搜档网
当前位置:搜档网 › 点焊基本原理

点焊基本原理

点焊基本原理
点焊基本原理

点焊基本原理

1.1 点焊接头的形成

电阻点焊原理和接头形成如图1所示。可简述为:将焊件3压紧在两电极2之间,施加电极压力后,阻焊变压器1向焊接区通过强大的焊接电流,在焊件接触面上形成真实的物理接触点,并随着通电加热的进行而不断扩大。塑变能与热能使接触点的原子不断激活,消失了接触面,继续加热形成熔化核心4,简称熔核。熔核中的液态金属在电动力作用下发生强烈搅拌,熔核内的金属成分均匀化,结合界面迅速消失。加热停止后,核心液态金属以自由能最低的熔核边界半熔化晶粒表面为晶核开始结晶,然后沿与散热相反方向不断以枝晶形式向中间延伸。通常熔核以柱状晶形式生长,将合金浓度较高的成分排至晶叉及枝晶前端,直至生长的枝晶相互抵住,获得牢固的金属键合,接合面消失了,得到了柱状晶生长较充分的焊点,如图2所示。或因合金过冷条件不同,核心中心区同时形成等轴晶粒,得到柱状晶与等轴晶两种凝固组织并存的焊点,如图3所示。同时,液态熔核周围的高温固态金属,在电极压力作用下产生塑性变形和强烈再结晶而形成塑性环①〔注:塑性环(corona bond)熔核周围具有一定厚度的塑性金属区域称为塑性环,它也有助于点焊接头承受载荷〕,该环先于熔核形成且始终伴随着熔核一起长大,如图4所示。它的存在可防止周围气体侵入和保证熔核液态

金属不至于沿板缝向外喷溅。

熔核凝固组织为全部柱状晶者,以65Mn熔核为例,其形成过程模型如图5所示。图中:

图5a 凝固前,在熔合线上(固-液相界面)有许多晶粒处于半熔化状态,显然熔核的液态金属能很好的润湿取向不同的半熔化晶粒表面,为异质成核进行结晶提供了有利条件。

图5b 液态熔核的温度降低时,由于成分过冷较大,以半熔化晶粒作底面沿<100>向长出枝晶束。

在电极与母材的急冷作用下,凝固界面前形成较大的温度梯度,因而使枝晶主干伸入液体中较远,枝晶生长很快,枝晶臂间距H与冷却速度V间存在以下关系。

一次枝晶臂间距H1∝V-?

二次枝晶臂间距H2∝V-(?~?)

由于薄件脉冲点焊熔核尺寸小,电极与母材的急冷作用强,液体金属的冷却速度极快,因此枝晶臂的间距甚小。

图5c 枝晶继续生产、凝固层向前推进,液体向枝晶间充填。

枝晶间的液体逐渐向枝晶上凝固,使枝晶变长变粗,靠近母材处由于温度低,液体向枝晶上凝固快,以至形成连续的凝固层。由于65Mn合金具有较宽的凝固温度范围,故凝固层呈锯齿形起状,由于晶界在凝固层内形成,这就造成柱状

晶A段表面呈平坦的形貌。

越向熔核内部,温度梯度越小,液体向枝晶上凝固越少,使向前推进的凝固层界面起伏更大。

倾斜生长的枝晶束被与最大温度梯度一致的枝晶束(这类枝晶束生产较快)所阻碍而半途停止。

当一次枝晶晶臂间距过大时,则从二次枝晶晶臂上可以长出三次臂来,这个三次臂可赶上一次臂而成为其中的一个。

液体金属凝固时产生的体积收缩和毛吸现象,均引起熔核内液态金属向正在凝固的枝晶间充填。

图5d 凝固即将结束,剩余液体金属不足以完全充填枝晶间隙,未被液体充满的枝晶将暴露在前沿,而枝晶间将留下空隙,这些空隙即将成为缩松。

图5e 具有缩松缺陷的熔核柱状组织断口形貌示意图。

图5f 优质接头的熔核柱状组织断口形貌示意图。

图2显示的65Mn钢点焊熔核断口形貌表明,熔核由粗大柱状晶组织组成。粗大柱状晶的内部微观结构为一枝晶束,在缩松处清晰可见。

熔核凝固组织为“柱状+等轴”晶者,以2A12-T4熔核为例,其形成过程模型如图6所示。图中:

图1-6a 凝固前,熔合线上许多晶粒处于半熔化状态,液态金属能很好的润湿取向不同的半熔化晶粒表面,为异质成核结晶提供了有利条件。

图6b 液态熔核的温度开始降低,熔合线处液态金属首先处于过冷状态,结果以半熔化晶粒作底面沿<100>向(2A12-T4铝合金金属立方晶系)长出枝晶束(枝晶束形貌见图7)。某些枝晶发生二次晶轴的熔断、游离和向熔核中心运送。

图6c 枝晶继续生长,锯齿形的连续凝固层向前推进,液体向枝晶间充填,使枝晶粗化;与热流方向倾斜的枝晶束生长受阻,枝晶间距自动调整。

更多的枝晶二次晶轴发生熔断、游离并被排挤到熔核心部;由于枝晶前沿液体金属的温度梯度逐渐变缓和溶擀浓度的不断提高,均使等轴晶核在熔核心部增殖,个别晶核以树枝晶形态生长。

图6d 液态金属成分过冷越来越大,大量的等轴晶核以树枝晶形态迅速长大,彼此相遇(等轴树枝状晶群形貌见图8),以及与柱状晶的枝晶束相遇后呈现互相阻碍。

凝固即将结束,当剩余液体金属不足以完全充填枝晶间隙时,即将形成缩松缺陷。

图6e 具有缩松缺陷的熔核“柱状+等轴”组织断口形貌示意图。

图6f 优质接头的熔核“柱状+等轴”组织断口形貌示意图。

图3显示的铝合金点焊熔核断口形貌表明,熔核由粗大柱状晶组织和粗大等轴晶组织共同组成。粗大柱状晶的内部微观结构为一枝晶束,粗大等轴晶的内部微观结构为若干个等轴树枝状晶紧密结成一团。

1.2 点焊的热源及加热特点

1. 点焊的热源

电阻点焊的热源是电流通过焊接区(图9)产生的电阻热。根据焦耳定律,总析热量Q为

(1)

式中i——焊接电流的瞬时值,是时间的函数;

rc——焊件间接触电阻的动态电阻值,是时间的函数;

2rcw——电极与焊件间接触电阻的动态电阻值,是时间的函数;

2rw——焊件内部电阻的动态电阻值,是时间的函数;

t——通过焊接电流的时间。

2. 电流对点焊加热的影响

焊接电流是产生内部热源——电阻热的外部条件。从式(1)可知,电流对析热的影响比电阻和时间两者都大,它通过如下二个途径对点焊的加热过程施加影响。

点焊焊接参数及其相互关系

点焊焊接参数及其相互关系 1. 点焊焊接循环 焊接循环(welding cycle),在电阻焊中是指完成一个焊点(缝)所包括的全部程序。图19是一个较完整的复杂点焊焊接循环,由加压,…,休止等十个程序段组成,I、F、t中各参数均可独立调节,它可满足常用(含焊接性较差的)金属材料的点焊工艺要求。当将I、F、t中某些参数设为零时,该焊接循环将会被简化以适应某些特定材料的点焊要求。当其中I1、I3、F pr、F fo、t2、t3、t4、t6、t7、t8均为零时,就得到由四个程序段组成的基本点焊焊接循环,该循环是目前应用最广的点焊循环,即所谓“加压-焊接-维持-休止”的四程序段点焊或电极压力不变的单脉冲点焊。 2. 点焊焊接参数 点焊焊接参数的选择,主要取决于金属材料的性质、板厚、结构形式及所用设备的特点(能提供的焊接电流波形和压力曲线),工频交流点焊在点焊中应用最为广泛且主要采用电极压力不变的单脉冲点焊。 (1)焊接电流I焊接时流经焊接回路的电流称为焊接电流,一般在数万安培(A)以内。焊接电流是最主要的点焊参数。调节焊接电流对接头力学性能的影响如图20所示。

AB段曲线呈陡峭段。由于焊接电流小使热源强度不足而不能形成熔核或熔核尺寸甚小,因此焊点拉剪载荷较低且很不稳定。 BC段曲线平稳上升。随着焊接电流的增加,内部热源发热量急剧增大(Q∝I2),熔核尺寸稳定增大,因而焊点拉剪载荷不断提高;临近C点区域,由于板间翘离限制了熔核直径的扩大和温度场进入准稳态,因而焊点拉剪载荷变化不大。 CD段由于电流过大使加热过于强烈,引起金属过热、喷溅、压痕过深等缺陷,接头性能反而降低。 图20还表明,焊件越厚BC段越陡峭,即焊接电流的变化对焊点拉剪载荷的影响越敏感。 (2)焊接时间t 自焊接电流接通到停止的持续时间,称焊接通电时间,简称焊接时间。点焊时t一般在数十周波(1周波=0.02s)以内。焊接时间对接头力学性能的影响与焊接电流相似(图21)。但应注意二点: 1) C点以后曲线并不立即下降,这是因为尽管熔核尺寸已达饱和,但塑性环还可有一定扩大,再加之热源加热速率较和缓,因而一般不会产生喷溅。 2) 焊接时间对接头塑性指标影响较大,尤其对承受动载或有脆性倾向的材料(可淬硬钢、铝合金等),较长的焊接时间将产生较大的不良影响。

电阻点焊方法和工艺.

点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。

在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a,也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b.后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X 光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。

点焊方法和工艺

点焊方法和工艺 点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b 为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。 三、不等厚度和不同材料的点焊 当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一边偏移,偏移的结果将使薄件或导电、导热性好的工件焊透率减小,焊点强度降低。熔核偏移是由两工件产热和散热条件不相同引起的。厚度不等时,厚件一边电阻大、交界面离电极远,故产热多而散热少,致使熔核偏向厚件;材料不同时,导电、导热性差的材料产热易而散热难,故熔核也偏向这种材料(见图11-8) 调整熔核偏移的原则是:增加薄板或导电、导热性好的工件的产热而减少其散热。常用的方法有: (1)采用强条件使工件间接触电阻产热的影响增大,电极散热的影响降低。电容储能焊机采用大电流和短的通电时间就能焊接厚度比很大的工件就是明显的例证。

钣金件点焊参数标准(DOC)

钣金件点焊参数标准 核准: 审核: 会签: 制定:付强红 发布日期:2011/07/06 海宁红狮宝盛科技有限公司发布

1.目的: 规范点焊过程参数不确定性及标准的不明确性,同时规范和明确焊接的使用,判定及检测方法,保证公司产品的焊接质量,并加以规定,以便检查工作的顺利进行和实施 2.范围: 适用部门:技术、生产部焊接及公司其它涉及焊接的车间;公司所生产的所有需点焊产品,但是有特殊要求的产品除外 适用客户:公司所生产的所有需点焊产品,如 BE,WINCOR 及其他客户,但是有特殊要求的产品除外. 3.引用标准: 1.BE PS-01-01_03 Welding焊接标准 2.国内点焊标准 3.国内点焊接检测方法 4.点焊参数规格及标准 电阻点焊(resistance spot welding),简称点焊。是焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊是一种高速、经济的重要连接方法,适用于制造可以采用搭接、接头不要求气密、厚度小于3mm的冲压、轧制的薄板构件。当然,它也可焊接厚度达6mm或更厚的金属构件,但这时其综合技术经济指标将不如某些熔焊方法。 如下为焊接参数规格及标准参考表: 1.点焊通常采用搭接接头或折边接头(图1).接头可以由两个或两个以上等厚度或不等厚度、相同材料或不相同材料的零件组成,焊点数量可为单点或多点.在电极可达性良好的条件下,接头主要尺寸设计可参见表1、表2和表3。 图1

2.焊前工件表面清理 点焊、凸焊和缝焊前,均需对焊件表面进行清理,以除掉表面脏物与氧化膜,获得小而均匀一致的接触电阻,这是避免电极粘结、喷溅、保证点焊质量和高生产率的主要前提.对于重要焊接结构和铝合金焊件等,尚需每批抽测施加一定电极压力下的两电极间总电阻R,以评定清理效果,一般情况下可由清理工艺保证。清理方法可有二类:机械法清理,主要有喷砂、刷光、抛光及磨光等;化学清理用溶液参见表5,也可查阅相关熔焊资料。 3、常用金属材料的点焊 判断金属材料点焊焊接性的主要标志:①材料的导电性和导热性,即电阻率小而热导率大的金属材料,其焊接性较差; ②材料的高温塑性及塑性温度范围,即高温屈服强度大的材料(如耐热合金)、塑性温度区间较窄的材料(如铝合金),其焊接性较差;③材料对热循环的敏感性,即易生成与热循环作用有关缺陷(裂纹、淬硬组织等)的材料(如65Mn),其焊接性较差;④熔点高、线膨胀系数大、硬度高等金属材料,其焊接性一般也较差。当然,评定某一金属材料点焊焊接性时,应综合、全面地考虑以上诸因素。 3.1 低碳钢的点焊(表6)

电阻焊基本知识及操作要求

电阻焊基本知识及操作要求 一.电阻焊 1.1 电阻焊概念: 将被焊工件置于两电极之间加压,并在焊接处通以电流,利用电流流经工件接触面及其临近区域产生锝电阻热将其加热到熔化或塑性状态,使之达到金属结合而形成牢固接头的工艺过程。 1.2 电阻焊设备 是指采用电阻加热的原理进行焊接操作的一种设备,它主要由以下部分组成: ①焊接回路:以阻焊变压器为中心,包括二次回路和工件。 ②机械装置:由机架、夹持、加压及传动机构组成。 ③气路系统:以气缸为中心,包括气体、控制等部分 ④冷却系统:冷却二次回路和工件,保证焊机正常工作。 ⑤控制部分:按要求接通电源,并能控制焊接循环的各段时间及调整焊接电流等。 常见的手工点焊焊钳有X型、C型及特制型等,X型、C型结构示意图如下:

注:X型焊钳主要用来焊接水平或基本处于水平位置的工件; C型焊钳主要用来焊接垂直或近似垂直位置的工件;而特制焊钳主要用来焊接有特殊位置或尺寸要求的工件。 1.3 电阻点焊操作注意事项: ①焊接过程中,在电极与工件接触时,尽量使电极与工件接触点所在的平面保持垂直。(不 垂直会使电极端面与工件的接触面积减小,通过接触面的电流密度就会增大,导致烧穿、熔核直径减小、飞溅增大等焊接缺陷。) ②焊接过程中,应避免焊钳与工件接触,以免两极电极短路。 ③电极头表面应保证无其它粘接杂物,发现电极头磨损严重或端部出现凹坑,必须立即更 换。(因为随着点焊的进行,电极端面逐渐墩粗,通过电极端面输入焊点区域的电流密度逐渐减小,熔核直径减小。当熔核直径小于标准规定的最小值,则产生弱焊或虚焊。 一般每打400∽450个焊点需用平锉修磨电极帽一次,每个电极帽在修磨9∽10次后需更换。) ④定期检查气路、水路系统,不允许有堵塞和泄露现象。 ⑤定期检查通水电缆,若发现部分导线折断,应及时更换。 ⑥停止使用时应将冷却水排放干净。 1.4 电阻焊的优缺点 电阻焊的优缺点(表1)

点焊基本原理

点焊基本原理 1.1 点焊接头的形成 电阻点焊原理和接头形成如图1所示。可简述为:将焊件3压紧在两电极2之间,施加电极压力后,阻焊变压器1向焊接区通过强大的焊接电流,在焊件接触面上形成真实的物理接触点,并随着通电加热的进行而不断扩大。塑变能与热能使接触点的原子不断激活,消失了接触面,继续加热形成熔化核心4,简称熔核。熔核中的液态金属在电动力作用下发生强烈搅拌,熔核内的金属成分均匀化,结合界面迅速消失。加热停止后,核心液态金属以自由能最低的熔核边界半熔化晶粒表面为晶核开始结晶,然后沿与散热相反方向不断以枝晶形式向中间延伸。通常熔核以柱状晶形式生长,将合金浓度较高的成分排至晶叉及枝晶前端,直至生长的枝晶相互抵住,获得牢固的金属键合,接合面消失了,得到了柱状晶生长较充分的焊点,如图2所示。或因合金过冷条件不同,核心中心区同时形成等轴晶粒,得到柱状晶与等轴晶两种凝固组织并存的焊点,如图3所示。同时,液态熔核周围的高温固态金属,在电极压力作用下产生塑性变形和强烈再结晶而形成塑性环①〔注:塑性环(corona bond)熔核周围具有一定厚度的塑性金属区域称为塑性环,它也有助于点焊接头承受载荷〕,该环先于熔核形成且始终伴随着熔核一起长大,如图4所示。它的存在可防止周围气体侵入和保证熔核液态

金属不至于沿板缝向外喷溅。 熔核凝固组织为全部柱状晶者,以65Mn熔核为例,其形成过程模型如图5所示。图中: 图5a 凝固前,在熔合线上(固-液相界面)有许多晶粒处于半熔化状态,显然熔核的液态金属能很好的润湿取向不同的半熔化晶粒表面,为异质成核进行结晶提供了有利条件。 图5b 液态熔核的温度降低时,由于成分过冷较大,以半熔化晶粒作底面沿<100>向长出枝晶束。 在电极与母材的急冷作用下,凝固界面前形成较大的温度梯度,因而使枝晶主干伸入液体中较远,枝晶生长很快,枝晶臂间距H与冷却速度V间存在以下关系。 一次枝晶臂间距H1∝V-? 二次枝晶臂间距H2∝V-(?~?) 由于薄件脉冲点焊熔核尺寸小,电极与母材的急冷作用强,液体金属的冷却速度极快,因此枝晶臂的间距甚小。 图5c 枝晶继续生产、凝固层向前推进,液体向枝晶间充填。 枝晶间的液体逐渐向枝晶上凝固,使枝晶变长变粗,靠近母材处由于温度低,液体向枝晶上凝固快,以至形成连续的凝固层。由于65Mn合金具有较宽的凝固温度范围,故凝固层呈锯齿形起状,由于晶界在凝固层内形成,这就造成柱状

点焊工艺

点焊培训资料 1.1点焊 利用电流通过圆柱形电极和搭接的两焊件产生电阻热,将焊件加热并局部熔化,形成一个熔核(其周围为塑性状态),然后在压力作用下熔核结晶,形成一个焊点。 1.2气动式交流点焊机 电极的运动和对焊件的加压,均由气路系统来实现,采用交流电,实现点焊功能的机械设备。 2设备结构 主要由机身、焊接变压器、压力传动装置、气路、水路系统、上下电极以及脚踏开关等部分组成。 2.1机身 机身用箱体式结构,全部结构件均由钢板折弯成型后焊接而成。该结构体积小、重量轻,能承受较大的冲击力,上悬臂安装加压传动装置及上电极部分,下悬臂安装有下电极部分,机身内部装有焊接变压器、进出水管、机身上面装有电磁气阀及气动三大件,机身下部的底脚上设有四个地脚安装孔,正常焊接时,必须装上4只 M10以上的地螺栓紧固后,方可使用。 2.2焊接变压器 焊接变压器为单相壳式结构,变压器的次级线圈由单只内置冷却铜水管的铸铜绕组组成,通过软铜带与上电极相联接,紫铜板与下电极相联接,焊接 1

变压器采用调节可控硅导通角来调节焊接变压器的初级电压,从而达到调节次级电压的目的,同时改变了焊接电流,适应不同的焊接规范,次级电压的调节范围,按焊接规范要求可连续可调。 2.3压力传动装置 压力传动装置主要由活塞、气缸、支承座与滑块下端与上电极部分相联,活塞杆与上电极连为一体,当活塞杆上下移动时,使上电极在支承座导轨内上下移动。气缸供气采用电磁气阀控制,推出或推进气缸右侧的行程插销,可调节二档上电极的工作行程。而三气室工作头则可在0~100mm行程范围内无级可调。 2.4气路系统 点焊机电极的运动和对焊件的加压,均由气路系统来实现,气路系统由带有气压表的减压阀和电磁阀等组成。从而达到控制上电极上下运动,电极压力的大小根据工件厚度和相应工艺规范确定。 2.5上下电极部分 电极部分由电极压块、电极座、端头、电极杆及电极头组成,电极压块内部通有冷却水,它的后端分别由软铜带和导电排与焊接变压器次级线圈相连接。电极杆紧固在电极臂与端头之间,凸焊机还带有上、下电极平台。与工件直接接触的上下电极头材料采用铬锆铜。 2.6冷却系统 点焊机在工作过程中会产生大量热量,需要循环水进行充分冷却,否则将严重影响焊接质量。 2

电阻焊接原理与电阻点焊过程四个阶段

电阻焊接原理与电阻点焊过程四个阶段 电阻焊虽然具有劳动条件好,不需另加焊接材料,操作简便,易实现机械化等优点;但也受到耗电量大、电极棒更换、被焊材料导电性能、适用的接头形式、以及可焊工件厚度(或断面尺寸)等因素的限制。 在动力电池的成组工艺中,电阻焊作为一种比较成熟的工艺,被在一些场合应用,比如单体与母排的焊接,电池极耳与并联导电条的连接等等。由于设备简单,成本较低,在电池行业发展早期,应用比较多。虽然近年有逐步被更先进的激光焊接和超声焊接替代的趋势……不管怎样,整理一份资料,了解一下这位成型工艺界的前辈。 电阻焊虽然具有劳动条件好,不需另加焊接材料,操作简便,易实现机械化等优点;但也受到耗电量大、电极棒更换、被焊材料导电性能、适用的接头形式、以及可焊工件厚度(或断面尺寸)等因素的限制。 电阻焊接原理 电阻焊(resistance welding)是把工件置于一定的电极力夹紧间,然后利用接电流通过件所析出的电阻热使被材料熔化,待冷却后形成可靠点的接方法。 电阻焊基本形式如下图所示,将即将接的材料 3 夹紧于两电极2 之间,在施加一定的接压力后,接变压器 1 在接区释放较大的电流,并持续一定的时间,直到件的接触面间出现了真实的接触点后,再继续加大接电流让熔核持续地生长,此时接材料接触位置的原子不断被激活后形成熔化核心4。 最后接变压器停止通电,被融化件材料遇冷凝固为点。利用电流流经工件接触面及邻近区域产生的电阻热效应将其加热到熔化或塑性状态,使之形成金属结合的一种方法。电阻焊方法主要有四种,即点、缝、凸、对。 电阻焊点的热源是电流通过接区产生的电阻热。电阻焊点时,电流通过件产生的热量可由下式确定: Q=I Rt

(完整版)各种材料点焊方法和工艺标准

第一章点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图1所示。图中1a是最常用的方式。这时,工件的两侧均有电极压痕。图中1b表示用大接触面积的导电板做下电极,这样可以消除或减轻下面工作的压痕,常用于装饰性面板的点焊。图1c为,同时焊接两个或多个焊点的双面点焊,使用一个变压器而将各电极并联。这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态,材料厚度、电极压力都必须相同,才能保证通过各个焊点的电流基本一致。图中1d为采用多个变压器的双面多点点焊,这样可以避免1c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电。典型的单面点焊方式如图2所示。图中2a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中2b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中2c 为有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成分流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中2d为当两焊点的间距l很大,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A与电极同时压紧在工件上。 图1不同形式的双面点焊

图2 不同形式的单面点焊 采用铜芯棒的点焊是单面点焊的特殊形一个点,也可焊两个点。这种形式特别适于点焊结构空间狭小,电极难于或根本不能接近的工件。图3a中的芯棒实际是一块几毫米厚的铜板。图3b、c是同类工件的两种结构,结构b不如结构c,因为前者通过工件2的分流,不经过两工件的接触面,会减少焊接区的产热,因而需要增大焊接电流,这样就会增加工件2与两电极间接触面的产热,并且可能使工件烧穿。当芯棒断面较大时,为了节约铜料和制作方便,可以在夹布胶木或硬木制成的芯棒上包覆铜板或嵌入铜棒(图3d、e)。 由于芯棒与工件的接触面远大于电极与工件的接触面,熔核将偏向与电极接触的工件一侧。如果两工件的厚度不同,将厚件置于芯棒接触的一侧,则可减轻熔核偏移程度。

02-中频焊接控制器原理(侧重电路原理)

1、中频焊接控制器基本原理 中频点焊焊接控制器的主要作用就是把工频三相电源转换为稳定的中频单 相电源,电压从380V(线电压380V,相电压220V,线电压倍的相电压)提高到514V(三相桥式整流,不包含滤波,输出电压为 1.35倍的线电压,即380*1.35=514V),频率从50Hz提高到1000Hz以上,再通过焊接变压器转换和整流,变成需要的直流电流供点焊焊接使用。上述原理称为中频逆变直流,其电路原理图如下图所示: 图1 中频逆变直流电路原理图(使用Protel DXP制图) 图1的电路中实现逆变的关键元件是IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),这种器件利用制作集成电路的方法,由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面优点。它可以承受高达数千伏的电压,并且可以控制高达数千安培的电流。

2、三相桥式整流基本原理 图2 三相桥式整流电路 首先分析整流电路,整流电路把三相交流电转变为直流电,就是由六个整流管组成的全波整流电路,三相全波整流电路如图2所示。一般三相全波桥式整流电路已经做成了集成化电路,成为一个固定电压、固定电流的三相全波整流块。它的输入端接上50Hz 、380V 线电压的三相交流电,它的输出端就会有整流后的直流输出。 为了分析整流电路的工作原理在图3中画出了三相的相电压的图(只体现三相电源各相之间的相角关系,未体现三相电频率)。作用在6个整流二极管上的电压是线电压,也就是ab a b u u u =-,bc b c u u u =-,ca c a u u u =-。这里线电压的波形相当于任意一瞬间1t 两个相电压相减。

4.点焊规范参数对熔核尺寸及接头机械性能的影响(1)

点焊规范参数对熔核尺寸及接头机械性能的影响 一、实验目的 (一)研究规范参数对于熔核尺寸及接头强度的影响; (二)掌握选择点焊规范参数的一般原则和方法; (三)了解熔核的形成过程; 二、实验装置及实验材料 (一)交流点焊机(DN——200型)1台 (二)电焊电流测量仪(HDB——1型)1台 (三)拉力试验机(LJ——5000型)1台 (四)测量显微镜(15J型)4台 (五)砂轮切割机1台 (六)吹风机1台 (七)试片150×25×1.5mm,冷轧低碳钢140对 三、实验原理 电阻点焊是将准备焊接的工件放在两个电极之间,然后利用电极压紧工件,在点击压力的作用下通过焊接电流,利用工件自身电阻所产生的焦耳热来加热金属,并使焊接区中心部位的金属熔化,形成熔核。断电后,在电极压力的作用下,受热熔化的金属冷却结晶,形成焊点核心。在形成熔核的同时,熔核周围金属也被加热到高温,在点击压力作用下产生塑性变形及强烈的再结晶过程,并在结合面上形成共同晶粒。熔核周围这一环形塑性区称为塑性环;它也有助于点焊接头承受载荷。由此可知,电焊工艺过程是被焊金属受到热和机械力共同作用的过程,而施加焊接压力和通以焊接电流时形成点焊接头的基本条件。电阻焊具有生产效率高、低成本、节省材料、易于自动化等特点,因此广泛应用于航空、航天、能源、电子、汽车、轻工等各工业部门,是重要的焊接工艺之一。 (一)焊接热的产出及影响因素 点焊时产生的热量由下式决定:Q=IRt(J)(1) 式中:Q——产生的热量(J)、I——焊接电流(A)、R——电极间电阻(欧姆)、t——焊接时间(s) 1.电阻R及影响R的因素 电极间电阻包括工件本身电阻Rw,两工件间接触电阻Rc,电极与工件间接触电阻Rew.即R=2Rw+Rc+2Rew——(2) 当工件和电极一定时,工件的电阻取决与它的电阻率.因此,电阻率是被焊材料的重要性能.电阻率高的金属其导电性差(如不锈钢)电阻率低的金属其导电性好(如铝合金)。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易.点焊时,前者可用较小电流(几千安培),而后者就必须用很大电流(几万安培)。电阻率不仅取决与金属种类,还与金属的热处理状态、加工方式及温度有关。 接触电阻存在的时间是短暂,一般存在于焊接初期,由两方面原因形成: 1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。过厚的氧化物和脏物质层甚至会使电流不能导通。 2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。在接触点处形成电流线的收拢。由于电流通路的缩小而增加了接触处的电阻。

点焊常识 2

点焊机原理 焊件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法称为电阻焊。电阻焊具有生产效率高、低成本、节省材料、易于自动化等特点,因此广泛应用于航空、航天、能源、电子、汽车、轻工等各工业部门,是重要的焊接工艺之一。 一、焊接热的产出及影响因素 点焊时产生的热量由下式决定:Q=IIRt(J)————(1) 式中:Q——产生的热量(J)、I——焊接电流(A)、R——电极间电阻(欧姆)、t——焊接时间(s) 1.电阻R及影响R的因素 电极间电阻包括工件本身电阻Rw,两工件间接触电阻Rc,电极与工件间接触电阻Rew.即R=2Rw+Rc+2Rew——(2)如图. 当工件和电极一定时,工件的电阻取决与它的电阻率.因此,电阻率是被焊材料的重要性能.电阻率高的金属其导电性差(如不锈钢)电阻率低的金属其导电性好(如铝合金)。因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易.点焊时,前者可用较小电流(几千安培),而后者就必须用很大电流(几万安培)。电阻率不仅取决与金属种类,还与金属的热处理状态、加工方式及温度有关。 接触电阻存在的时间是短暂,一般存在于焊接初期,由两方面原因形成: 1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。过厚的氧化物和脏物质层甚至会使电流不能导通。 2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。在接触点处形成电流线的收拢。由于电流通路的缩小而增加了接触处的电阻。 电极与工件间的电阻Rew与Rc和Rw相比,由于铜合金的电阻率和硬度一般比工件低,因此很小,对熔核形成的影响更小,我们较少考虑它的影响。

SIV21 点焊控制器说明书

按下功能键(F1-F8) 将显示如下的相应屏幕.按下HOME键查返回到监控屏幕. F1-----监控--------显示当前焊接的监控数据和报警历史数据 F1步增交换――当使用步增功能时,允许变换当前设定的步(步增变化) F2输入/输出临控――显示输入/输出状态(通常不使用) F3报警历史数据――显示报警历史数据(量后100次报警) F2-----TM数据设定——显示存储在控制器的数据 F1-F4组选择-----从F1(第2-0组)至F4(第4组)中选择中的一个组 F1编辑-----允许设定焊接数据 F2功能拷贝-----将焊接的具体项目数据独立拷贝. 例如:将系列1的数据拷贝到系列5 F3系列拷贝-----在系列之间拷贝焊接数据 例如:将系列1的数据拷打到系列5 F4组拷贝-----在组之间拷贝数据 F5组检验-----比较组之间的数据 F5参数----选择参数,以便设定 F1编辑----允许设定所选的参数 F3-----TP数据编辑-----允许编辑存储在TP-Net中的外部存储数据 F1单元编辑-----选择要编辑的单元 1-4单元选择-----选择要其中的一个单元 F1-F4组选择-----从F1(第0组)至F4(第4组)中选择其中的一个组 F1编辑…F5组检验-----与上述屏幕相同 F2单元选择-----在单元之间拷贝数据 1-4单元选择-----从1至4选择其中的一个单元 F1 TM-TP-----将所选择单元的数据从定时器拷贝到编辑器上 F2 TP-TM-----将所选择单元的数据从编辑器拷贝到控制器上 F3 TP-TP-----将所选择单元的数据拷贝到编辑器的另一个单元 F4 TM—TP----将控制器的单元数据与编辑器的单元数据相比较F3参数-----选择单元并变更单元中的参数 1-4单元选择性----从1至4选择其中的一个单元 F4参数拷贝-----选择单元并拷贝单元中的参数 1-4单元选择-----从1-4选择其中的一个单元 F1 TM-TP,…F4 TM-TP-----拷贝或比较参数 F4----方式选择-----变更控制器当前的有效方式 F1操作-----将当前方式变换到焊接方式 F2无电流焊接-----允许在不施加电流的情况下进行焊接 F3继续增压------除了无焊接方式中的动作以外,本方式允许焊枪在接收Hold End(保持结束)信号后继续加压 F4设定-----在编辑任何参数或数据前,要输入这一方式

第五章电阻点焊_百度文库.

第五章电阻点焊 5.1概述 点焊是电阻焊的一种, 是将被焊工件压紧于两电极之间, 并通过电流利用电流流经工件接触面及邻近区域产生的电阻热将其加热到熔化或塑性状态, 使之形成金属结合的一种方法, 如图 5.1 所示。 点焊是一种高速、经济的连接方法。它适用于制造接头不要求气密,厚度小于3mm, 冲压、轧制的薄板搭接构件,广泛用于汽车、摩托车、航空航天、家具等行业产品的生产。 图 5.1 点焊示意图 5.2点焊的基本原理 5.2.1点焊过程(焊接循环 图 5.2为点焊的基本焊接循环, 图 5.33为点焊焊接过程示表图。点焊过程由四个基本阶段组成。 图 5.2 点焊的基本焊接循环图 5.3 点焊焊接过程示意图 (1 预压阶段—将待焊的两个焊件搭接起来,置于上、下铜电极之间,然后施加一定的电极压力,将两个焊件压紧。 (2 焊接时间—焊接电流通过工件,由电阻热将两工件接触表面加热到熔化温度,并逐渐向四周扩大形成熔核。 (3 维持时间—当熔核尺寸达到所要求的大小时,切断焊接电流,电极压力继续保持,熔核在电极压力作用下冷却结晶形成焊点。 (4 休止时间—焊点形成后,电极提起,去掉压力,到下一个待焊点压紧工件的时间。休止时间只适用于焊接循环重复进行的场合。 为了提高焊点的物理和化学性能,可以在基本焊接循环中加入下列其中之一或多个过程: (1 预压力使电极和工件紧密、贴合; (2 预热来降低工件上开始焊接时的温度梯度; (3 顶锻力压实熔核,防止产生裂纹和缩孔;

(4 回火、退火时间对硬化合金钢以达到所需求的强度; (5 后热以细化晶粒; (6 电流衰减以延迟AL 的冷却。 图 5.4 为一个比较复杂的焊接循环。 图 5.4 复杂的点焊焊接循环示例 5.2.2 焊接热的产生及其影响因素 5. 2.2.1焊接热量的产生 点焊时产生的热量由下式决定: Q=I2RT 式中: Q—产生的热量(J I—焊接电流(A R—电极间电阻( T—焊接时间(S 点焊时导电通路上的总电阻及热量分布如图 5.5所示。 图 5.5 点焊时导电通路上的电阻及热量分布 总电阻由以下七个部分组成: ①1,7—电极电阻,与电极材料有关; ②2,6—电极与工件之间的接触电阻,与电极和工件的表面状态,电极大小、形状及压力有关。此处产生的热量较多,但由于电极的热传导较好,并有水冷,母材达不到熔化温度。 ③3,5—母材本身电阻,正比于材料的电阻率和板厚,反比于导电面积。 ④4—母材间接触电阻,此处电阻最大,产热最多对焊接形核有作用的是接触电阻4,其它的电阻应尽可能减少。在一定的焊接循环 内,影响点焊接头热量多少的因素有:A.工件及电极电阻;B.工件间接触电阻以及工件与电极之间的接触电阻;C.工件及电极上的热量损失。 5. 2.2.2影响因素

第一部分:点焊的原理及焊接工艺

第一部分:点焊的原理及焊接工艺   点焊工艺是一种形成永久结合的金属连接。在焊接时焊件通过焊接电流局部发热,并在焊件的接触加热处施加压力,形成一个焊点。点焊是一种高速、经济的连接方法,它适用于制造可以采用搭接、接头不需要气密、厚度小于5mm的冲压轧制的薄板类构件。点焊工艺目前被广泛地应用于各个工业部门,不仅能够焊接低碳钢和低合金钢,也可以焊接高碳钢、高锰钢及不锈钢、铝合金、钛合金等材料组成的零部件。 点焊工艺参数的选择:影响点焊的工艺参数包括焊接电极的结构直径、焊接能量、焊接时间和焊接压力。根据焊接速度和焊接效果可分为快速焊接、中速焊接、普通焊接三种条件,对于工件要求焊接强度高、焊接变形小的场合,最好选用大功率、短时间的强规范快速焊接。对于要求不严格的工件就可以采用小功率、长时间的普通焊接方式,这样可选择比较小的焊接设备,同时对电网的影响也比较小。通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸,其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检验熔核直径符合要求后,再在适当的范围内调节电极压力、焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时还需进行低倍测量、拉伸试验和X射线检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。 影响点焊焊接接头焊接质量的因素主要有焊接电流、电极压力、焊接时间、预压和休止时间、焊接电极直径等。 1、焊接电流 点焊形成的熔核所需的热量来源是利用电流通过焊接区电阻产生的热量。在其他条件给定的情况下,焊接电流的大小决定了熔核的焊透率。在焊接低碳钢时,熔核平均焊透率为钢板厚度的30~70%,熔核的焊透率在45~50%时焊接强度最高,当焊接电流超过某一规范值时,继续增大电流只能增大熔核率,而不会提高接头强度,由于多消耗了电能和增大了设备的损耗,因此从制造成本来讲是很不经济的。如果电流过大还会产生压痕过深和焊接烧穿等缺陷。 2、电极压力

电阻点焊基础.

?局部结合?形成结构-自发牛成 电阻焊接基础什么是屯阻点焊

为什么采用电阻焊 ?快速 -价廉 -零件兀配容差 -可靠 -能焊度层材料 .相对简单 什么使用电阻焊?厚度从0.6mm到 3.5m m的钢板 -热浸镀锌 ?电镀锌 -铝材

?辆现代汽车包含有3000多个 电阻焊点xm GM-4488M - -产品工程和制造间的规范. WS-1 - -GM的电阻点焊手册 GM9621P— -工艺控制文件 WESS- -WS-1计算器 WS?4— -焊接认证流程 WS-2 — -设备规范- 2 3—; A J BUU'K 二.'

?电阻点焊是对两层或 以上的金属板材加压 并保持, 同时进行加 执 八■ ■ ? Heat =PRT -作为电阻焊的a 的,热量是由焊接电流和电阻形 成的. -钢铁的电阻值范围是6()到150微欧. -电阻焊接钢铁的焊接电流范围J^7{)0()-l8(X)()安培 ?焊接时间范围是8到48个周波 热量-压力 -时间 □ 着

TMAHSFORMER 典型焊接程序 1 ()()()()安 2 X ().000100 欧 X 0.24 秒(12周波) =2400 ws (焦耳) 基本构件 -控制器 ?变压器 ?电极 I ^SECOBDMV I rJ ---- < C I i / I 、伫? / L ---------------------------- > SECOMDUV 3?3t VBLTS AMPS

?电极施压? -焊接电流导入零件 -冷却零件表面 电极施压目的 ?压紧零件 ?维持焊接电阻 ?如果电阻太低,生成热量不够. ?如果电阻太高,牛成热量过多. ?建立封闭压力 ?当焊接热量形成,在压力F热量扩散至焊接金属.

基于单片机的点焊机控制器系统设计

基于单片机的点焊机控制器系统设计 基于单片机的点焊机控制器系统设计 摘要:本文介绍了用51单片机设计的一种多功能点焊机控制器,具有自动加热、设置炉温、到设置温度自动停止等功能,并且具有结构简单、可靠性高、成本低等特点。 当前市场上的点焊机控制器基本上采用双金属片温控,控温精度低、可靠性差、功能单一。随着微电子技术的发展,单片微处理器功能日益增强,价格低廉,在各方面得到广泛应用。在点焊机控制器中应用单片机,具有设计简单、可靠性高、功能易扩展等优点。 本文着重于点焊机在智能控制方面的探讨。 关键词:单片机,点焊机,51,加热1 前言 1.1 Proteus仿真软件简介 Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件[9]。它运行于Windows操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是:①实现了单片机仿真和SPICE电路仿真相结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、

RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。②支持主流单片机系统的仿真。目前支持的单片机类型有:68000系列、8051系列、A VR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。③提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。④具有强大的原理图绘制功能。总之,该软件是一款集单片机和SPICE分析于一身的仿真软件,功能极其强大。 Proteus主要用于绘制原理图并可进行电路仿真,Proteus ARES 主要用于PCB 设计。ISIS 的主界面主要包括:1 是电路图概览区、2 是元器件列表区、3 是绘图区。绘制电路图的过程如下: 单击2 区的P 命令即弹出元器件选择(Pick Devices)对话框,Proteus 提供了丰富的元器件资源,包括30 余种元器件库,有些元器件库还具有子库。利用该对话框提供的关键词(Keywords)搜索功能,输入所要添加的元器件名称,即可在结果(Results)中查找,找到后双击鼠标左键即可将该元器件添到2 区,待所有需要的元器件添加完成后点击对话框

点焊工艺处理基本知识

武汉兴园金属有限责任公司 点焊工艺基础知识 版本:A/0 1 主题内容与适用范围 2 焊点的形成及对其质量的一般要求 焊接是两种或两种以上同种或异种材料通过分子或原子间的结合和扩散而连成一体的工艺加工过程。 焊接包括:熔化焊、压焊、钎焊。 压焊包括:电阻焊、锻焊、摩擦焊、高频焊、超声波焊等等。 电阻焊包括:点焊、凸焊、对焊、缝焊。 电阻焊就是将工件置于两个电极之间加压,通以电流,利用工件的电阻产生热量并形成局部熔化,或达到塑性状态。断电后,压力继续作用,形成牢固接头。 2.1焊点的形成 点焊过程可分为彼此相联的三个阶段:预加压力、通电加热和锻压。 2.1.1预加压力 预加电极压力是为了使焊件在焊接处紧密接触。若压力不足,则接触电阻过大,导致焊件烧穿或将电极工作面烧损。因此,通电前电极力应达到预定值,以保证电极与焊件、焊件与焊件之间的接触电阻保持稳定。 2.1.2通电加热 通电加热是为了供焊件之间形成所需的熔化核心。在预加电极压力下通电,则在两电极接触表面之间的金属圆柱体内有最大的电流密度,靠焊件之间的接触电阻和焊件自身的电阻,产生相当大的热量,温度也很高。尤其是在焊件之间的接触面处,首先熔化,形成熔化核心。电极与焊件之间的接触电阻也产生热量,但大部分被水冷的铜合金电极带走,于是电极与焊件之间接触处的温度远比焊件之

间接触处为低。正常情况下是达不到熔化温度。在圆柱体周围的金属因电流密度小,温度不高,其中靠近熔化核心的金属温度较高,达到塑性状态,在压力作用下发生焊接,形成一个塑性金属环,紧密地包围着熔化核心,不使熔化金属向外溢出。 在通电加热过程中有两种情况可能引起飞溅:一种是开始时电极预压力过小,熔化核心周围未形成塑性金属环而向外飞溅;另一种是加热结束时,因加热进间过长,熔化核心过大,电极压力下,塑性金属环发生崩溃,熔化金属从焊件之间或焊件表面溢出。 2.1.3锻压 锻压是在切断焊接电流后,电极继续对焊点挤压的过程,对焊点起着压实作用。断电后,熔化核心是在封闭的金属“壳”内开始冷却结晶的,收缩不自由。如果此时没有压力作用,焊点易出现缩孔和裂纹,影响焊点强度。如果有电极挤压,产生的挤压变形使熔核收缩自由并变得密实。因此,电极压力必须在断电后继续维持到熔核金属全部凝固之后才能解除。锻压持续时间视焊件厚度而定。对于厚度1-8mm的钢板一般为0.1-2.5秒。 当焊件厚度较大,(铝合金为1.6-2mm,钢板为5-6mm)时,因熔核周围金属壳较厚,常需增加锻压力。加大压力的时间须控制好。过早,会把熔化金属挤出来变成飞溅,过晚,熔化金属已凝固而失去作用。一般断电后在0-0.2秒内加大锻压力。 以上是焊点形成的一般过程。在实际生产中,往往根据不同材料、结构以及对焊接质量的要求,采用一些特殊的工艺措施。例如:对热裂纹倾向较大的材料,可采用附加缓冷脉冲的点焊工艺,以降低熔核的凝固速度;对调质材料的焊接,可在两电极之间作焊后热处理,以改善因快速加热、冷却而产生的脆性淬火组织;在加压方面,可以采用马鞍形、阶梯形或多次阶梯形等电极压力循环。以满足不同质量要求的零件焊接。 2.2对焊点质量的一般要求 点焊接头的强度决定于焊点的几何尺寸及其内外质量。焊点的几何尺寸如图1所示,一般要求熔核直径随板厚增加而增大。 通常用下式表示: δ d 5 = n

相关主题