,如弦乐器的琴箱、歌唱者的胸腔、口腔等。有些乐器的共鸣体同时还具耦合作用,即对发声体的音高起调节作用,如一些吹管乐器的竹管、木琴和钟琴下面的共鸣管等。 5.调控系统 对乐器的音响和演奏性能加以控制的装置,如扬琴和古筝的调弦装置、吹管乐器的按孔和按键等。 以二胡为例: 琴弦是振动系统。琴弓是激励系统。琴马是传导系统。琴筒是共鸣系统。 琴杆、弦轴、千斤等属于调控系统 在乐器声学系统中,振动系统和激励系统是所有乐器发声的必备条件,即使再简单的乐器也不可缺少这两个结构,否则根本无法发声。此外,其它三个声学系统在一些乐器中并不同时存在,譬如许多打击乐器就没有共鸣系统和传导系统,例如:锣、镲、编钟、编磬等。 大部分管乐器没有传导系统。 有些乐器,单从外形上看并没有调控装置,譬如锣、大鼓等,但是演奏者可以通过演奏技巧来调控声音的强弱、长短、甚至可以调整高低。当然,这需要演奏者具备一定的技巧才能做

电声学是研究声电相互转换的原理和技术

耳机之基本常识

耳机线技术 音乐在我们的日常生活中无处不在,美妙的乐声使枯橾的或烦闷的心情带来了欢乐.音乐使人们对生活充满希望.要想掌握耳机(电声)技术.必须对以下几个方面有有入的了解. 1.电声基础知识 2.仪器使用 3.维修技巧 以下将在这三个方面进入电声知识这个领域. 一,电声基础知识 所要知道的概念 电声学是研究声电相互转换的原理和技术,以及声信号的存储、加工、传递、测量和利用的科学。它所涉及的频率范围很广泛,从极低频的次声一直延伸到几十亿赫的特超声。不过通 常所指的电声,都属于可听声范围。 电声技术的历史最早可以追溯到19世纪,由爱迪生发明留声机和贝尔发明用于电话机的碳粒传声器开始,1881年曾有人以两个碳粒传声器连接几对耳机,作了双通路的立体声传递表演。大约在1919年第一次用电子管放大器和电磁式扬声器做了扩声实验。 在第一次世界大战以后,科学家们把机电方面的研究成果应用于电声领域中,于是电声学就有了理论基础。随着电声换能器理论的发展,较为完善的各类电声设备和电声测量仪器相继问世,较别是20世纪70年代来,电子计算机和激光技术在电声领域中的应用,大大促进了电声学的发展。

电声转换器是把声能转换成电能或电能转换成声能的器件,对它的研究是电声学的一个重要内容分支。广义的电声换能器应用的频率范围很宽,包括次声、可听声、超声换能器。属于可听声频率范围内的电声换能器有传声器、扬声器、送受话器、助听器等等。按照换能方式,它们又可以分成电动式、静电式、压电式、电磁式、碳粒式、离子式和调制气流式等。其中后三种是不可逆的,碳粒式只能把声能变成电能,离子式和调制气流式的只能产生声能。而其他类型换能器则是可逆的,即可用作声接收器,也可用作声发射器。 各种电声换能器,尽管其类型、功用或工作状态不同,它们都包含两个基本组成部分,即电系统和机械振动系统。在换能器内部,电系统和机械振动系统之间通过某种物理效应相互联系,以完成能量的转换;在其外部,换能器的电系统与信号发生器的输出回路,或前级放大器的输入回路相匹配;而换能器的机械振动系统,以其振动表面与声场相匹配。所以设计电声换能器要同时考虑到力-电-声三个体系。 这三种体系是互相牵制的,处理得不好往往会顾此失彼。例如,一个有效的磁系统可能会非常笨重,变成一种令人不能接受的声障碍物;或者声输入阻抗或电输出阻抗的数值,可能根本不能与周围媒质或附属设备相匹配。由此可见,电声换能器的设计总是在许多相互矛盾的因素中采取折衷的办法,因而在一定程度上可能还带有许多主观判断的技巧在内。 电声技术是电声领域中发展得比较快的一个分支,在政治、军事、文化各个领域内有着广泛的应用。例如,应用于有线或无线通信系统,有线或无线广播系统以及会场、剧院的扩声;录音棚、高保真录放系统等;此外还应用于发展中的声控语控技术;以及语言识别和声测等新技术。总起来说,它主要包括录放声技术、扩声技术以及与它们有关的电声仪器和电声测试技术等。 录放声技术是指把自然声音经过一系列技术设备(如传声器、录音机、拾声器等)进行接收、放大、传送、存储、记录和复制加工,然后再重放出来供人聆听的技术。它研究的主要问题是如何保持自然声的优良的音质,即在各个环带以及整个系统,都具有逼真地保持声音信号原来面貌的能力,包括对声音信号进行必要的美化和加工。

中国音乐学院

专业要求: 考生应兼备音乐与科技素养,动手能力较强,具创新意识。音乐声学/乐器学/录音与扩声专业方向,要求考生掌握乐器与音乐声学一般性常识;具备命题写作能力;对音乐音响具较敏锐感受性;至少能演奏一种乐器;掌握乐理基本知识和视唱练耳技能。电子音乐制作专业方向,要求考生掌握音乐声学一般性常识;具备一定歌曲或器乐曲创作能力;对音乐音响具较敏锐感受性;至少能演奏一种乐器;掌握乐理基本知识和视唱练耳技能。

交本人完成的与音乐有关的文章1篇(文体不限); 2、电子音乐上机软硬件配置 硬件:键盘、音源(YAMAHA S03 XG标准) 音序软件:Cubase、Nuendo、Sonar任选 监听耳机:Sony MDR-7506 3、乐器与音乐声学常识参考用书 《音的历程——现代音乐声学导论》,韩宝强著,中国文联出版社2003 《MIDI全攻略——技术理论与实践》,程伊兵著,金版电子出版公司 中国音乐学院2011年录取分数线 中国音乐学院2011年本科招生录取文化课分数线

B类程度: 【笔试部分】(凡听写内容均限定在三个升、降调号内) 1.听辨与听写自然音程(单音程),增四、减五度音程,增二、减七度音程及其解决。 2.听辨与听写四种三和弦原转位,大小七和弦与小小七和弦原转位。 3.听辨与听写各种大小调式音阶,五声调式音阶(含偏音)。 4.听辨与听写音程连接,正、副三和弦与属七、大调II级下属七和弦原转位的连接。 5.听辨与听写节拍、节奏。范围:2/4拍、3/4拍、4/4拍、3/8拍与6/8拍中较复杂的节奏组合,6/4拍、3/2拍、9/8拍与12/8拍中常用的节奏组合。6.听辨与听写单声部与二声部旋律(含变化辅助音、变化经过音以及调式交替)。【面试部分】 看谱即唱三个升、降调号内的单声部视唱曲例两首。要求音准、节奏正确,调性稳定,划拍或击拍协调,读谱流畅,并具有良好的音乐表现力。 A类程度: 1.音、音高与音律以及记谱法知识的理解与掌握。 2.各种音程与和弦原转位知识的理解、识别与分析,调式中的音程与和弦解决。3.各类西洋大小调式、民族调式知识的理解、识别与分析。 4.节拍与节奏基本概念的理解,各种节拍的识别与音值组合法则的掌握。5.各类调式变音以及调的交替与转换手法的理解、识别与分析。 6、各种移调方法的掌握。 7.各种常用装饰音、演奏法记号以及音乐术语的熟练掌握。 8.近现代乐理知识的理解与掌握。

在“声学音响”与“音乐体验”之间

在“声学音响”与“音乐体验”之间 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 本文从作为实证和应用科学的声学角度出发,引出一些与音乐美学视域内的问题的思考,从乐音的音高、时值和音色属性、和谐感问题以及声学环境三个方面来论述,挖掘不同学科在这些契合点上融合的可能性。意在运用“视域融合”,突破单一的研究视角,尝试建立新的学科联系,以促发更多对于当下新的音乐现象、音乐文化中艺术教育的思考。 《上海书评》杂志曾有一篇文章题为《阿城、孙良谈绘画与材料》,交谈的二人前者是广泛涉猎各种艺术门类的知名作家,后者是专业画家。虽然最终的关注点依然是历史上绘画美学的基本问题,但他们却并不从美学的核心切入,他们谈及文艺复兴三巨头与中国传入的澄心堂纸的关系、中国古代绘画色彩的流变与纸质发展的关系、印象派绘画从室内走到自然与颜料工艺的关系、17、18世纪西方绘画中的一些荧光效果的蚌壳粉、玻璃粉的运用……他们从历来不太被重视的美术的工艺、技巧的领域切入来纵深解读文化问

题。比如为何达·芬奇的某些素描会有如中国宋画的典雅、细致的质感;很多中世纪的宗教壁画和文艺复兴前后的画家如何产生那种独有的神秘光感;维米尔、谢洛夫他们如何不用常规画笔,而用手、干笔或砂纸的绝技使画作达到微妙的效果…… 看似一场漫谈,但这种由“边缘”切入“核心”的观照方式让人眼前一亮,给笔者带来很大启示。音乐学界中,音乐美学可谓源远流长,从古代文明的破晓期开始就一直伴随着对音乐的哲学思考。时至今日,音乐美学依然是音乐学领域中一门核心的基础理论学科,解释音乐艺术的总体基本规律。然而在后现代的今天,各类艺术已经远远超出传统分类,媒介混杂,对各类艺术的认识和理论研究也有了很大改变。 音乐美学站在体系音乐学中最注重音乐艺术精神性的、抽象思辨的一极,在另外一极,则是最为实验性、应用性的学科——音乐声学。它与之前所提到的绘画材料有些类似,关注客观的音乐材料,研究乐音的发声、传播和接受过程,在实践应用方面涉及材料力学、工艺美学等具体问题。相对于史学、美学和民族学而言,它毫无疑问处于作为艺术的音乐理论界边

“十大”排行榜系列十大“改行”音乐家

“十大”排行榜系列十大“改行”音乐家-音乐论文 “十大”排行榜系列十大“改行”音乐家 文字_金建民 历史上的不少音乐家,一开始并不是从事音乐行业的,而是从事舞蹈、法律、化学、数学甚至是医学、自然科学、土木工程等职业。 今天,我们就来聊一聊这些“改行”的音乐家吧。 意大利小提琴家、作曲家朱塞佩·塔尔蒂尼 (GiuseppeTartini) 原专业:法律 塔尔蒂尼1692年4月8日生于皮拉诺的名门贵族家庭,早年学习神学,1709年考入帕多瓦大学学习法律专业,同时钻研小提琴演奏技术。1710年,塔尔蒂尼与私人学生、一位大主教的外甥女偷偷结婚,因这门婚事遭到家人的反对,他便逃离了帕多瓦,在阿西西修道院避难。在那里,他师从帕德雷·博埃默学习作曲与和声,发明了新式小提琴弓子,还举行了小提琴独奏音乐会。1713年,塔尔蒂尼在安科纳的歌剧乐队中任小提琴手。 1715年,塔尔蒂尼得到家人宽宥,返回帕多瓦。1716年至1721年,塔尔蒂尼隐居在安科纳修道院苦练小提琴,1721年至1723年任帕多瓦圣安东尼奥教堂乐队首席小提琴兼指挥,1723年至1725年任布拉格金斯基伯爵的宫廷乐队指挥。1728年,塔尔蒂尼在帕多瓦创建小提琴学校,执教四十年,培养了大批小提琴家,被誉为“各国小提琴家之师”。1770年2月26日,塔尔蒂尼卒于帕多瓦,终年七十八岁。 塔尔蒂尼是小提琴奏鸣曲和协奏曲形式的开创人之一,共创作了四十二首小

提琴奏鸣曲、十二首小提琴与大提琴奏鸣曲、一百三十五首小提琴协奏曲和大提琴协奏曲等,代表作《魔鬼的颤音》约写于1714年,据说是作曲家梦遇魔鬼,乃以自己的灵魂换取魔鬼的小提琴曲,醒后声犹在耳,即将梦中所闻记下,遂成此曲,盛传至今。他改进了小提琴琴弓,创造了多种弓法,发展了跳弓技巧,并首次提出“合成音”概念,即两个一起振动的音所产生的音,以保证双音的音准。此外,塔尔蒂尼还著有小提琴演奏和音乐声学著作,是意大利小提琴学派的代表人物。 法国作曲家、小提琴家让·马里·勒克莱尔(JeanMarieLeclair) 原专业:舞蹈 勒克莱尔1697年5月10日生于里昂的一个音乐世家,初为里昂歌剧院舞蹈演员,同时学小提琴和作曲。1721年,编选出版的法国和意大利作曲家小提琴奏鸣曲选集手稿中收入了他的十首作品。1722年,他在都灵任舞蹈教师和编导,并师从索米斯学习小提琴。1723年,勒克莱尔定居巴黎,出版《小提琴奏鸣曲集》第一卷。1728年,《小提琴奏鸣曲集》第二卷出版。1729年起,他先后在圣歌音乐厅、歌剧院和宫廷乐队中任小提琴手。1733年,法国国王路易十五授予他“皇家常任音乐家”称号,他将《小提琴奏鸣曲集》第三卷题献给国王,其中第六首《C小调奏鸣曲》最为著名,后来被称为《陵墓奏鸣曲》。1746年,勒克莱尔的歌剧《西拉与格劳库斯》首演于巴黎。1748年起,他任格拉蒙公爵私人乐队首席,在此期间与意大利小提琴家洛卡泰利一起在英国和荷兰演奏,载誉而归。1764年10月22日,勒克莱尔被其侄子暗害于巴黎,终年六十七岁。 勒克莱尔的小提琴演奏技艺精湛,音色柔美,宛如天使。他善于运用双音与和弦技巧,使音乐富于表现力。他的创作除小提琴奏鸣曲外,还有室内乐、协奏

漫谈音乐声学原理在构建录音棚中的作用

漫谈音乐声学原理在构建录音棚中的作用 摘要:音乐声学是一门抽象的学科,是音乐学的分支学科之一。录音环境的设计与音乐声学有着密切的关系,录音棚的结构一定要符合音乐声学的原理。只有正确的运用了音乐声学原理,才能在录音过程中使声音的音色、音量、音高、音长等声音特性,无论在客观上还是主观上都达到较好的效果。 关键词:音乐声学;录音棚;噪声控制;录音环境;音质 录音是一门艺术,是把自然界中存在的和人们为了某种需要创造的音响记录下来。是将声音信号记录在媒质上的复杂过程。作为音乐制作中的重要组成部分,录音环节直接决定着作品的优劣和成败。因为录音是与声音打交道,所以既要遵从一些音乐声学方面的原理。又要从符合人的听觉审美出发,只有这样才能达到优质的录制效果。在录音中,录音棚的声学构造对于录音制作及其制品的质量起着十分重要的作用。 录音棚是人们为了创造特定的声学环境录音条件而建造的专用录音场所,设计与建造录音棚时要考虑到降噪、驻波、声场固有混响等诸多因素,因此在装修上首先要符合声学上的基本要求,尽可能减小噪音、驻波等影响音质的不利因素,其次才是视觉上的美观与否,不能本末倒置,否则,棚建好了,却发挥不出它应有的作用,前功尽弃。 录音棚的样式多种多样,性能也各不相同。我们可以根据需要对其进行分类,例如,可以按声场的基本特点划分而分为自然混响录音棚、多功能录音棚以及强吸声(短混响)录音棚。自然混响录音棚:顾名思义就是录音室的混响依赖于建筑物本身的构造,这对于建筑物的设计建造的要求是很严格的,录音室的内部构造一定是符合声学特性的。必须利用录音棚的自然混响,自然混响棚的特点是体积庞大、形状不规则、背景噪声小。所以,自然混响棚里录出的声音最接近真实演奏的效果,适合大型管弦乐队的演奏录音。缺点就是混响时间与混响空间感单一,且不容易改变。再就是设计施工难,造价昂贵,所以现在基本上见不到这样的录音棚了。取而代之的是多功能录音棚:目前几乎所有的大型录音棚的录音室都具备很多功能,混响时间是可以调节的,一般都装有隔音屏风、悬挂反射面、吸音板的吊钩等设施。通过悬挂反射板、吸音板和放置隔音屏风,就可以改变录音室的声学环境参数。这样,整个录音棚的体积就可以不必要建造得那么大了。现在最常见的、也是最多的录音棚应该是强吸音录音棚,也就是寂静棚。所谓强吸音,也就是混响时间控制的很短。现在个人工作室的录音棚基本上都是这种棚。

声学基础专业英文

声学英文词彙 声音,声学及其分支 声音:sound 可听声(阈):audible sound 超声:ultrasound 次声:infrasound 水声:underwater sound 地声:underground sound 噪声:noise 声学:Acoustics 物理声学:Physical Acoustics;非线性声学:Nonlinear Acoustics 超声学:Ultrasonics;次声学:Infrasonics;水声学:Underwater Acoustics 气动声学:Aeroacoustics 建筑声学:Architectural Acoustics;室內声学:Room Acoustics 音乐声学:Musical Acoustics 环境声学:Environmental Acoustics 海洋声学:Oceanic Acoustics 电声学:Electroacoustics 语言声学:Speech Acoustics;语音信号处理:Speech Processing 声信号处理:Acoustical Signal Processing 光声学:Optoacoustics 医学超声学:Medical Ultrasonics 生物声学:Bioacoustics

声化学:Sonochemistry 生理声学:Physiological Acoustics;心理声学:Phsychoacoustics 振动 振动:vibration 受迫振动:forced vibration 阻尼振动 弹性:elasticity 劲度:stiffness;弹性常数:stiffness constant 恢复力:restoration;张力:tension 惯性,声质量:inertance 力(机械)阻抗(阻,順,抗):mechanical impedance (resistance, compliance, reactance) 力导纳(导,納):mechanical admittance, mobility (responsiveness, excitability)集总线路元件:lumped circuit elements 共振:resonance;反共振:antiresonance 参量共振:parametric resonance 共鸣器,共振器:resonator 亥姆霍茲共鸣器:Helmholtz resonator 振子:oscillator 激振器:vibrator 隔振:isolation (阻抗型,导纳型)类比:(impedance-type, mobility-type) analogy 摩擦(力):friction (force) 阻尼(系数):damping (coefficient) 衰变:decay 谐波:harmonics,谐和:harmony

[和声,功能,及其]和声功能及其声学原理

和声功能及其声学原理 和声功能及其声学原理 摘要:西欧传统和声的产生,是和主调音乐创作构思方式的形成相关联的。主调音乐中,和声可使纵向音响厚实丰满,还具有加强和推动音乐向前进行的功用。根据音乐进行的需要,不同和声的功能配置和织体,还会产生不同的色彩性的对比,这些都是为增强音乐形象塑造的一种表现手段。和声的“功能”和“色彩”的形成,主要取决于它内在物理声学属性的存在。本文将从声学的角度,去揭示和解读它的自然属性,以此力变和声功能的理论,在应用以来只知其然不知其所以然的现状。 关键词:和声;和弦;功能;音响;谐音列;音乐声学 作者简介:郑荣达(1937~),男,武汉音乐学院音乐学系教授、中国律学学会会长(武 汉 430060)。西欧传统和声的产生,是和主调音乐创作构思方式的形成相联系的。一般认为,功能和声的应用,是在17世纪拉莫的《和声学》理论问世后的结果,实际在之前的约翰?塞巴斯蒂安?巴赫的很多作品中已有创作实践。特别是巴赫的《24首赋格与序曲》中的序曲,已具有主调写作的特征。主调音乐中,和声可使纵向音响厚实丰满,还具有加强和推动音乐向前进行的功用。根据音乐进行的需要,不同和声的功能配置和织体,还会产生不同的色彩性的对比,这些都是为增强音乐形象塑造的一种表现手段。 在主调音乐的和声进行中,为何能赋于人们感官一种“功能”和“色彩”的响应,这从来还是个谜。单从和弦基音本身之间的联系,是很难找出该谜之解的。 西欧传统和声的学科理论,是二百多年来,人类从音乐实践中所感悟到的普遍规律的归纳和总结,至今它仍处于一种主观评价(感性认识)的状态。目前音乐理论领域还尚未认识到,和声的“功能”和“色彩”,主要取决于它内在物理属性的存在,由此也不可能认识到形成和声音响的客观评价与主观评价之间的有机关系。当前有关它的自然属性,还尚处于只知其然不知其所以然的阶段。 就目前存在的状况来看,这一基础理论的发展,与现代和声理论发展的深度已极不对称。这一点,在科学比较发达的今天,要解决这些疑题已是具备了一定的条件,否则,我们这一学科的基础理论建设,将远远落后于其他具有自然属性的学科之后。要解决只知其果不知其因的状况,如仍处于从和声音响的主观感觉的层面去探讨,包括对它们的振动数比的简繁来定论,历史证明是极不深入的。笔者曾经以小三度音程的和音,做过音响的频谱 分析(F.F.T.)[3]。从该分析结果图中不难看出,e音(412.5Hz)与g音(495.0Hz) 的结合音为b音(up1:2475Hz;up2:4950Hz)的客观存在[4]。(见例1) 例1 和声的功能现象,同样也是与和弦音响中的上、下谐音列的存在和差异相关联的。通过以往实验结果的分析,可以这样肯定,和声功能的存在和差异,是决定于和弦之间的上、下

相关主题