搜档网
当前位置:搜档网 › 高分子表面活性剂在表面施胶中的应用

高分子表面活性剂在表面施胶中的应用

高分子表面活性剂在表面施胶中的应用
高分子表面活性剂在表面施胶中的应用

摘要:表面活性剂在造纸中有很大的应用,例如在制浆、湿部、脱墨、涂布加工等方面。本文主要综述了几种主要的高分子表面活性剂如:阳离子淀粉,AKD 专用高分子表面活性剂,壳聚糖,聚乙烯醇,羧甲基纤维素等在表面施胶中的应用。

关键词:造纸、高分子表面活性剂、表面施胶。

表面施胶也叫纸面施胶,纸页形成后在半干或干燥后的纸页或纸板的表面均匀涂上胶料。施胶剂分松香型和非松香型两大类,非松香型施胶剂主要用于表面施胶。常用的表面施胶剂含有疏水基和亲水基,因此广义地说都是表面活性剂。表面施胶剂主要有变性淀粉、聚乙烯醇(PVA)、羧甲基纤维素(CMC)和聚丙烯酰胺(PAM)等。可根据不同的需要选择不同的表面活性剂,如:提高抗水性,可用AKD、分散松香、石蜡、硬脂酸氯化铬、苯乙烯马来酸酐共聚物及其他合成树脂胶乳等;提高抗油性,可加入有机氟化合物,如全氟烷基丙烯酸酯共聚物,全氟辛酸铬配合物,全氟烷基磷酸盐等;增加防黏性,可加入有机硅树脂;改善印刷性能,主要用变性淀粉、CMC、PVA等[1];改进干湿强度,可加入PAM、变性淀粉等;改善印刷光泽度和印刷发色性,主要用CMC、海藻酸钠、甲基纤维素、氧化淀粉等。为了提高表面施胶效果,通常采用两种或几种表面活性剂共用的方法。

1. 淀粉是一种天然高分子化合物,它是一种重要的表面施胶剂和纸张增强剂。在造纸工业中,薯类淀粉使用效果较好。天然未改性的淀粉粘度较高,流动性差,容易凝聚,用水稀释后易沉淀,故在表面施胶中常用各种改性淀粉。改性淀粉在较高浓度时仍有较低的粘度,并保持良好的溶解性、粘着力和成膜性能。用于表面施胶的改性淀粉主要有氧化淀粉、阳离子淀粉、阳离子型磷酸酯淀粉、羟烷基淀粉、双醛淀粉、乙酸酯淀粉、酸解淀粉。以下主要介绍阳离子淀粉。

阳离子淀粉通常是指淀粉在一定条件下与阳离子试剂反应制得的产物,阳离子试剂主要有叔胺盐类和季铵盐类阳离子试剂。阳离子淀粉还可以通过淀粉与阳离子型乙烯基单体通过自由基共聚法制得。阳离子淀粉作为表面施胶液的固含量和取代度DS(Degree of Substitutio)是影响表面施胶性能的两个非常重要的因素。阳离子淀粉的品种很多,按取代度来分,主要有低取代度(DS<0.1)和高取代

度产品(DS>1)。阳离子淀粉取代度不同,其性能和应用领域亦不相同。低取代度的阳离子淀粉一般用于造纸工业的表面施胶,其值的不同作为表面施胶剂后纸张的性能有所不同。纸和纸板的吸收性是指其对水、有机溶剂或其他液体的吸收能力。施胶能降低纸张的吸收性,而增加对印刷油墨的吸收性。阳离子淀粉的取代度越大,其施胶后的纸张的憎液性就越强,即纸的吸收性越差;但阳离子取代度超过一定值后,其施胶纸的吸收性反而会有所增加。增大淀粉固含量,可以降低对干燥能力的要求和纸张断头次数。阳离子淀粉固含量不同,施胶后纸张的性能必然会有差异[2]。

总的来说,用阳离子淀粉作表面活性剂有很多优点:来源广泛,价格便宜;是天然高分子产品,低毒低污染;可循环使用:用阳离子淀粉表面施胶过的纸张,由于阳离子淀粉和纤维之间亲和力很强,在回用的过程中,淀粉不易与纤维分开,可以减少网部淀粉的添加量,同时还减少了细小纤维流失,节省了原料;加入少量阳离子淀粉就能增强表面强度,改善抗拉毛性能,印刷色调均匀,清晰度好,色泽鲜艳并且透印少。虽然现在阳离子淀粉在表面施胶应用中还存在较多问题。比如:胶液固含量不易掌握,胶液配制过程需要糊化,施胶夜温度不易控制等。并且国内对阳离子淀粉等衍生物的研究开发起步较晚,但是从造纸行业的需求来看,由于阳离子淀粉及其改性淀粉存在巨大优势,将具有广阔的发展前景。

2. 烷基烯酮二聚体(简称AKD),是一种反应型中性施胶剂,适用于造纸中性施胶剂的是14烷和16烷。AKD能与纤维素表面的羟基反应形成一种酯。AKD 和脲甲醛树脂胶的混合物并没有引起相当大的疏水性。在用甲苯处理后在傅里叶变换红外光谱仪测定,增强了甲基和羰基键,表明AKD能在木片表面形成部分酯键从而导致表面改性[3]。只要木片不可避免需要进行预处理,那么AKD处理就失去了商业可行性。此外,应尽量使AKD处理能够比用石蜡处理更能显著的加强性能如耐久性[4],这样才能使其在商业上使用具有可行性。

由于AKD活性高,65.5℃以上极易水解成无施胶功效的酮酸,因此AKD乳液的配制不仅需要解决乳化的问题,而且需解决乳液的稳定性问题。目前,乳化AKD的方法很多,主要乳化剂有阳离子淀粉、小分子乳化剂及合成阳离子聚合物乳液等[5],且理论上需要pH值保持在3左右。近几年王润辰[6]等用甲基丙烯酰氧基乙基三甲基氯化铵( DMC ),工业品; 苯乙烯( St)、丙烯酸十八酯( ODA)、丙

烯酰胺( AM )、过硫酸钾( KPS) ,均为AR。设计并合成了一种AKD专用高分子表面活性剂,当这种高分子表面活性剂/烯酮二聚体=0.23时,可以制备出稳定的AKD乳液。对AKD有较好的乳化和分散性能,且能对乳液粒子形成有效的保护。在乳化AKD时可以不用添加任何小分子乳化剂,生产工艺简单。该高分子表面活性剂具有很好的表面活性与应用潜能。

此外,AKD和纤维素间的反应较慢,因此在生产实践中常使用施胶助剂提高反应速率。最主要的施胶助剂有:含HCO–3的化合物和带胺基的碱性聚合物。HCO–3对AKD 与纤维素间的反应具有独特的催化能力。HCO–3常常存在于普通造纸系统中,如用碳酸钙作为填料,一般在生产中通过添加碳酸氢钠来提高浆料碱性。

3. 壳聚糖是由自然界广泛存在的几丁质经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。它以其天然无毒及拥有良好的兼容性和生物降解性,可用作造纸废水絮凝剂、助留助滤剂、增强剂及施胶剂等。壳聚糖、阳离子淀粉和聚乙烯醇(PV A)作为施胶剂能够影响洋麻纤维纸张的表面特性。通过喷洒技术将这些聚合物加入到纸张中。与其它添加物相比,壳聚糖能够降解纤维素,改善表面特性方面更优越。在相同浓度下,壳聚糖与阳离子淀粉混合加入比单独加入壳聚糖施胶质量好,但是吸水性能差。用壳聚糖施胶比用阳离子淀粉和PV A施胶更能增强印刷纸表面的光滑度[7],需要从壳聚糖的结构来说明它的特殊性能。壳聚糖和PV A的化学结构都是线性高分子链,而淀粉带有支链。淀粉有α链导致能够形成螺旋结构,壳聚糖有β链转化成直线分子链。用壳聚糖作表面施胶剂还有一个优点,在造纸过程中能够附着在纤维表面从而降低水中含氧量。

如果把壳聚糖制成交联体,具有独特的优点:分子含有阳离子基,会对纸张中带负电荷的纤维素产生亲和力,与纤维素分子的羟基产生较强的氢键结合增强纸张强度;壳聚糖具有优良的成膜性,并且膜的强度很大,提高纸张的表面强度;同时,用量大大减少,节约了生产成本;壳聚糖交联体的施胶效果比单独使用效果显著,用于表面施胶后,易于保留于纸张表面。若与淀粉共用可获得优异的表面强度及挺度等。

4. 聚乙烯醇(简称PV A),是由醋酸乙烯(VAc)经聚合醇解而制成一种水溶性高分子聚合物,性能介于塑料和橡胶之间[8],产品主要有纤维用和非纤维用两大

类。合成路线主要有以下两种原料路线:以乙烯为原料,制醋酸乙烯,在制得聚乙烯醇;以乙炔为原料制备醋酸乙烯,在制得聚乙烯醇。作为提高纸张表面性质的表面施胶剂,能够改进适印性、油墨固着性、蜡固着性、表面平清度、光泽度、衬老化性、衬折度、衬水性、衬油性、升破度、衬起毛性能等。

PVA的膜强度很高,其溶解度和成膜性取决于醋酸盐基被羟基所置换的程度。醇解度为87%的产品水溶性最好,不管在冷水中还是在热水中它都能很快地溶解,得到最大的溶解度。因-OCOCH3是疏水性的,所以从水溶性要求来说,以醇解度为85%~88%的PVA为好。另外,随着聚合度的增加,PVA分子链增长,分子之间的作用力增强、缠结增多,使它的水溶性也逐渐降低,溶液粘度增大。用作造纸,主要采用完全皂化物。粘度变动范围大,混合硼砂,可以抑制渗透。粘结力是淀粉的几倍。用少量的涂布量就能得到同等的表面强度。经涂布的纸,其透气度和表面强度都有所提高。作为表面施胶剂,PVA可以单独用于表面施胶,如在证券纸、钞票纸的施胶,可采用3.5%-4%的胶液浓度,能够提高纸的抗张强度和耐折度。对于为了显著提高强度的机外施胶,还可以采用更高的胶液浓度。PVA也可与其他施胶剂混合使用,并进一步改进胶料的施胶性能。如PVA与淀粉混用,可提高成膜性、抗水性和抗张强度。使用时,可先用氧化淀粉对纸页进行表面施胶,干燥后再用PVA进行第二次施胶;也可以先将PVA与淀粉混合制成胶夜进行一次性施胶。一般PVA与氧化淀粉的比例为1:1-1:4[9]。

为防止PVA在表面施胶时过分渗入纸页,PVA也可以硼砂配合使用。先以5%的硼砂溶液对纸张进行预处理,待稍干后再用1%-3%的PVA胶液进行表面施胶。此时,PVA与硼砂反应形成网状交联结构的配合物,在一般条件下是凝胶体,可有效抑制PVA在纸层中渗透,但在酸性条件下,PVA-硼砂配合反应是可逆反应,对酸性纸和纸板使用时因此而受到限制。采用PVA-硼砂表面施胶,经济效益也是很好的,成本比一般用淀粉施胶要低,而且效果好。在相同表面强度下,单独使用PVA施胶至少要用3%浓度的胶夜,施胶量达0.5g/m2;如果用1%-5%硼砂预处理,PVA胶夜只要1%浓度就已足够。熬制PVA时若加入脲醛或碳酸铵等可以提高纸页的抗水性,加入石蜡或树脂酸等,可以改变胶料的流动性和粘结力,加入藻脘酸纳可以提高保水性能,加入淀粉可以降低生产成本[10]。2005的时候PV A 产品在世界上已经有1100kt,使用之后大都释放到生态系统中[11]。尽管人们普遍

认为PV A对有机体是无害的,但是有很强的活度能够产生大量的泡沫降低了水中氧气的含量。或许PV A是唯一一种能够控制生物降解的聚乙烯类合成化合物[12]。

5. 羧甲基纤维素(简称CMC),是一种由天然纤维素经精制改性而成的一种纤维素醚。CMC是一种白色的粉末状、粒状或纤维状的物质,无臭、无味、无毒,常用的是羧甲基纤维素的钠盐。羧甲基纤维素钠盐是来源于纤维素的一种阴离子聚电解质,非常重要的纤维素衍生物。阴离子聚电解质不会附着在纤维上,这是因为带阴电荷的纤维表面与带阳电荷的纤维表面之间有静电排斥[13]。CMC的基本性质决定于其取代度:在醚化反应中,纤维素上的羟基被羟甲基取代的比例。聚合度是CMC的另一个重要指标,表示纤维链的长度,常用粘度来间接表示。一般分为高粘度(0.2Pa·s以上)、中粘度(0.3–0.6Pa·s)和低粘度(0.025–0.05Pa·s)三种。用作表面施胶的CMC一般粘度在30–700mPa·s,取代度在0.7–0.85。

作为表面施胶剂,CMC具有优良的成膜性和成膜转移性能,能在纸或纸板表面形成很好的封闭性和抗油性。在印刷过程中常常会发现纸张或纸板产生翘边和卷边[14],彩色套印时尺寸出现误差。如果采用单一CMC或适量配有CMC的胶料进行表面施胶,就能在纸张表面形成一层连续完整而柔韧的薄膜。这层薄膜具有较好的调湿功能,有利于消除干燥部造成的纸张内部应变,防止纸或纸板的翘曲形变和消除套印时的尺寸误差。此外,CMC也可与聚乙烯醇、聚丙烯酰胺、脲醛树脂等混合使用,以进一步改善纸页的施胶或增强效果。

总而言之,表面施胶用的药品是成膜性好、膜强度高的药品,所以在考虑多种因素下,往往是两种或两种以上药品复配使用,以达到良好的效果。表面施胶过程中选择合适的施胶剂很重要,但是也有一些其它的因素影响表面施胶的效果。如纸页的特性及干度,施胶温度和施胶压力等。因此,需要综合考虑多方面的因素,使表面施胶达到优化。

参考文献:

[1] 姚献平,郑丽萍.淀粉衍生物及其在造纸中的应用技术[M].北京:中国轻工业出社,1999.

[2] 安俊健,张光彦,胡珍. 阳离子淀粉作为表面施胶剂的研究.湖北造纸2010年第四期

[3] Ulrich Hundhausen · Holger Militz · Carsten Mai . Use of alkyl ketene dimer (AKD) for

surface modificationof particleboard chips. Eur. J. Wood Prod. (2009) 67: 37–45

[4] Ulrich Hundhausen · Roman Stohldreier · Holger Militz · Carsten Mai .Procedural influence

on the properties of particleboards made fromAKD modified chips. Eur. J. Wood Prod. (2009) 67: 303–311

[5] Joseph Marton. Preparation of AKD neutral sizing agent[J] . TAPPI .Journal, 1990, 73 (11) :

139 - 143.

[6] 王润辰, 李小瑞, 费贵强, 王海花.AKD专用高分子表面活性剂的性能研究Vo.l 27, No.

1.Jan. 2010

[7] Alireza Ashori, Warwick D. Raverty, and Jalaluddin Harun .Effect of Chitosan Addition on

the Surface Properties of Kenaf(Hibiscus cannabinus) Paper. Fibers and Polymers 2005,

Vol.6, No.2, 174-179

[8]北京有机化工厂研究所.PVA的性质和应用[M].纺织工业出版社.1978.

[9]胡慧仁,徐立新,董荣业.造纸化学品.化学工业出版社.2001.

[10] 卢谦和.造纸原理与工程.中国轻工工业出版社.2004.

[11] Xiaoping Hu · Rie Mamoto · Yumi Shimomura ·Kazuhide Kimbara · Fusako Kawai.Cell

surface structure enhancing uptake of polyvinyl alcohol(PVA) is induced by PVA in the

PVA-utilizing Sphingopyxis sp.strain 113P3 . Arch Microbiol (2007) 188:235–241

[12] Fusako Kawai & Xiaoping Hu. Biochemistry of microbial polyvinyl alcohol degradation.

Appl Microbiol Biotechnol (2009) 84:227–237

[13] Minna Blomstedt · Tapani Vuorinen.. Modification of softwood kraft pulp with

carboxymethyl cellulose and cationic surfactants. J Wood Sci (2007) 53:223–228

[14] 尹继明,周伟明.谈羧甲基纤维素在表面施胶中的应用.中华纸业.2002年3月.

表面活性剂最新研究进展

表面活性剂最新研究进展 人类的日常生活,各类生产活动,多种科学和技术的进步对表面活性剂品种和性能提出越来越高的要求,促使表面活性剂科学不断发展,迄今方兴未艾,表面活性剂已经深入到生命起源以及膜材料、纳米材料、对映体选择性的反应等各个领域中,设计新的有特殊用途和应用价值的表面活性分子仍不断受到人们的关注。新的功能型表面活型剂与附加的官能基团的性质和位置有密切关系, 对传统的表面活性剂分子结构的修饰会导致其结构形态有很大的变化,近几年国内外的相关研究单位在表面活性剂领域的最新研究进展主要有以下方面。 一、高分子表面活性剂 高分子表面活性剂的合成成为近年来表面活性剂合成研究的热点课题之一。高分子表面活性剂是相对一般常言的低相对分子质量表面活性剂而讲的,通常指相对分子质量大于1000且具有表面活性功能的高分子化合物。它像低分子表面活性剂一样,由亲水部分和疏水部分组成。高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等性质,广泛应用作胶凝剂、减阻剂、增黏剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等。因此,高分子表面活性剂近年来发展迅速,目前已成为表面活性剂的重要发展方向之一。 高分子表面活性剂可根据在水中电离后亲水基所带电荷分为阴离子型、阳离子型、两性离子型和非离子型四类高分子表面活性剂。如阴离子型的高分子表面活性剂有聚(甲基)丙烯酸(钠)、羧甲基纤维素(钠)、缩合萘磺酸盐、木质素磺酸盐、缩合烷基苯醚硫酸酯等。两性离子型的高分子表面活性剂有丙烯酸乙烯基吡啶共聚物、丙烯酸-阳离子丙烯酸酯共聚物、两性聚丙烯酰胺等。非离子型的高分子表面活性剂有羟乙基纤维素、聚丙烯酰胺、聚乙烯吡咯烷酮、聚氧乙烯类共聚物等。阳离子型的高分子表面活性剂有聚烯烃基氯化铵阳离子表面活性剂、亚乙基多胺与表氯醇共聚季铵盐、淀粉或纤维素高取代度季铵盐、多聚季铵盐、聚多羧基季铵盐等。 开发低廉、无毒、无污染和一剂多效的高分子表面活性剂将是今后高分子表面

造 纸 助 剂

造纸助剂 第一章造纸过程 现代的造纸程序可分为制浆、调制、抄造、涂布、加工等主要步骤: 制浆段:原料选择→蒸煮分离纤维→洗涤→漂白→洗涤筛选→浓缩或抄成浆片→储存备用 调制—抄纸段:散浆→除杂质→精浆→打浆→配制各种添加剂→纸料的混合→纸料的流送→头箱→网部→压榨部→干燥部→表面施胶→干燥→压光→卷取成纸 涂布段:涂布原纸→涂布机涂布→干燥→卷取→再卷→超级压光 加工段:复卷→裁切平板(或卷筒)→分选包装→入库结束 一、制浆:纸浆为造纸的第一步,一般将木材转变成纸浆的方法有机械制浆法、化学制浆法、半化学制浆法等 三种。 造纸原料:有植物纤维和非植物纤维(无机纤维、化学纤维、金属纤维)等两大类。 漂白:这一工段会有大量的黑液产生,既污染的源头。 二、调制:纸张的调制为造纸的另一重点,纸张完成后的强度、色调、印刷性的优劣、纸张保存期限的 长短直接与它有关。一般常见的调制过程大致可以分为以下三步骤:散浆、打浆、加胶与充 填。 (一)打浆:利用物理方法处理悬浮于水中的纸浆纤维,使其具有造纸机生产所要求的特性,生产出符合质量要求的纸和纸板。这一操作过程称为打浆。打浆对纤维的作用:细胞壁的位移和变 形,初生壁和次生壁外层的破裂,吸水润涨,细纤维化和横向切断等。 (二)调料: 1、施胶——通过向浆料中加入有抗水性胶料物质,使纸张具有一定抗水性能,在一定程度上不易为 水或水溶液所浸润,这一操作过程叫做施胶。 2、纸和纸板按施胶程度不同分为—— 重施胶纸:书写纸、胶版印刷纸、绘图纸、包装纸、书皮纸、纸袋纸等。 轻施胶纸:凸版印刷纸、凹版印刷纸、打字纸、有光纸、和涂布厚纸等。 不施胶纸:吸墨纸、卷烟纸、卷筒新闻纸、滤纸、卫生纸、浸渍加工纸原纸、变性加工纸和钢纸原纸等。 (三)加填:向纸料悬浮液中加入不溶于水或不易溶于水的矿物质或人造填料。 三、抄造过程:将稀的纸料均匀地交织和脱水,再经干燥、压光、卷纸、裁切、选别、包装,故一般常 见流程如下: 1、纸料的筛选:将调制过的浆料再稀释成较低的浓度,并借着筛选设备,再次的筛除杂物及未解离纤 维束,以保持品质及保护设备。 2、网部:使纸料从头箱流出在循环的铜丝网或塑料网上均匀的分布和交织。 3、压榨部:将网面移开的湿纸引到一附有毛布的二个滚辘间,藉滚辘的压挤和毛布的吸水作用,将湿纸作 进一步的脱水,并使纸质较紧密,以改善纸面,增加强度。 4、干燥:由于经过压榨后的湿纸,其含水量仍高达52 -70%,此时已无法再利用机械力来压除水分,故改 让湿纸经过许多个内通热蒸气的圆筒表面使纸干燥。 5、表面施胶——也称纸面施胶。是把已抄成的纸或纸板浸入施胶剂溶液中或用施胶机向纸面施加一层 薄层胶料,待施胶剂干燥之后,就在纸面上形成一层抗液性胶膜,使纸取得抗水性,还 可增加纸的强度和挺度,改善纸的书写性能,提高纸的耐摩擦性及耐久性,还可以解决 纸的掉毛、掉粉问题。多用于高质量纸种,如钞票纸、证券纸、扑克牌纸、高级书写纸、 高级胶版印刷纸等。

高分子表面活性剂在表面施胶中的应用

摘要:表面活性剂在造纸中有很大的应用,例如在制浆、湿部、脱墨、涂布加工等方面。本文主要综述了几种主要的高分子表面活性剂如:阳离子淀粉,AKD 专用高分子表面活性剂,壳聚糖,聚乙烯醇,羧甲基纤维素等在表面施胶中的应用。 关键词:造纸、高分子表面活性剂、表面施胶。 表面施胶也叫纸面施胶,纸页形成后在半干或干燥后的纸页或纸板的表面均匀涂上胶料。施胶剂分松香型和非松香型两大类,非松香型施胶剂主要用于表面施胶。常用的表面施胶剂含有疏水基和亲水基,因此广义地说都是表面活性剂。表面施胶剂主要有变性淀粉、聚乙烯醇(PVA)、羧甲基纤维素(CMC)和聚丙烯酰胺(PAM)等。可根据不同的需要选择不同的表面活性剂,如:提高抗水性,可用AKD、分散松香、石蜡、硬脂酸氯化铬、苯乙烯马来酸酐共聚物及其他合成树脂胶乳等;提高抗油性,可加入有机氟化合物,如全氟烷基丙烯酸酯共聚物,全氟辛酸铬配合物,全氟烷基磷酸盐等;增加防黏性,可加入有机硅树脂;改善印刷性能,主要用变性淀粉、CMC、PVA等[1];改进干湿强度,可加入PAM、变性淀粉等;改善印刷光泽度和印刷发色性,主要用CMC、海藻酸钠、甲基纤维素、氧化淀粉等。为了提高表面施胶效果,通常采用两种或几种表面活性剂共用的方法。 1. 淀粉是一种天然高分子化合物,它是一种重要的表面施胶剂和纸张增强剂。在造纸工业中,薯类淀粉使用效果较好。天然未改性的淀粉粘度较高,流动性差,容易凝聚,用水稀释后易沉淀,故在表面施胶中常用各种改性淀粉。改性淀粉在较高浓度时仍有较低的粘度,并保持良好的溶解性、粘着力和成膜性能。用于表面施胶的改性淀粉主要有氧化淀粉、阳离子淀粉、阳离子型磷酸酯淀粉、羟烷基淀粉、双醛淀粉、乙酸酯淀粉、酸解淀粉。以下主要介绍阳离子淀粉。 阳离子淀粉通常是指淀粉在一定条件下与阳离子试剂反应制得的产物,阳离子试剂主要有叔胺盐类和季铵盐类阳离子试剂。阳离子淀粉还可以通过淀粉与阳离子型乙烯基单体通过自由基共聚法制得。阳离子淀粉作为表面施胶液的固含量和取代度DS(Degree of Substitutio)是影响表面施胶性能的两个非常重要的因素。阳离子淀粉的品种很多,按取代度来分,主要有低取代度(DS<0.1)和高取代

高分子表面活性剂的分类特征与应用

高分子表面活性剂的分类、特征及应用 摘要:概述了高分子表面活性剂的分类、性质、合成方法及应用,分析了其应用 前景,旨在通过对高分子表面活性剂相关内容的综述和介绍,让更多的人认识和 了解高分子表面活性剂。 关键词:高分子表面活性剂;分类;应用 高分子表面活性剂是相对一般常言的低相对分子质量表面活性剂而言讲的,通常指相对分子质量大于1000且具有表面活性功能的高分子化合物,也有说法认为,高分子表面活性剂是指分子量达到某种程度以上(一般为103~106) 又一定表面活性的物质[5],虽然,高分子表面活性剂分子量,甚至,高分子物质分子分子量到底多大并没有严格的界限,但总之,高分子表面活性剂相比低分子表面活性剂其分子量要大很多。和低分子表面活性剂一样,高分子表面活性剂由亲水部分和疏水部分组成。1951年施特劳斯把结合有表面活性官能团的聚1-十二烷基-4-乙烯吡啶溴化物命名为聚皂从而出现了合成高分子表面活性剂。1954年美国Wyandotte公司报到了合成聚氧乙烯聚氧丙烯嵌段共聚物非离子高分子表面活性剂此后具有高性能的各种高分子表面活性剂相继开发。高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等性质,被广泛用作胶凝剂、减阻剂、增粘剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等[1]。因此高分子表面活性剂近年来发展迅速,目前,已成为表面活性剂的重要发展方向之一。 1.高分子表面活性剂的分类 高分子表面活性剂可根据在水中电离后亲水基所带电荷分为阴离子型、阳离子型、两性离子型和非离子型四类高分子表面活性剂。如阴离子型的高分子表面活性剂有聚甲基丙烯酸钠、羧甲基纤维素钠、缩合萘磺酸盐、木质素磺酸盐、缩合烷基苯醚硫酸脂等。阳离子型的高分子表面活性剂有氨基烷基丙烯酸酯共聚物、改型聚乙烯亚胺、含有季胺盐的丙烯酸酰胺共聚物、聚乙烯苯甲基三甲铵盐等。两性离子型的高分子表面活性剂有丙烯酸乙烯基吡啶共聚物、丙烯酸一阳离子丙烯酸酯共聚物、两性聚丙烯酰胺等。非离子型的高分子表面活性剂有羟乙基纤维素、聚丙烯酸胺、聚乙烯吡咯烷酮、聚氧乙烯类共聚物等。 高分子表面活性剂按来源分类可分为天然高分子表面活性剂和合成高分子表面活性剂。天然高分子表面活性剂是从动植物体内分离、精制而制成的两亲性水溶性高分子,包括天然高分子经过化学改性而制成的高分子表面活性剂,也叫半合成高分子表面活性剂。如各种淀粉、树胶、多糖、改性淀粉、纤维素、蛋白质和壳聚糖等。周家华[2]采用淀粉和苯乙烯合成了淀粉苯乙烯接枝共聚物高分子表面活性剂。唐有根[3]等通过壳聚糖接枝二甲基十四烷基环氧丙基氯化铵再磺化H,合成了一种吸湿性极强, 具有优异表面活性的新型壳聚糖两性高分引入一SO 3 子表面活性剂。合成高分子表面活性剂是指亲水性单体均聚或与憎水性单体共聚而合成的高分子。如聚丙烯酰胺、聚丙烯酸和聚苯乙烯-丙烯酸共聚物等。张洁辉等采用烷基酚聚氧乙烯醚丙烯酸酯、丙烯酰胺和丙烯酸异辛酯共聚,得到了三元共聚物高分子表面活性剂。

苯乙烯-丙烯酸(SAE)聚合物表面施胶剂与AKD表面施胶剂的区别

苯乙烯-丙烯酸(SAE)聚合物表面施胶剂与AKD表面施胶剂的区别 2010年4月19日 一、前言: 在生产、储存和使用的过程中,纸张纤维都会吸收空气和环境中的水蒸气因而导致纸张水分增加、强度降低,进而影响纸张的使用性能。尤其是包装纸箱所用的牛皮纸、瓦楞纸和箱板纸,吸潮后会导致纸板、纸箱变软;在贮存、使用和运输过程中,纸箱变形,影响包装箱的外观质量、影响包装物的储存和码垛;甚至还会损坏包装箱内的商品。 为了解决纸张吸水和返潮的问题,通常要在造纸过程中添加抗水性能的化学品,即术语所称“施胶剂”。最初的施胶工艺,主要是在纸浆的制浆过程中,直接在浆内添加胶体材料,即“浆内施胶”,这样可以提高纸张的抗水性,避免包装纸吸潮后影响其使用性能。但是,经过多年的实践后发现,“浆内施胶”存在两个问题,一是浆内施胶会影响纸张纤维之间的结合力,会降低包装纸的强度;二是浆内施胶量较大,额外增加了过多的成本。另外,包装纸在印刷过程中,经常会出现掉粉、掉渣(纤维脱落)以及油墨吸收不均匀和渗透等现象,影响包装纸的印刷质量,浆内施胶无法改善这种现象。为此,开始尝试在纸张的表面涂覆一层胶体材料,可以起到防止掉粉、掉渣以及提高纸张印刷质量的作用,同时还能阻止水蒸气渗透到纸张内部,起到了浆内施胶的作用,因此,“表面施胶剂”应运而生。 表面施胶剂(简称表胶)是指在纸张表面涂加的旨在增加纸张抗水性的一种化学胶剂,既可以提高纸张的印刷性能,同时还可以防止纸张吸水返潮而导致强度降低。相对于浆内施胶,表面施胶剂的成本只是浆内施胶的15-30%,具有很好的性价比,自2002年以后,发展迅速。 长期以来,低档包装纸例如普通瓦楞纸、箱板纸均不施胶,随着越来越多的大型纸机投产,产能相对过剩,大型纸机生产的低克重表胶纸能够取代小厂生产的高克重无表胶的普通纸,例如75克表胶高强瓦楞纸可以取代90-100克的无表胶普通瓦楞纸。因此从金融危机之后,低速纸机生产的未表胶的低档纸正陆续被替代,一些小厂在先进产能淘汰落后产能的客观规律作用下而相继倒闭。近年来新上的中速纸机大多增加了表面施胶的装置,因此表面施胶是包装纸施胶的发展趋势。同时,由于浆内施胶量大成本高,正在逐步被表面施胶剂取代。总体而言,表面施胶剂市场前景广阔。 二、表面施胶剂的简要介绍: 表面施胶剂的种类很多,大体可分为天然高分子和化学合成高分子两大类。淀粉及改性淀粉是典型的天然高分子,但其性能有很大的局限性;目前将淀粉及改性淀粉与化学合成高分子配合起来使用,已取得了良好的效果。从离子型方面,表面施胶剂又分为阳离子型、阴离子型和非离子型表面施胶剂。 实践表明,用于包装纸的表面施胶剂,阳离子型效果最好。目前最为普及的是阳离子型苯乙烯丙烯酸酯聚合物乳液(简称苯丙乳液);这类产品合成工艺稳定、操作简便,在表面施胶后成膜性和抗水性好,是应用和发展最快的品种。 在表面施胶的机理方面,业内人士已普遍达成了如下共识: 1)阳离子表面施胶剂,要与配合施胶的大量淀粉链状分子进行交联反应,形成以聚合物高分子为核心节点的网状结构覆盖在纸张的表面,并形成一个致密的抗水薄膜,从而阻止水蒸气进入与纸张内部与纤维结合,防止纸张返潮;同时还可以防止纸张掉粉掉渣提高印刷质量。2)表面施胶剂的聚合物高分子还需要与纸张纤维有良好的结合,减少表面施胶剂向纸张内

生物表面活性剂和高分子表面活性剂

生物表面活性剂和高分子表面活性剂 摘要:表面活性剂是由两种截然不同的粒子形成的分子,一种粒子具有极强的亲油性,另一种则具有极强的亲水性。溶解于水中以后,表面活性剂能降低水的表面张力,并提高有机化合物的可溶性。本文将就生物表面活性剂和高分子表面活性剂进行具体介绍,并且列举了部分它们在社会中的应用以及它们存在的问题和发展前景进行了简单的介绍。 关键词:表面活性剂;生物表面活性剂;高分子表面活性剂 Biological surfactant and polymer surfactant Abstract:Surfactant is composed of two distinct particles, a kind of particle has extremely strong lipophilicity, the other with strong hydrophilic. Dissolved in water, surfactants can reduce the surface tension of the water, and increase of soluble organic compounds. This article will discuss biosurfactant and polymeric surfactants are detailed introduction, and lists the part of their application in society and their existing problems and development prospects were simply introduced. Keyword:The surfactant; Biosurfactant; Polymer surfactant

造纸用表面施胶剂

造纸用表面施胶剂 康爱辉 张新东 (苏州天马医药集团有限公司,江苏苏州215101) 摘 要:本文介绍了纸或纸板常用表面施胶种类及各自优缺点,描述了目前国内纸或纸板表面施胶的现状及发展趋势。 关键词:纸或纸板 施胶剂 表面施胶 表面施胶是纸张或纸板加工过程中的一个工序,通常位于纸机的烘干部末端,使纸页在未完全干燥却具有一定的强度时喷涂一层胶液,经后续的干燥在纸和纸板表面形成一层胶膜,从而达到改变纸或纸板表面性能的目的。从造纸工业的发展来看,造纸表面施胶是不可或缺的过程之一,通过表面施胶可加人改善纸页性能或增加纸或纸板抗水性的表面添加剂。原先,由于技术水平及纸种要求的限制,表面施胶剂只能用在特殊纸种上,例如:钞票纸、证券纸、海图纸等。随着造纸工业技术水平的提高,纸张的表面施胶已经成为一种常规的纸张处理工序,尤其是近年来因印刷、复印、传真的普及对文化纸、包装纸和瓦楞纸的表面性能、强度及抗水性提出了更高的要求,因此造纸工业在不断的探求新的表面施胶技术。 1 现行的表面施胶有如下优势 1)提高纸和纸板的印刷性能; 2)可通过选用不同的表面施胶剂种类,提高纸张的表面强度或抗水性; 3)提高纸和纸板的物理强度; 4)表面施胶可减少纸张的两面差; 5)不受抄纸水质和水温的影响,施胶效果比较稳定; 6)胶料留着效果好,施胶成本低; 7)和内施胶同时使用,可弥补内施胶的一些缺陷。 2表面施胶剂的分类及其作用 根据表面施胶剂的功能,我们分成抗水类和增强类。提高抗水性的表面施胶剂可选用烷基烯酮二聚体(AKD)、苯乙烯马来酸酐共聚物等;增强类的可选用淀粉、羧甲基纤维素(CMC)、聚乙烯(PVA)醇等。下面介绍目前纸厂常用的表面施胶剂类型及基特点。 2.1淀粉及其改性物 淀粉是一种天然高分子化合物,它是一种重要的表面施胶剂和纸张增强剂。玉米淀粉使用比较广泛,薯类淀粉使用效果较好。天然原淀粉粘度高,流动性差,容易凝聚,用水稀释后容易沉淀,在粘结性、成膜性方面还存在很大的局限性,所以在施胶系统中使用的是改性淀粉。使用淀粉改性物作为表面施胶剂最大的优点就是原料丰富,价格便宜,非常适合中国的国情,另外表面增强效果明显,可改善印刷效果。但淀粉是高分子水溶性物质,结构中含有亲水基,在成膜后难以抵挡液体的渗透。这就需要用变性淀粉和其它的表面施胶剂配合使用来达到纸张的要求。表面施胶中最常用的是氧化淀粉。 2.2聚丙烯酰胺(PAM) PAM作为表面施胶剂,应和乙二醛混合,两者在于燥过程中可形成交联网络。由于纸页中存在三价铝离子和钙离子等,PAM分子中的部分-CONH:基团又水解成-COOH,这些金属多价离子会与PAM中的-COOH产生离子交联键,从而使纸而产生抗水性。PAM价格高,质量好,适合和价格便宜的淀粉配合使用。 2.3聚乙烯醇(PVA) 聚乙烯醇按聚合度和水解度不同,分为许多牌号。一般用作表面施胶的PVA聚合度为l000—2000,醇解度为98%-99%。我国生产的PVA,用于表面施胶的主要是1798,即聚合度为l700,醇解度为98%。经PVA表面施胶的纸张,干燥后纤维有很好的黏合力,表面强

苯丙乳液类施胶剂相关介绍2012.03.10

苯丙乳液类(SAE)阳离子表面施胶剂与AKD 表面施胶剂的区别 一、前言: 在生产、储存和使用的过程中,纸张纤维都会吸收空气和环境中的水蒸气因而导致纸张水分增加、强度降低,进而影响纸张的使用性能。尤其是包装纸箱所用的牛皮纸、瓦楞纸和箱板纸,吸潮后会导致纸板、纸箱变软;在贮存、使用和运输过程中,纸箱变形,影响包装箱的外观质量、影响包装物的储存和码垛;甚至还会损坏包装箱内的商品。 为了解决纸张吸水和返潮的问题,通常要在造纸过程中添加抗水性能的化学品,即术语所称“施胶剂”。施胶方式可分为浆内施胶和表面施胶。这样可以提高纸张的抗水性,避免包装纸吸潮后影响其使用性能。但是,经过多年的实践后发现,“浆内施胶”存在两个问题,一是浆内施胶会影响纸张纤维之间的结合力,会降低包装纸的强度;二是浆内施胶量较大,额外增加了过多的成本。另外,包装纸在印刷过程中,经常会出现掉粉、掉渣(纤维脱落)以及油墨吸收不均匀和渗透等现象,影响包装纸的印刷质量,浆内施胶无法改善这种现象。为此,开始尝试在纸张的表面涂覆一层胶体材料,可以起到防止掉粉、掉渣以及提高纸张印刷质量的作用,同时还能阻止水蒸气渗透到纸张内部,起到了浆内施胶的作用。因此,“表面施胶剂”应运而生。 表面施胶剂(简称表胶)是指在纸张表面涂加的旨在增加纸张抗水性的一种化学胶剂,既可以提高纸张的印刷性能,同时还可以防止纸张吸水返潮而导致强度降低。相对于浆内施胶,表面施胶剂的成本只是浆内施胶的15-30%,具有很好的性价比,自2002 年以后,发展迅速。 长期以来,低档包装纸例如普通瓦楞纸、箱板纸均不施胶,随着越来越多的大型纸机投产,产能相对过剩,大型纸机生产的低克重表胶纸能够取代小厂生产的高克重无表胶的普通纸,例如75 克表胶高强瓦楞纸可以取代90-100 克的无表胶普通瓦楞纸。因此从金融危机之后,低速纸机生产的未表胶的低档纸正陆续被替代,一些小厂在先进产能淘汰落后产能的客观规律作用下而相继倒闭。近年来新上的中速纸机大多增加了表面施胶的装置,因此表面施胶是包装纸施胶的发展趋势。同时,由于浆内施胶量大成本高,正在逐步被表面施胶剂取代。 二、表面施胶剂的简要介绍: 表面施胶剂的种类很多,大体可分为天然高分子和化学合成高分子两大类。淀粉及改性淀粉是典型的天然高分子,但其性能有很大的局限性;目前将淀粉及改性淀粉与化学合成高分子配合起来使用,已取得了良好的效果。从离子型方面,表面施胶剂又分为阳离子型、阴离子型和非离子型表面施胶剂。 实践表明,用于包装纸的表面施胶剂,阳离子型效果最好。目前最为普及的是阳离子型苯乙烯丙烯酸酯聚合物乳液(简称苯丙乳液);这类产品合成工艺稳定、操作简便,在表面施胶后成膜性和抗水性好,是应用和发展最快的品种。 1)阳离子表面施胶剂,要与配合施胶的大量淀粉链状分子进行交联反应,形成以聚合物高 分子为核心节点的网状结构覆盖在纸张的表面,并形成一个致密的抗水薄膜,从而阻止水蒸气进入纸张内部与纤维结合,防止纸张返潮;同时还可以防止纸张掉粉掉渣提高印刷质量。 2)表面施胶剂的聚合物高分子还需要与纸张纤维有良好的结合,减少表面施胶

表面活性剂解析

表面活性剂:是一种加入很少即能明显降低溶剂(通常为水)的表面(或界面张力),改变 物系的界面状态,能够产生润湿、乳化、起泡、憎溶及分散等一系列作用,从而达到实际应用的要求的精细化学品。在结构上至少存在亲水基和疏水基两种基团,一个分子中可以同时 存在多个亲水基,多个疏水基。 分类:(1)按离子类型分类:1)非离子型表面活性剂2)离子型表面活性剂:阴离子、阳离子、两性(2)按表面活性剂的特殊性分类:碳氟表面活性剂、含硅表面活性剂、高分子表面活性剂、生物表面活 性剂、冠醚型表面活性剂。 常见阴离子、阳离子、两性表面活性剂的中英文名、简写及结构 (1)阴离子:十二烷基苯磺酸钠:Sodium dodecyl benzene sulfonate (SDBS 或LAS) 弧比一 3 Na (2)阳离子:苄基三甲基氯化铵:Benzyltrimethylammonium Chloride (TMBAC ) (3)非离子:脂肪醇聚氧乙烯醚:Primary Alcobol Ethoxylate (AE 或AEO) R-O-(CH2CH2O) n-H (4)两性:十二烷基甜菜碱:Dodecyl dimethyl betaine (BS-12)C12H25-N+(CH3)2CH2COO- 阴离子表面活性剂的合成: (1)烷基苯磺酸盐——烷基芳烃的生产过程: a?以烯烃为烷基化试剂合成长链烷基苯: 反应历程:(质子酸做催化剂) R—CH = CH2 + H+ = R- + CH —CH3 (以AlCl3作催化剂) HCl + AICI3 = H S +—Cl S - ? AICI3 RCh k CH2 + H S +—Cl S - ? AlCl3 = R — + CH- CH V AICI4 — 之后反应: R-CH-CH3 +

表面施胶剂的种类及作用

表面施胶剂的种类及作用 许夕峰 靳光秀 梁福根 吴晓敏 (杭州传化华洋化工有限公司,杭州311231) 摘 要:本文对表面施胶剂进行了分类,并对每类产品的性能及在不同纸种中所起的作用进行了介绍。 关键词:表面施胶剂 造纸 印刷适应性 1 前言 施胶的目的是使纸或纸板具有抗拒液体(特别是水和水溶液)扩散和渗透的能力。表面施胶[1,2]指的是湿纸幅经干燥部脱除水分至定值后,在纸的表面均匀地涂施适当的胶料的工艺过程。在现代的造纸技术中,表面施胶已成为纸页表面施胶处理的主要形式,其作用不仅仅局限于赋予纸张一定的抗液性,在某些情况,则更加强调其对纸张印刷性能、纸张表面性能的改善。因此,也有将表面施胶称为表面改性或表面增强的。 近年来,随着纸张表面施胶工艺的发展,许多化学品公司都研发生产出能适合纸张表面施胶用的化学品。本文将主要介绍表面施胶化学品的种类及其在不同纸种中发挥的作用。 2表面施胶剂的种类 2.1传统表面施胶剂 淀粉是最常用的载体,也是施胶压榨中用量最大的化学品。有关这方面的文献报道很多[3,6],这里需强调的是阳离子淀粉及酶转化淀粉。阳离子淀粉[7]可与纤维形成离子键,因此在损纸回抄的过程中可更多的留在纤维表面,降低白水的COD,有利于环保。酶转化淀粉[8]是一种生物变性淀粉,其转化结果与氧化淀粉相似,都是将淀粉的长分子链水解为短分子链。酶转化淀粉的制备工艺比较简单,可现制现用,较常用的氧化淀粉,其最突出的优点是使用成本很低,因此越来越受到纸厂的青睐。 除淀粉外,PVA、CMC及海藻酸钠[9]有时也作为载体应用在施胶压榨上。这些化学品都具有良好的成膜性,可封闭纸张的毛细孔。 2.2合成聚合物表面施胶剂[10-14] 合成聚合物表面施胶剂在现代造纸工业中具有极其重要的地位。与传统的浆内施胶剂不同,它们是专门为表面施胶而设计的,是目前表面施胶剂的主流产品。该种表面施胶剂主要可分为三种类型:①水溶性聚合物表面施胶剂(SMA及SAA类);②聚合物水分散液表面施胶剂(SAE类):③聚氨酯水分散液表面施胶剂(PUD类)。 2.2.1水溶性聚合物表面施胶剂[15-18] 这些水溶性聚合物主要是苯乙烯-马来酸酐共聚物(SMA类)及苯乙烯-丙烯酸共聚物(S 从类)的铵盐、钠盐或混合盐。产品随着纸机系统向中碱性转变而逐渐兴起,主要用来克服浆内滥用AKD后,纸面摩擦系数的过分降低。 SMA、SAA均为阴离子聚合物,其水溶性来自于羧酸盐的解离,因此不能在低pH环境中使用。SMA、SAA类产品的作用发挥,往往要借助某些阳离子物质。如聚合物长链中的羧酸根离子在A13+的协助下吸附在纸页表面,而疏水的苯乙烯基团朝向纸面外,从而赋予纸页一定的抗水性。SMA、SAA产品也有一定的成膜能力,可改变纸页的透气度,增大原纸表面的摩擦系数。 影响这类产品性能的因素有很多。聚合物的分子量既影响产品的施胶效果,又影响产品的成膜能力。分子量高,其施胶效果越好,成膜能力越强。盐的类型也会影响聚合物的性质,一般来说,铵盐由于易于解离,使聚合物具有更好的施胶效果;而钠盐的成膜能力较强。与其它类型的聚合物表面施胶剂相比,这类产品在使用过程中会产生大量泡沫,从而影响施胶压榨效果的稳定性,限制了其在造纸工业中的应用。

天然表面活性剂应用

天然表面活性剂应用 天然表面活性剂在生活中,应用非常广泛,是化工生产产品中不可缺少的一部分,在科学领域有十分重要的应用价值。天然表面活性剂是工业生产向前发展的加速剂,有着巨大的商业价值。 天然表面活性剂多来自动植物体,为较复杂的高分子有机物。由于其亲水性强,因而能形成乳浊液。而这类物质多有较高的粘度,有益于乳化稳定性。如卵磷脂、胆甾醇、羊毛脂、茶皂素、蛋白质、皂苷类、糖类及烷基多苷等。此类表面活性剂一般表面张力能力较小,乳化能力也不尽相同。但有的具有较强的表面活性,如茶皂素、烷基多苷等,去污活性强,可直接应用于洗澡用品、洗发制剂。而大多数天然表面活性剂具有优良的乳化性能,且具有其他方面的特性和功能,在医药、食品、化妆品及洗涤用品等方面应用广阔。这类表面活性剂多数无刺激、无毒副作用,安全性能高,易生物降解,配伍性能好。是未来表面活性剂的发展方向,特别是在日化产品中有着广阔的应用前景。 1、卵磷脂 卵磷脂存在于生物细胞中,如动物卵、脑等组织及植物的种子或胚芽中,卵黄磷脂从蛋黄中提取;大豆中含有丰富的卵磷脂。卵磷脂具有乳化、分散、抗氧化等生理活性,是天然优良的表面活性剂,重要的乳化剂。其具有多种功能:①能参与细胞的代谢,活化细胞,有抗衰老功能; ②对细胞有渗透和调节作用,可软化和保护皮肤;③可改善油脂的润湿和辅展性能,多用以调节、护理头发、皮肤化妆品等;④具有良好的成膜性能,可改善洗涤剂对皮肤的脱脂作用;⑤预防和治疗湿疹及多种皮肤病;⑥促进毛发生长,有护发健发作用;⑦具有香料和色素的分散稳定作用;⑧维持制剂乳液的稳定作用。卵磷脂具有双亲结构,即较长的两个酰基在甘油中进行酯结合形成亲油结构,以磷酸基为媒介而结合的季铵基亲水结构。在水中分散的时候,很明显地形成有稳定的二分子膜结构的磷脂质小细胞体(脂肪体)。这种脂肪体可以在医药品方面作药物的载体。因此卵磷脂可广泛应同于护肤护发、浴用及美容化妆品中。需要指出的是:在化妆品工业中卵磷脂作为主表面活性剂使用的例子非常之少。主要原因是磷脂成分的不确定性。天然的卵磷脂源于蛋黄和大豆,其磷脂质组成大不相同,乳化性能等也不相同,乳化剂用量和乳化技术难以掌握。另外的原因是天然卵磷脂中含有不饱

造纸行业复合表面施胶剂及制备方法--初稿

造纸行业替代淀粉的复合表面施胶剂及制备方法 技术领域 本发明涉及纸浆造纸技术领域,特别涉及一种造纸行业替代淀粉的复合表面施胶剂,还涉及其制备方法。 背景技术 目前我国的造纸业,由于纸浆短缺,用于生产纸板、瓦楞原纸的企业大都采用于多次重复利用的废旧纸箱进行造纸,这样的纸品原材料所生产的纸张强度低,质量差,需在纸品表面用淀粉进行表面施胶来提高强度,以满足用户的需求,造纸用表面施胶淀粉是用于提高纸和纸板表面强度及提高纸品硬度(环压强度)的主要添加剂,它是一种用量大、应用面很广的造纸添加剂。 淀粉的来源主要是通过人们日常必需的粮食作物,比如玉米、小麦、薯类等作物,经过加工生产出来的,淀粉也是人们赖以生存的粮食和生活必需品,长期以来粮食的短缺,越来越被世界所关注,中国是粮食大国,也是缺粮国,大量的淀粉用于造纸形成了极大的浪费和隐患。就瓦楞纸而言一吨纸需50-100公斤淀粉才行,全国高强瓦楞纸2000万吨产量计,每年所消耗的淀粉1-2亿吨。因此寻找一种能够替代淀粉的产品刻不容缓。并且使用淀粉进行表面施胶时也因为其粘度较差、成膜性及抗水性,也不能满足要求,因此开发一种能够完全替代淀粉又能比淀粉增强效果更明显,抗水性更好的产品意义重大。 发明内容 为了解决以上纸浆造纸技术领域淀粉施胶剂造成的粘度高、资源浪费、施胶剂效果差的问题,本发明提供了一种提高纸张的表面强度和物理指标,也能节约粮食、降低生产成本,粘度低、施胶效果好的造纸行业替代淀粉的复合表面施胶剂。 本发明还提供了所述复合表面施胶剂的制备方法, 本发明是通过以下措施实现的: 一种造纸行业替代淀粉的复合表面施胶剂,原料重量配比如下: 400目以上的滑石粉:20-40份, 400目以上的轻质碳酸钙:15-30份, 500目以上的云母粉:10-20份, 400目以上的高岭土:10-20份, 200目以上的钙基膨润土:20-40份,

表面施胶

在经过浆内施胶或未经浆内施胶的纸或纸板表面上,涂布均整的薄层胶料,取得憎液性能。 表面施胶能改进纸张的物理强度、耐擦性能、耐久性能、手感性以及纸面平滑度,还能克服纸面起毛、掉粉等缺陷。 用于表面施胶的施胶剂主要有动物胶、淀粉、聚乙烯醇、甲基纤维素和羧甲基纤维素、石蜡胶等。 常用的表面施胶方法有槽法施胶、辊法施胶、压光施胶、烘缸施胶等。 1.平滑度和粗糙度的关系。平滑度和粗糙度都是通过空气通过纸张和密封面之间的空隙来 测量的,但这两者有什么区别?我们厂生产的涂布纸与进口纸相比,平滑度差不多,甚至较低,但粗糙度小,有什么方法在不降低平滑度的情况下提高粗糙度? 2.纸张一般都是浆内和表面共同施胶,在测施胶度有可勃值,渗透施胶,划线法,接触角。 这几种方法有什么区别,如何真实的反映纸张的纤维表面能与空隙率?有什么方法能分别测出表面施胶和浆内施胶的大小?在中性施胶中,分别用AKD与ASA施胶的纸张性能有什么差别? 3.填料的种类对纸张的伸缩率有什么影响吗? 1.关于第一个问题,过去没有考虑过。不过我想在纤维品种和蒸解度(硬度)相同的情况 下,纸张的粗糙度和平滑度应该是有一定关系的,即平滑度越高,粗糙度越小,但是同种纸张如果采用了不同的纤维原料或者同种纤维原料,蒸解度不同,则它们的粗糙度和平滑度的关系不一定是同一根曲线。我想您厂生产的涂布纸与进口纸有区别,原因可能在此。我不知道您为什么要提高纸张的粗糙度?如果您确实需要在现有平滑度的基础上来提高(或降低)粗糙度,您不妨试试改变原料和改变蒸解度的办法,看是否有效。 2.这四种方法是采用不同方式用以表示纸张抗水的能力。其中渗透施胶法和划线法,操 作快而简便,由于是用目测,准确度稍微差一些,但在车间化验室采用这种方法,便于及时发现问题,及时修改工艺条件,可以使损失降至最低。用接触角法,准确度高,并能真实地反映纸张的纤维表面能,但需要较复杂的仪器。用可勃值法也能真实地反映纸张的抗水能力,操作虽然比渗透施胶法和划线法麻烦一些,时间要长一些,但总的说来,操作还算比较容易,所需时间也不算太长,因而在国内外,目前大多采用这种方法来测定施胶度。 3.您可以将准备施胶的浆料分成一式两份,先进行内施胶,抄成纸片,测定其中一张纸 片的施胶度,将另一张纸片,再进行表面施胶,再测定其施胶度,这样您就可以知道表面施胶所起的效果。 4. ①AKD与纤维素和水的反应相对较慢,熟化时间较长,产品下机后需放置数日才 能达到其应有的施胶度,生产上不易控制所需的施胶度,而ASA与纤维素和水的反应速度极快,无须熟化时间,施胶度较易控制。②用AKD可以制得重施胶的纸,产品可以达到憎热水、抗油脂和乳酸的要求,而ASA不可能制得重施胶的纸,也不抗油脂和乳酸,只能达到一般纸的防水性能。③当产品的水分过高、或贮存温度过高、或碳酸钙中含有游离Ca(OH)2,残余的AKD会产生水解作用,造成施胶逆转,纸张中残余的ASA在遇到产品水分过高、或贮存温度过高时,也会产生水解作用,水解物呈褐色油状

天然表面活性剂多来自动植物体

天然表面活性剂应用 姓名:高海宾、学号:092736 摘要:天然表面活性剂在生活中,应用非常广泛,是化工生产产品中不可缺少的一部分,在科学领域有十分重要的应用价值。天然表面活性剂是工业生产向前发展的加速剂,有着巨大的商业价值。 关键字:天然表面活性剂 天然表面活性剂多来自动植物体,为较复杂的高分子有机物。由于其亲水性强,因而能形成乳浊液。而这类物质多有较高的粘度,有益于乳化稳定性。如卵磷脂、胆甾醇、羊毛脂、茶皂素、蛋白质、皂苷类、糖类及烷基多苷等。此类表面活性剂一般表面张力能力较小,乳化能力也不尽相同。但有的具有较强的表面活性,如茶皂素、烷基多苷等,去污活性强,可直接应用于洗澡用品、洗发制剂。而大多数天然表面活性剂具有优良的乳化性能,且具有其他方面的特性和功能,在医药、食品、化妆品及洗涤用品等方面应用广阔。这类表面活性剂多数无刺激、无毒副作用,安全性能高,易生物降解,配伍性能好。是未来表面活性剂的发展方向,特别是在日化产品中有着广阔的应用前景。 1、卵磷脂 卵磷脂存在于生物细胞中,如动物卵、脑等组织及植物的种子或胚芽中,卵黄磷脂从蛋黄中提取;大豆中含有丰富的卵磷脂。卵磷脂具有乳化、分散、抗氧化等生理活性,是天然优良的表面活性剂,重要的乳化剂。其具有多种功能:①能参与细胞的代谢,活化细胞,有抗衰老功能;②对细胞有渗透和调节作用,可软化和保护皮肤;③可改善油脂的润湿和辅展性能,多用以调节、护理头发、皮肤化妆品等;④具有良好的成膜性能,可改善洗涤剂对皮肤的脱脂作用;⑤预防和治疗湿疹及多种皮肤病;⑥促进毛发生长,有护发健发作用;⑦具有香料和色素的分散稳定作用;⑧维持制剂乳液的稳定作用。卵磷脂具有双亲结构,即较长的两个酰基在甘油中进行酯结合形成亲油结构,以磷酸基为媒介而结合的季铵基亲水结构。在水中分散的时候,很明显地形成有稳定的二分子膜结构的磷脂质小细胞体(脂肪体)。这种脂肪体可以在医药品方面作药物的载体。因此卵磷脂可广泛应同于护肤护发、浴用及美容化妆品中。需要指出的是:在化妆品工业中卵磷脂作为主表面活性剂使用的例子非常之少。主要原因是磷脂成分的不确定性。天然的卵磷脂源于蛋黄和大豆,其磷脂质组成大不相同,乳化性能等也不相同,乳化剂用量和乳化技术难以掌握。另外的原因是天然卵磷脂中含有不饱和脂肪酸,存在耐热、耐光、耐酸性差等缺点。但近年开发了一些新的乳化方法和新的使用技术,上述问题逐步被克服。例如加氢的卵磷脂的稳定性比较好,广泛用作保湿剂和乳化剂。随着精制技术的发展,高纯度的卵磷脂已经制备出来。 2、胆甾醇 胆甾醇亦称胆固醇。存在动物大脑及神经组织,及羊毛脂与卵黄中。是一种天然乳化剂。其分子结构的特征,疏水基作用力强,所以适宜于油溶

AKD如何施胶剂的技术

AKD如何施胶剂的技术 施胶是造纸的重要工艺过程之一,通过施胶可赋予纸和纸板一定的抗液性,防止或延缓某些液体对纸页纤维的渗透和扩散,以满足人们的加工和使用要求。随着施胶剂和其应用技术的不断发展,人们在利用化学合成的方法开发新的高效施胶剂上取得了历史性突破,开发出新型施胶剂AKD,这种可同纤维素应的施胶剂可在中/碱性条件下施胶,可用CaCO3作填料,满足了某些特种纸和高档纸的要求,因而得到了迅速发展。 1AKD施胶机理 AKD是英文AlkylKeteneDimer的缩写,其成分为烷基烯酮二聚体,AKD和其它施胶剂一样也有疏水和亲水两种基团,在施胶过程中都有留着,均匀分布,转向定位与纤维素成键结合的过程。不同的是,加到纸料中的AKD乳液粒子由于自身带正电荷,并借助阳离子淀粉和PAM等助留剂的作用留着在带负电荷的湿纸纤维之间;在纸机的压榨和干燥过程中,这些球状的AKD粒子,由于熔点低,很易在纤维表面扩展分布,形成均匀的覆盖膜﹔在随后的纸页进一步干燥和下机贮存的一段时间,AKD分子上的活性基(内酯环)在适宜的条件下和纤维素上的羟基发生酯化反应,以牢固的共价键形式结合在纤维素大分子上,疏水的长链烷基转向纸面,从而使纸页获得一定的抗液体渗透和扩散的性能。 作为AKD胶乳的使用,要获得满意的施胶效果,使胶料留着在湿纸页中是关键,首程留着率要控制在75%-85%以上,其次是要提供使AKD与纤维形成共价键结合的条件。 2AKD胶乳使用前的检测 AKD胶乳的质量主要取决于AKD蜡的质量,取决于乳化剂,乳化工艺和设备及存放的时间和条件。为保证抄纸生产的正常进行,在使用前还可用下述简便的方法了解乳液的质量情况。 2.11000ml量桶装满水,滴入一滴AKD乳液,观察其在量桶中的分散情况,如液滴在量桶中缓慢下沉并逐渐扩散,最后均匀地分散在水中,说明这种乳液质量较好(分散得越快,质量越好),如果乳液不分散或分散成几块直线下沉至桶底或上浮,表明该乳液已严重变质。 2.2上下振荡摇晃,AKD乳液产生的气泡能很快自行消除,若不消除说明乳液稳定性变差。 一般来说,如乳液出现增稠、分层、絮聚现象,乳液就不能再使用了,如乳液产生泡沫,经晃动容器壁上仍附有AKD细小颗粒时,乳液的施胶效果将会下降。 3AKD乳液的储存 AKD乳液应贮存在阴凉的库房里,避免阳光直射照晒。其最佳贮存在温度为5~25℃,不得放在高于32℃下长时间存放。由于是乳液,一旦结冻不能恢复原状,所以在冬季,应将其存放在保温的库房中切勿使其冻结。

高分子表面活性剂及其应用

高分子表面活性剂就是指分子量达到某种程度以上(即分子量一般为103~106),又具有一定表面活性的物质[1-10]。从结构上可分为嵌段共聚物、接枝共聚物等。高分子表面活性剂若按离子类型划分,可分为阴离子型、阳离子型、两性离子型和非离子型四大类;按来源划分,可分为天然高分子表面活性剂、天然改性高分子表面活性剂及合成高分子表面活性剂[11]。跟低分子表面活性剂相比,高分子表面活性别的主要特性[12]是:(1)具有较小的降低表面张力和界面张力的能力,大多数高分子表面活性剂不形成胶束;(2)具有较高的分子量,渗透力弱;(3)形成泡沫能力差,但所形成的泡沫都比较稳定;(4)乳化力好;(5)具有优良的分散力和凝聚力;(6)大多数高分子表面活性剂是低毒的。 最早使用的高分子表面活性剂有淀粉、纤维素及其衍生物等天然水溶性高分子化合物[13],它们虽然具有一定的乳化和分散能力,但由于这类高分子化合物具有较多的亲水性基团,故其表面活性较低。高分子表面活性剂的开发始于1950年。1951年,Ceresa合成了双亲嵌段聚合物-聚环氧乙烷聚环氧丙烷嵌段聚合物,将其应用于表面活性剂工业。同年Stauss合成了聚皂,1954年第一种商品化高分子表面活性剂问世[14],此后各种合成高分子表面活性剂相继开发并应用于各种领域。1954年美国Wyandotte公司发表了环氧乙烷和环氧丙烷嵌段共聚物Pluronic系列产品。此后,世界上很多国家开始了高分子表面活性剂的研究工作。1961年Strauss合成了名为聚皂的高分子表面活性剂[15-17]。随后,氧化乙烯、氧化丙烯嵌段井聚物[18]被作为非离子型表面活性剂实现了工业化生产。与常用的低分子表面活性剂相比降低表面张力的能力较差,成本偏高,始终未能占据表面活性剂领域的优势地位。近十余年来,由于能源工业(强化采油、燃油乳化、油/煤乳化)、涂料工业(无皂聚合、高浓度胶乳)、膜科学(仿生膜、LB膜)的需要,高分子表面活性剂有了新的进展,得到了性能良好的氧化乙烯-硅氧烷共聚物、乙烯亚胺共聚物、乙烯基醚共聚物、烷基酚-甲醛缩聚物-氧化乙烯共聚物等品种。 很长一段时间以来,在有关表面活性剂的专著中,仅将聚氧丙烯、聚氧乙烯共聚物归于高分子表面活性剂范畴,而其它聚合物未被列入。原因是其它水溶性聚合物不大能大幅度降低溶液的表面张力。但是,近代大量研究表明:这些高聚物在界面之上,特别在固-液界面上有强烈的吸附作用说明它们有极强的界面活性。因此,近十几年来,人们把通过界面吸阴而产生各种作用的一系列可溶性高分子,都作为高分子表面活性剂加以研究和开发。与低分子表面活性剂相比,高分子表面话性剂具有溶液粘度高,成膜性好的优点,是一类在石油开采和涂料工业中有着巨大应用前景的聚合物材料,在仿生膜中亦有着广泛的应用,目前已成为化学、化工、石油、医学、材料、生命科学等[19-20]相互交叉研究的对象。 1.2 高分子表面活性剂的特性功能[21-23] 1.2.1 表面张力 因为高分子表面活性剂的亲水链段和疏水链段在表面或界面间具有一定的取向性,所以具有降低表面张力和界面张力的能力,但往往比低分子表面活性差一些。 高分子表面活性剂降低表面张力的能力不如低分子表面活性剂,且表面活性随着分子量提高而急剧下降。 徐坚从表面活性的分子机理出发,分析了聚合物的化学结构、溶液分子形态与表面活性的关系,提出高分子表面活性剂形成完整的单分子和多分子胶束是导致其表面活性变差的最主要原因,遏制聚合物的疏水组分的缔合,将有效地提高其表面活性。 1.2.2 乳化分散功能 尽管分子量较高,有许多高分子表面活性别能够在分散相中形成胶束,并且具有CMC值,发挥乳化功能,由于具有两亲结构,其分子的一部分可吸附在粒子表面,其它部分则溶于作

造纸辅料用途-大全

硫酸铝: 有关硫酸铝通常大家知道,硫酸铝首先有调节PH值的作用,要保障表胶液呈酸性,阳离子表面施胶剂才会起作用;其次,硫酸铝还有中和纸张表面阴离子垃圾的作用。 今天,做了一个小实验,发现了硫酸铝的第三个作用,就是可以提高淀粉表胶的抗水性实验很简单, 1、用淀粉液不加硫酸铝,直接涂布到瓦楞纸上; 2、用淀粉液加硫酸铝后,涂布到同样的瓦楞纸上;烘干,并稳定2小时后,检测COBB60: 1)没有施胶的瓦楞纸,吸水值180; 2)只用淀粉施胶的瓦楞纸,吸水值150; 3)用淀粉和硫酸铝施胶的瓦楞纸,吸水值110; 另外,用目测和手感,加过硫酸铝的表胶纸,挺度和光泽度较好,说明铝离子阳电荷与淀粉链的阴电荷彼此间有结合的作用,铝离子搭桥使淀粉链成网状结构,提高了淀粉膜的抗水作用。在运行条件没有改变的前提下,纸页莫名地增加断头,添加硫酸铝或排放和更换白水池白水,是解决问题的首选方法。 原理有二: 1、是减少或减低白水中的阴离子杂质含量,降低上网浆水的粘度,提高浆料上网滤水速度,从而提高纸页过伏辊,过压榨棍和过缸的干度,增加纸页的湿强度,从减少纸页断头。 2、是三价铝离子的与纤维产生正电荷吸附,并与水中阴离子结合,以及搭桥结合细小纤维,使纸页在成型过程中提高纤维之间的空隙率,提高纸页的滤水速度,增加提高白水的清洁度,从而减少纸机运行的流程清理故障 在没有确定情况下,先把纸带过去了再来找原因,我做的理由是: (1)、硫酸铝带正电荷,纤维带负电荷,增加细小纤维及填料的留着,加快网部脱水,提高干度。 (2)、硫酸铝,有清理阴离子垃圾的作用。 (3)、硫酸铝对压榨粘辊有明显的改善作用。 (4)、抄造新闻纸,硫酸铝可以起到抑制树脂的作用。 表胶加少了环压低硫酸铝加少了吸水性不行就看你们流送加不加干强剂明矾了还有烘干部的刮刀需要经常抽~纸毛要经常清理~最重要的是单挂上面的贴干网正面的导棍上不能有胶粘物不行就停下来铲干净再看改造加个刮刀上面去要不然加个气管开着吹我现在的厂车速650一个班看情况不行就花个10分钟吹下,我能保持12个小时不断头; 1、硫酸铝配合表胶使用是的加入点?以及二者的加入量? 2、AKD也可用来做表胶,从成本的角度考虑,能不能烦请高手给做个比较? 3、膜转移施胶和浸泡式施胶的区别优劣? 1)硫酸铝的主要作用是中和阴离子垃圾,因此,其加入点要放在回流液的后面,或者是上胶泵的前面。硫酸铝加量多少,主要取决于回流液的阴离子垃圾的数量,可以用仪器检测。高施胶度纸,用硫酸铝也可加强淀粉膜的密度。 2)AKD可以用来做表胶,但不能做高施胶度纸张,主要是“打滑”问题。 3)膜转移施胶的优势,是可以节约后段烘缸的蒸汽消耗;同时,膜转移施胶可以适应高速纸机的速度要求;膜转移施胶适合涂布白板纸以及箱板纸,不适合瓦楞纸。 瓦楞纸,只有两种施胶,第一是浆内施胶,第二是浸泡式施胶,而且浸泡式施胶用苯乙烯丙烯酸类表胶,可以达到任意施胶度,是高施胶度纸张的最佳选择。 浸泡式施胶最适合制造瓦楞纸、其次是箱板纸,用于涂布白板纸会增加蒸汽成本。 淀粉如果不加硫酸铝,排列疏松,不抗水,但韧性好。但硫酸铝加太多,淀粉排列太紧密,虽更抗水,但会导致淀粉薄膜发脆。通常按照120克重纸计算,吨纸硫酸铝溶液加量2-3公斤较好。当然,在浆内加硫酸铝,会减少表胶淀粉的硫酸铝,因此,阳离子需求量不高于300为宜。浆内加硫酸铝稍多些,不至于纸张发脆。强阳离子表胶对硫酸铝的依赖小。阴离子表胶对硫酸铝依赖最大。 两种表胶一种适合浸泡式施胶,另一种适合膜转移施胶。浸泡式的,4600/500米车速,我们最低可用到1公斤(冬天),1.3(公斤); 膜转移的表胶,不同纸机条件有差异,加量不同,大致在1.8公斤到2.5公斤范围。一般硫酸铝是为了表胶施胶时调节淀粉PH值时添加的,有些表胶是阳性的需要在酸性条件下使用,简单来说就是为酸性施胶提供施胶条件 硫酸铝是造纸中不可替代的助剂之一: 1)本质上,主要利用其三价铝的阳离子性,同时价廉物美; 2)中和阴离子垃圾; 3)调节PH值,保障阳离子助剂发挥最大的作用; 4)为淀粉和纤维架桥,使淀粉的留住率提高,并提高其与纤维的结合力;其副作用是,存在游离酸,会与纤

相关主题