搜档网
当前位置:搜档网 › 应广单片机读写24C02程序代码

应广单片机读写24C02程序代码

应广单片机读写24C02程序代码
应广单片机读写24C02程序代码

应广单片机读写24C02程序代码

#include "extern.h"

#include "main.h"

//***************************************************

//***************************************************

//??ò?I2C?ó?ú

I2C_SDA equ pb.2

I2C_SCL equ pb.0

I2C_SDA_DIR equ pbc.2

I2C_SCL_DIR equ pbc.0

I2C_LONG_DLY equ 50

I2C_SHORT_DLY equ 20

I2C_SDA_HIGH equ set1 I2C_SDA I2C_SDA_LOW equ set0 I2C_SDA

I2C_SCL_HIGH equ set1 I2C_SCL I2C_SCL_LOW equ set0 I2C_SCL

I2C_SDA_OUTPUT equ set1 I2C_SDA_DIR I2C_SDA_INPUT equ set0 I2C_SDA_DIR I2C_SCL_OUTPUT equ set1 I2C_SCL_DIR I2C_SCL_INPUT equ set0 I2C_SCL_DIR //??ò?I2C??á?

uchar i2c_rw_addr; //?áD?μ??? uchar i2c_rw_byte; //?áD?êy?Y uchar

i2c_rw_cmd; //?áD?μ????tμ??? uchar i2c_rw_temp; //?áD??y?ì?D????á? uchar i2c_rw_cnt; //?áD??y?ì?D????á?

//---------------------------- //?úéúSTARTD?o?

//---------------------------- i2c_start:

I2C_SDA_OUTPUT

I2C_SCL_OUTPUT

I2C_SDA_HIGH

delay I2C_LONG_DLY

I2C_SCL_HIGH

delay I2C_LONG_DLY

I2C_SDA_LOW

delay I2C_LONG_DLY

I2C_SCL_LOW

delay I2C_LONG_DLY

ret

//---------------------------- //?úéúSTOPD?o?

//---------------------------- i2c_stop:

I2C_SCL_LOW

delay I2C_LONG_DLY

I2C_SDA_LOW

delay I2C_LONG_DLY

I2C_SCL_HIGH

delay I2C_LONG_DLY

I2C_SDA_HIGH

delay I2C_LONG_DLY

ret

//----------------------------

//?ì?éSALVE ACKD?o? //---------------------------- i2c_slave_ack:

//don't check ACK

I2C_SDA_INPUT

delay I2C_SHORT_DLY

I2C_SCL_HIGH

delay I2C_SHORT_DLY

I2C_SCL_LOW

delay I2C_SHORT_DLY

I2C_SDA_OUTPUT

I2C_SDA_LOW

delay I2C_SHORT_DLY

ret

//----------------------------

//ê???MASTER ACKD?o? //---------------------------- i2c_master_ack:

I2C_SDA_OUTPUT

I2C_SDA_LOW

delay I2C_SHORT_DLY

I2C_SCL_HIGH

delay I2C_SHORT_DLY

I2C_SCL_LOW

delay I2C_SHORT_DLY

ret

//---------------------------- //ê???MASTER NACKD?o? //---------------------------- i2c_master_nack:

I2C_SDA_OUTPUT

I2C_SDA_HIGH

delay I2C_SHORT_DLY

I2C_SCL_HIGH

delay I2C_SHORT_DLY

I2C_SCL_LOW

delay I2C_SHORT_DLY

ret

//------------------------------

//D?ò???×??ú

//Input: i2c_rw_temp

//Used: i2c_rw_cnt

//------------------------------

i2c_write_8bit:

i2c_rw_cnt = 8;

i2c_write_8bit_loop:

slc i2c_rw_temp

swapc I2C_SDA

delay I2C_SHORT_DLY

I2C_SCL_HIGH

delay I2C_SHORT_DLY

I2C_SCL_LOW

delay I2C_SHORT_DLY

dzsn i2c_rw_cnt

goto i2c_write_8bit_loop

ret

//------------------------------

//?áò???×??ú

//Used: i2c_rw_cnt

//Output: i2c_rw_temp //------------------------------ i2c_read_8bit:

i2c_rw_temp = 0;

i2c_rw_cnt = 8;

delay I2C_SHORT_DLY

i2c_read_8bit_loop:

I2C_SCL_HIGH

delay I2C_SHORT_DLY

swapc I2C_SDA

slc i2c_rw_temp

I2C_SCL_LOW

delay I2C_SHORT_DLY

dzsn i2c_rw_cnt

goto i2c_read_8bit_loop

ret

//------------------------------

//Input: i2c_rw_addr // i2c_rw_cmd

//Used: i2c_rw_cnt

// i2c_rw_temp //Output: i2c_rw_byte //------------------------------

i2c_read_byte:

//start

call i2c_start

//write device address(write)

i2c_rw_temp = i2c_rw_cmd;

call i2c_write_8bit

//slave ack

call i2c_slave_ack

//write register address

i2c_rw_temp = i2c_rw_addr;

call i2c_write_8bit

//slave ack

//don't check ACK

call i2c_slave_ack

//start repeat

call i2c_start

//write device address(read)

i2c_rw_temp = i2c_rw_cmd;

i2c_rw_temp.0 = 1;

call i2c_write_8bit

//slave ack

//don't check ACK

I2C_SDA_INPUT

delay I2C_SHORT_DLY

I2C_SCL_HIGH

delay I2C_SHORT_DLY

I2C_SCL_LOW

delay I2C_SHORT_DLY //?aà??aì?êa?é??I2C_SDA??ó?×a?aê???

//read data

i2c_rw_temp = 0;

call i2c_read_8bit

i2c_rw_byte = i2c_rw_temp; //store data

//master nack

call i2c_master_nack

//stop

call i2c_stop

//retune

delay I2C_LONG_DLY

wdreset

ret

//------------------------------

//Input: i2c_rw_addr // i2c_rw_byte // i2c_rw_cmd //Used: i2c_rw_cnt // i2c_rw_temp //------------------------------

i2c_write_byte:

//start

call i2c_start

//write device address

i2c_rw_temp = i2c_rw_cmd; call i2c_write_8bit

//slave ack

//don't check ACK

call i2c_slave_ack

//write register address i2c_rw_temp = i2c_rw_addr; call i2c_write_8bit

//slave ack

//don't check ACK

call i2c_slave_ack

//write data

i2c_rw_temp = i2c_rw_byte; call i2c_write_8bit

//slave ack

//don't check ACK

call i2c_slave_ack

//stop

call i2c_stop

//retune

delay I2C_LONG_DLY

wdreset

ret

EEPROM_RW_CMD equ 0xA0

//------------------------------ //o?êy??: eeprom_read_byte //Input:

i2c_rw_addr

//Used: i2c_rw_cnt

// i2c_rw_temp

//Output: i2c_rw_byte

//------------------------------ eeprom_read_byte:

i2c_rw_cmd = EEPROM_RW_CMD;

goto i2c_read_byte //×?òa?aà?ó?μ?ê?ì?×a

//------------------------------ //o?êy??: eeprom_write_byte //Input: i2c_rw_addr

// i2c_rw_byte

//Used: i2c_rw_cnt

// i2c_rw_temp

//×?òa?o μ?ó?íêoóDèòaμè?yò???ê???ò?????D??ù×?íê?é

//------------------------------ eeprom_write_byte:

i2c_rw_cmd = EEPROM_RW_CMD;

goto i2c_write_byte //×?òa?aà?ó?μ?ê?ì?×a

24C02读写程序

HT49 MCU系列单片机读写HT24系列的EEPROM应用范例HT49 MCU系列单片机读写HT24系列的EEPROM应用范例文件编码:HA0017s 简介: HT24系列的EEPROM是通过I2C协议控制其读写的。HT49系列单片机的接口部分是简单I/O 口,可以用来很方便地采用I2C协议控制周边器件。 HT24系列的EEPROM总共8个管脚,三个为芯片地址脚A0、A1、A2,在单片机对它进行操作时,从SDA输入A0、A1、A2数据和芯片外部A0、A1、A2所接地址需一一对应。一个为芯片写保护脚WP,WP脚接低电平时,芯片可进行读写操作;WP脚接高时,芯片只可进行读,不可进行写。另外两个管脚为电源脚VCC,VSS。 用单片机对HT24系列的EEPROM进行控制时,HT24系列的EEPROM的外部管脚VCC、VSS、WP、A0、A1、A2根据需要,对应接上,SDA、SCL接到单片机控制脚上。 引脚名称I/O 功能描述 A0~A2 I 地址输入 VSS I 电源负极输入 SDA I/O 串行数据输入/输出 SCL I 串行数据传送时钟信号输入 WP I 写保护 VCC I 电源正极输入 HT24系列的EEPROM根据型号不同,EEPROM的容量大小不同,当EEPROM的空间大于1页(256bytes)时,即大于2048bits,则HT49 MCU需要控制A0、A1、A2来确定写HT24系列的EEPROM的第几页,HT24系列的EEPROM空间大小如下表所示: 型号引脚A0、A1及A2使用方法容量大小 HT24LC02 A0、A1、A2引脚作为器件地址输入,从SDA输入A0、A1、 A2数据和芯片引脚A0、A1、A2所接状态需一一对应 2K(256×8) HT24LC04 A1、A2引脚作为器件地址输入,从SDA输入A1、A2数据 和芯片引脚A1、A2所接状态需一一对应,A0引脚浮空 4K(512×8, 2pages) HT24LC08 A2引脚器件地址输入,从SDA输入A2数据和芯片引脚A2 所接状态需一一对应,其余引脚浮空 8K(1024×8, 4pages) HT24LC16 A0、A1、A2全部浮空,不必接16K(2048×8,8pages)

实现存储器EEPROM AT24C02的数据读写操作 采用IIC总线读写 C程序

/*************************************************************** 功能:11:32 2008-6-27 作者:SG 时间:2004-03-15 版本:V1.0 ***************************************************************/ #include "INTRINS.H" #include "reg52.h" #define WriteDeviceAddress 0xa0 //写驱动地址指令 #define ReadDeviceAddress 0xa1 //读驱动地址指令 sbit AT24C02_SCL = 0xa4; sbit AT24C02_SDA = 0xa5; /*------------------------------------------------------------- 功能:发起始信号 ------------------------------------------------------------*/ void Start_Cond() { AT24C02_SCL = 0; _nop_(); AT24C02_SDA = 1; _nop_(); AT24C02_SCL = 1; _nop_(); AT24C02_SDA = 0; _nop_(); } /*------------------------------------------------------------- 功能:发停止信号 ------------------------------------------------------------*/ void Stop_Cond() { AT24C02_SCL = 0; _nop_(); AT24C02_SDA = 0; _nop_(); AT24C02_SCL = 1; _nop_(); AT24C02_SDA = 1; _nop_();

24c02读写程序教学资料

24c02读写程序

E2PROM芯片24C02的读写程序 一、实验目的: 给24C02的内部RAM写入一组数据,数据从24C02内部RAM的01h开始存放。然后再把这组数据读出来,检验写入和读出是否正确。 在这里我们给24C02中写入0、1、2的段码,然后把它读出来,送到数码管显示。 二、理论知识准备: 上面两个实验主要学习的是利用单片机的串口进行通讯,本实验要介绍的是基于I2C总线的串行通讯方法,下面我们先介绍一下I2C总线的相关理论知识。 (一)、I2C总线概念 I2C总线是一种双向二线制总线,它的结构简单,可靠性和抗干扰性能好。目前很多公司都推出了基于I2C总线的外围器件,例如我们学习板上的24C02芯片,就是一个带有I2C总线接口的E2PROM存储器,具有掉电记忆的功能,方便进行数据的长期保存。 (二)、I2C总线结构 I2C总线结构很简单,只有两条线,包括一条数据线(SDA)和一条串行时钟线(SCL)。具有I2C接口的器件可以通过这两根线接到总线上,进行相互之间的信息传递。连接到总线的器件具有不同的地址,CPU根据不同的地址进行识别,从而实现对硬件系统简单灵活的控制。 一个典型的I2C总线应用系统的组成结构如下图所示(假设图中的微控制器、LCD驱动、E2PROM、ADC各器件都是具有I2C总线接口的器件):

我们知道单片机串行通讯的发送和接收一般都各用一条线TXD和RXD,而I2C总线的数据线既可以发送也可以接受,工作方式可以通过软件设置。所以,I2C总线结构的硬件结构非常简洁。 当某器件向总线上发送信息时,它就是发送器,而当其从总线上接收信息时,又成为接收器。 (三)、I2C总线上的数据传送 下面我们看看I2C总线是如何进行数据传送的。我们知道,在一根数据线上传送数据时必须一位一位的进行,所以我们首先研究位传送。 1、位传输 I2C总线每传送一位数据必须有一个时钟脉冲。被传送的数据在时钟SCL的高电平期间保持稳定,只有在SCL低电平期间才能够改变,示意图如下图所示,在标准模式下,高低电平宽度必须不小于4.7us。 那么是不是所有I2C总线中的信号都必须符合上述的有效性呢?只有两个例外,就是开始和停止信号。 开始信号:当SCL为高电平时,SDA发生从高到低的跳变,就定义为开始信号。 停止信号:当SCL为高电平时,SDA发生从低到高的跳变,就定义为结束信号。 开始和结束信号的时序图如下图所示:

24c02读写程序大全

24c02读写程序大全 2C总线的应用(24C02子程序) // 对24C02的读、写 // extern void DelayMs(unsigned int); // extern void Read24c02(unsigned char *RamAddress,unsigned char Ro mAddress,unsigned char bytes); // extern void Write24c02(unsigned char *RamAddress,unsigned char Ro mAddress,unsigned char bytes); /***************************************************************************/ #define WriteDeviceAddress 0xa0 #define ReadDviceAddress 0xa1 #include #include #include /***************************************************************************/ sbit SCL=P2^7; sbit SDA=P2^6; bit DOG; /***************************************************************************/ void DelayMs(unsigned int number) { unsigned char temp; for(;number!=0;number--,DOG=!DOG) { for(temp=112;temp!=0;temp--) { } } } /***************************************************************************/ void Start() { SDA=1; SCL=1; SDA=0; SCL=0; } /***************************************************************************/ void Stop() { SCL=0; SDA=0;

AT24C02串行E2PROM的读写

AT24C02串行E2PROM的读写 I2C总线是一种用于IC器件之间连接的二线制总线。它通过SDA(串行数据线)及SCL(串行时钟线)两根线在连到总线上的器件之间传送信息,并根据地址识别每个器件:不管是单片机、存储器、LCD驱动器还是键盘接口。 1.I2C总线的基本结构采用I2C总线标准的单片机或IC器件,其内部不仅有I2C接口电路,而且将内部各单元电路按功能划分为若干相对独立的模块,通过软件寻址实现片选,减少了器件片选线的连接。CPU不仅能通过指令将某个功能单元电路挂靠或摘离总线,还可对该单元的工作状况进行检测,从而实现对硬件系统的既简单又灵活的扩展与控制。I2C总线接口电路结构如图1所示。 2.双向传输的接口特性传统的单片机串行接口的发送和接收一般都各用一条线,如MCS51系列的TXD和RXD,而I2C总线则根据器件的功能通过软件程序使其可工作于发送或接收方式。当某个器件向总线上发送信息时,它就是发送器(也叫主器件),而当其从总线上接收信息时,又成为接收器(也叫从器件)。主器件用于启动总线上传送数据并产生时钟以开放传送的器件,此时任何被寻址的器件均被认为是从器件。I2C总线的控制完全由挂接在总线上的主器件送出的地址和数据决定。在总线上,既没有中心机,也没有优先机。 总线上主和从(即发送和接收)的关系不是一成不变的,而是取决于此时数据传送的方向。SDA和SCL均为双向I/O线,通过上拉电阻接正电源。当总线空闲时,两根线都是高电平。连接总线的器件的输出级必须是集电极或漏极开路,以具有线“与”功能。I2C总线的数据传送速率在标准工作方式下为100kbit/s,在快速方式下,最高传送速率可达400kbit/s。 3.I2C总线上的时钟信号在I2C总线上传送信息时的时钟同步信号是由挂接在SCL时钟线上的所有器件的逻辑“与”完成的。SCL线上由高电平到低电平的跳变将影响到这些器件,一旦某个器件的时钟信号下跳为低电平,将使SCL线一直保持低电平,使SCL线上的所有器件开始低电平期。此时,低电平周期短的器件的时钟由低至高的跳变并不能影响SCL线的状态,于是这些器件将进入高电平等待的状态。 当所有器件的时钟信号都上跳为高电平时,低电平期结束,SCL线被释放返回高电平,即所有的器件都同时开始它们的高电平期。其后,第一个结束高电平期的器件又将SCL线拉成低电平。这样就在SCL线上产生一个同步时钟。可见,时钟低电平时间由时钟低电平期最长的器件确定,而时钟高电平时间由时钟高电平期最短的器件确定。 4.数据的传送在数据传送过程中,必须确认数据传送的开始和结束。在I2C总线技术规范中,开始和结束信号(也称启动和停止信号)的定义如图2所示。当时钟线SCL为高电平时,数据线SDA由高电平跳变为低电平定义为“开始”信号;当SCL线为高电平时,SDA线发生低电平到高电平的跳变为“结束”信号。开始和结束信号都是由主器件产生。在开始信号以后,总线即被认为处于忙状态;在结束信号以后的一段时间内,总线被认为是空闲的。

ATMEGA16读写iic(TWI)(24c02) C语言程序

ATMEGA16读写iic(24c02) C语言程序测试通过 #include #include "I2C.h" #include "1602.h" #include "delay.h" /*通过AVR往I IC写数据,并通过串口把数据读出显示出来*/ //=============================================================== void UART_init(void) //UART初始化 { DDRD = 0x02; PORTD = 0x00; UCSRA = 0x02; /*无倍速*/ UCSRB = 0x18; /*允许接收和发送*/ UC SRC = 0x06; /*8位数据,1位停止位,无校验*/ UBRRH = 0x00; UBRRL = 12; /*9600*/ } //=============================================================== void USART_TXD(float data) //发送采用查询方式 { while( !(UCSRA & BIT(UDRE)) ); UDR=data; while( !(UCSRA & BIT(TXC )) ); UCSRA|=BIT(TXC); } void main(void) { unsigned char i; //LCD_init(); uart_init();//TART初始化 SEI(); //全局中断使能

while(1) {/* I2C_Write('n',0x00); I2C_Write('c',0x01); I2C_Write('e',0x02); I2C_Write('p',0x03); I2C_Write('u',0x04); */ i=I2C_Read(0x00); //LCD_write_char(0,0,i); USART_TXD(i); i=I2C_Read(0x01); //LCD_write_data(i); USART_TXD(i); i=I2C_Read(0x02); //LCD_write_data(i); USART_TXD(i); i=I2C_Read(0x03); //LCD_write_data(i); USART_TXD(i); i=I2C_Read(0x04); //LCD_write_data(i); USART_TXD(i); } } /*上面上主函数部分*/ #include #include "delay.h" //I2C 状态定义 //MT 主方式传输 MR 主方式接受#define START 0x08 #define RE_START 0x10 #define MT_SLA_ACK 0x18 #define MT_SLA_NOACK 0x20 #define MT_DATA_ACK 0x28 #define MT_DATA_NOACK 0x30 #define MR_SLA_ACK 0x40 #define MR_SLA_NOACK 0x48 #define MR_DATA_ACK 0x50 #define MR_DATA_NOACK 0x58

STM32F103读写24C02程序使用过肯定能用

//实验24C02连接在PF口 //WP、A0、A1、A2都接地 #include "stm32f10x_flash.h" #include "stm32f10x_gpio.h" #include "stm32f10x_rcc.h" #define AT24C02 0xa0 //AT24C02 地址 /******************************** 变量定义---------------------------------------------------------*/ GPIO_InitTypeDef GPIO_InitStructure; //GPIO ErrorStatus HSEStartUpStatus; unsigned char Count1 , Count2; unsigned int USEC; static vu32 TimingDelay; unsigned char Readzfc; unsigned char pDat[8] = {0x55,0x55,0x55,0x55,0x55,0x55,0x55,0x55}; unsigned char R_Dat[8]; /*********************************声明函数-----------------------------------------------*/ void RCC_Configuration(void); void SysTick_Configuration(void); void Delay_us_24C02(u32 nTime); /************************************24C02硬件接口******************************/ #define SData GPIO_Pin_6 //I2C 时钟 #define SCLK GPIO_Pin_7 //I2C 数据 /********************************宏定义*******************************************/ #define SCL(x) x ? GPIO_SetBits(GPIOF , SCLK) : GPIO_ResetBits(GPIOF , SCLK) #define SDA(x) x ? GPIO_SetBits(GPIOF , SData) : GPIO_ResetBits(GPIOF , SData) /********************************变量*******************************************/ u8 ack; /******************************************************************* 起动总线函数 函数原型: void Start_I2c(); 功能: 启动I2C总线,即发送I2C起始条件. ********************************************************************/ void Start_I2c() { SDA(1); //SDA=1; 发送起始条件的数据信号 Delay_us_24C02(1); SCL(1); //SCL=1; Delay_us_24C02(5); //起始条件建立时间大于4.7us,延时 SDA(0); //SDA=0; /*发送起始信号*/ Delay_us_24C02(5); // 起始条件锁定时间大于4μs

应广单片机读写24C02程序代码

应广单片机读写24C02程序代码 #include "extern.h" #include "main.h" //*************************************************** //*************************************************** //??ò?I2C?ó?ú I2C_SDA equ pb.2 I2C_SCL equ pb.0 I2C_SDA_DIR equ pbc.2 I2C_SCL_DIR equ pbc.0 I2C_LONG_DLY equ 50 I2C_SHORT_DLY equ 20 I2C_SDA_HIGH equ set1 I2C_SDA I2C_SDA_LOW equ set0 I2C_SDA I2C_SCL_HIGH equ set1 I2C_SCL I2C_SCL_LOW equ set0 I2C_SCL I2C_SDA_OUTPUT equ set1 I2C_SDA_DIR I2C_SDA_INPUT equ set0 I2C_SDA_DIR I2C_SCL_OUTPUT equ set1 I2C_SCL_DIR I2C_SCL_INPUT equ set0 I2C_SCL_DIR //??ò?I2C??á? uchar i2c_rw_addr; //?áD?μ??? uchar i2c_rw_byte; //?áD?êy?Y uchar i2c_rw_cmd; //?áD?μ????tμ??? uchar i2c_rw_temp; //?áD??y?ì?D????á? uchar i2c_rw_cnt; //?áD??y?ì?D????á? //---------------------------- //?úéúSTARTD?o? //---------------------------- i2c_start: I2C_SDA_OUTPUT

怎么实现对存储器24C02程序的读写

决 怎么实现24C02程序的读写 我是个新手,对24C02 一窍不通,请问怎么给24C02写程序。是不是要像给单片机写程序那样需要一个编程器,或是需要其他的什么软硬件。另外再给我介绍一些24C02的入门知识,谢谢。 问题补充: 24C02是不是只是一个存储器?使用它时需不需要专门给它写段程序再烧进去? 我们将24c02 的两条总线接在了P26 和P27 上,因此,必须先定义: sbit SCL=P2^7; sbit SDA=P2^6; 在这个试验中,我们写入了一个字节数值0x88 到24c02 的0x02 的位置。 写入完成后,P10 灯会亮起,我们再在下一颗来读出这个字节来验证结果。――――――――――――― #define uchar unsigned char //定义一下方便使用 #define uint unsigned int #define ulong unsigned long #include //包括一个52 标准内核的头文件 //本课试验写入一个字节到24c02 中 char code dx516[3] _at_ 0x003b;//这是为了仿真设置的 #define WriteDeviceAddress 0xa0 //定义器件在IIC 总线中的地址 #define ReadDviceAddress 0xa1 sbit SCL=P2^7; sbit SDA=P2^6; sbit P10=P1^0; //定时函数 void DelayMs(uint number) { uchar temp; for(;number!=0;number--) { for(temp=112;temp!=0;temp--) ; } } //开始总线

E2PROM芯片24C02的读写程序

E2PR0M 芯片24C02的读写程序 一、实验目的: 给24C02的内部RAM写入一组数据,数据从24C02内部RAM的01h开始存放。然后再把这组数据读出来,检验写入和读出是否正确。 在这里我们给24C02中写入0、1、2的段码,然后把它读出来,送到数码管显示。 二、理论知识准备: 上面两个实验主要学习的是利用单片机的串口进行通讯,本实验要介绍的是基于I2C总线的 串行通讯方法,下面我们先介绍一下I2C总线的相关理论知识。 (—)、I2C总线概念 I2C总线是一种双向二线制总线,它的结构简单,可靠性和抗干扰性能好。目前很多公司都推出了基于I2C总线的外围器件,例如我们学习板上的24C02芯片,就是一个带有I2C总线接口的E2PROM存储器,具有掉电记忆的功能,方便进行数据的长期保存。 (二)、I2C总线结构 I2C总线结构很简单,只有两条线,包括一条数据线(SDA)和一条串行时钟线(SCL )。具有I2C 接口的器件可以通过这两根线接到总线上,进行相互之间的信息传递。连接到总线 的器件具有不同的地址,CPU根据不同的地址进行识别,从而实现对硬件系统简单灵活的 控制。 一个典型的I2C总线应用系统的组成结构如下图所示(假设图中的微控制器、LCD驱动、 E2PROM、ADC各器件都是具有I2C总线接口的器件): SDA SCL|| || || || 微控制器LCD驱动ADC E2PR0M 我们知道单片机串行通讯的发送和接收一般都各用一条线TXD和RXD,而I2C总线的数据 线既可以发送也可以接受,工作方式可以通过软件设置。所以,I2C总线结构的硬件结构非 常简洁。 当某器件向总线上发送信息时,它就是发送器,而当其从总线上接收信息时,又成为接收器。(三)、I2C总线上的数据传送 下面我们看看I2C总线是如何进行数据传送的。我们知道,在一根数据线上传送数据时必须 一位一位的进行,所以我们首先研究位传送。 1、位传输 I2C总线每传送一位数据必须有一个时钟脉冲。被传送的数据在时钟SCL的高电平期间保 持稳定,只有在SCL低电平期间才能够改变,示意图如下图所示,在标准模式下,高低电平宽度必须不小于 4.7us。

24c02读写程序大全

51晶振为 〖文件〗 2001/09/18 --------------------------------------------------------------------------------*/ /*--------------------------------------------------------------------------------------------------------------- 调用方式:void WriteIIC_24CXX(enum EEPROMTYPE eepromtype,unsigned int address,unsigned char ddata) ﹫2001/09/18 函数说明:对于IIC芯片24CXX,在指定地址address写入一个字节ddata 调用方式:unsigned char ReadIIC_24CXX(enum EEPROMTYPE eepromtype,unsigned int address) ﹫2001/09/18 函数说明:读取IIC芯片24CXX,指定地址address的数据。 -----------------------------------------------------------------------------------------------------------------*/ #include "" #include "" sbit SCL= P2^7; sbit SDA= P2^6; enum EEPROMTYPE {IIC24C01,IIC24C01A,IIC24C02,IIC24C04,IIC24C08,IIC24C16,IIC24C32,IIC24C64,IIC24C128 ,IIC24C256}; enum EEPROMTYPE eepromtype; delay() { unsigned int i=1200; while(i--); } /*---------------------------------------------------------------------------- 调用方式:write_8bit(unsigned char ch) ﹫2001/03/23 函数说明:内函数,私有,用户不直接调用。 -------------------------------------------------------------------------------*/ void write_8bit(unsigned char ch)

24C02数据读写

一这物行时每如一、认识IIC 这是最常用、物理结构上,行信息 传输。时钟。信息传每个器件都有如:存储器)C 总线的工作方最典型的II IIC 系统由一。在数据传输传输的对象和方有一个唯一的地。发送器或接方式 C 总线连接方一条串行数据输时,由主机初方向以及信息地址,而且可 接收器可以在IIC 时方式。 据线SDA 和一条初始化一次数息传输的开始可以是单接收的 在主模式或从模时序24C02的 条串行时钟线数据传输,主和终 止均由的器件(例如 模式下操作,的操作 线SCL 组成。主机使数据在S 主机决定。如:LCD 驱动器 这取决于芯片 主机按一定的SDA 线上传输 器)或者可以接 片是否必须启的通信协议向输的同时还通过接收也可以发启动数据的传从机寻址和进过SCL 线传输发送的器件(例传输还是仅仅被进输例被

寻1I 在低2I 寻址。 1.总线上数据IIC 总线是以在时钟线高电低电平时,才2.总线上的信IIC 总线在传据的有效性 串行方式传输电平期间数据线才允许数据线上信号 送数据过程中输数据,从数据线上必须保持上的电平状态 中共有四种类据字节的最高持稳定 的逻辑态变化,如图 类型信号,它们高位开始传送,辑电平状态,11-2所示。 们分别是:开,每一个数据位高电平为数据 开始信号、停止 位在SCL 上都据1,低电平为 止信号、重新都有一个时钟为数据0。只新开始信号和应脉冲相对应。有在时钟线为应答信号。 为

开的停停重之所开始信号(STA 的时候,例如停止信号(STO 停止信号,结重新开始信号之前,主机通所示,当SCL ART):如图1如,没有主动设OP):如图11结束数据通信。号(Repeated S 通过发送重新开L 为高电平时,1-3所示,当设备在使用总-3所示,当。 START):在I 开始信号,可,SDA 由高电当SCL 为高电总线(SDA 和S SCL 为高电平IC 总线上,由可以转换与当 电平向低电平跳平时,SDA 由CL 都处于高电平时,SDA 由低由主机发送一前从机的通信 跳变,产生重由高电平向低电电平),主机通低电平向高电一个开始信号启信模 式,或是 重新开始信号,电平跳变,产通过发送开始电平跳变,产生启动一次通信是切换到与另 ,它的本质就产生开始信号始(START)信号 生停止信号。信后,在首次另一个从机通信就是一个开始。当总线空闲号建立通信。主机通过发送次发送停止信号信。如图11-信号。 闲 送号3

E2PROM芯片24C02的读写程序

E2PROM芯片24C02的读写程序 一、实验目的: 给24C02的内部RAM写入一组数据,数据从24C02内部RAM的01h开始存放。然后再把这组数据读出来,检验写入和读出是否正确。 在这里我们给24C02中写入0、1、2的段码,然后把它读出来,送到数码管显示。 二、理论知识准备: 上面两个实验主要学习的是利用单片机的串口进行通讯,本实验要介绍的是基于I2C总线的串行通讯方法,下面我们先介绍一下I2C总线的相关理论知识。 (一)、I2C总线概念 I2C总线是一种双向二线制总线,它的结构简单,可靠性和抗干扰性能好。目前很多公司都推出了基于I2C总线的外围器件,例如我们学习板上的24C02芯片,就是一个带有I2C总线接口的E2PROM存储器,具有掉电记忆的功能,方便进行数据的长期保存。 (二)、I2C总线结构 I2C总线结构很简单,只有两条线,包括一条数据线(SDA)和一条串行时钟线(SCL)。具有I2C接口的器件可以通过这两根线接到总线上,进行相互之间的信息传递。连接到总线的器件具有不同的地址,CPU根据不同的地址进行识别,从而实现对硬件系统简单灵活的控制。 一个典型的I2C总线应用系统的组成结构如下图所示(假设图中的微控制器、LCD驱动、E2PROM、ADC各器件都是具有I2C总线接口的器件): 我们知道单片机串行通讯的发送和接收一般都各用一条线TXD和RXD,而I2C总线的数据线既可以发送也可以接受,工作方式可以通过软件设置。所以,I2C总线结构的硬件结构非常简洁。 当某器件向总线上发送信息时,它就是发送器,而当其从总线上接收信息时,又成为接收器。(三)、I2C总线上的数据传送 下面我们看看I2C总线是如何进行数据传送的。我们知道,在一根数据线上传送数据时必须一位一位的进行,所以我们首先研究位传送。 1、位传输 I2C总线每传送一位数据必须有一个时钟脉冲。被传送的数据在时钟SCL的高电平期间保持稳定,只有在SCL低电平期间才能够改变,示意图如下图所示,在标准模式下,高低电平宽度必须不小于4.7us。

STM32 模拟IIC读写24C02程序代码

STM32 模拟IIC读写24C02程序代码 引脚定义和配置: #define SCL GPIO_Pin_6 //24C02 SCL #define SDA GPIO_Pin_7 //24C02 SDA voidGPIO_Configuration(void) { RCC_APB2PeriphClockCmd( RCC_APB2Periph_USART1 |RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE, ENABLE); GPIO_InitStructure.GPIO_Pin = SCL; //24C02 SCL GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = SDA; //24C02 SDA 作为输出 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); } void AT24C02_SDA_IO_SET(unsigned char io_set) //SDA引脚输入输出设置 { if(io_set==0) { GPIO_InitStructure.GPIO_Pin = SDA; //24C02 SDA 作为输出 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); } else if(io_set==1) { GPIO_InitStructure.GPIO_Pin = SDA; //24C02 SDA 作为输入 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入

24c02典型程序

#include #include #include #define uchar unsigned char #define uint unsigned int #define adwrite 0xae //24c02地址(写) #define adread 0xaf //24c02地址(读) uchar num_wr[4]={'a','b','c','d'}; //存放写入数据(液晶显示abcd)//uchar num_rd[4]; //存放读24c02回的数据 /******************************************* 函数名称:delayms() 功能:延迟j毫秒 参数:char j 返回值:无 ********************************************/ void delayms(uchar j) { uint i; for(;j>0;j--) { for(i=0;i<125;i++) {;} } } /******************************************* 函数名称:rom_write() 功能:循环写进num个字节 参数:如下 返回值:无 ********************************************/ void rom_write(uchar date[],uchar address,uchar num) { uchar i; // 循环次数 iic_start(); iic_write(adwrite); // 24c02写地址 iic_ack(); iic_write(address); // 24c02起始存储地址写入可自动+1 iic_ack(); for(i=0;i

24c02存储多个数据

24c02存储多个数据 #include #include #define uint unsigned int #define uchar unsigned char sbit sda = P2 ^ 0; //IO口定义 sbit scl = P2 ^ 1; //此为待写入24c02的数据。为了便于验证结果,数组的内容为周期重复的。 char code music[] = { 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0,

0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0, 0x55, 0xaa, 0x0f, 0xf0 }; //由于最后还要讲这些数据读出送到P1口,故可发现P1口相连的led有规律地闪烁15个周期 uchar data buffer[100]; //用于缓存从24c02中读取的数据。 delay(unsigned int m) { unsigned int n, p; for (n = m; n>0; n--) for (p = 125; p>0; p--); } void nop() { _nop_(); _nop_(); }

STM32-24C02读写程序(亲自编写检验可用)

本文档内容为在STM32条件下的24C02读写程序。全文共分四部分,第一部分24C02的C程序,第二部分为24C02的.h程序,第三部分为端口与时钟配置函数,第四部分为主函数。下面分别进行介绍。 第一部分:24C02的.c函数 ******************************************************************************/ #include "stm32f10x.h" #include "system_config.h" #include "24C02.h" u8 savedata[10]={10,9,8,7,6,5,4,3,2,1}; /******************************************************************************* * Function Name : AT24C02_SDA_IO_SET(uchar io_set) * Description : SDA方向控制 * Input : None * Output : None * Return : None *******************************************************************************/ void AT24C02_SDA_IO_SET(unsigned char io_set) { GPIO_InitTypeDef GPIO_InitStructure; if(io_set) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 ;//SDA 设置为输出

24c02编写程序步骤

1、位传输 I2C总线每传送一位数据必须有一个时钟脉冲。被传送的数据在时钟SCL的高电平期间保持稳定,只有在SCL低电平期间才能够改变,示意图如下图所示,在标准模式下,高低电平宽度必须不小于4.7us。 开始信号:当SCL为高电平时,SDA发生从高到低的跳变,就定义为开始信号。 停止信号:当SCL为高电平时,SDA发生从低到高的跳变,就定义为结束信号。 2、数据传输的字节格式 SDA传送数据是以字节为单位进行的。每个字节必须是8位,但是传输的字节数量不受限制,首先传送的是数据的最高位。每次传送一个字节完毕,必须接收到从机发出的一个应答位,才能开始下一个字节的传输。如果没有接受到应答位,主机则产生一个停止条件结束本次的传送。那么从机应该发出什么信号算是产生了应答呢?这个过程是这样的。当主器件传送一个字节后,在第9个SCL时钟内置高SDA线,而从器件的响应信号将SDA拉低,从而给出一个应答位

3、I2C数据传输协议 I2C总线的数据传输协议如下: (1)、主器件发出开始信号 (2)、主器件发出第一个字节,用来选通相应的从器件。其中前7位为地址码,第8位为方向位(R/W)。方向位为“0”表示发送,方向位为“1”表示接受。 (3)、从机产生应答信号,进入下一个传送周期,如果从器件没有给出应答信号,此时主器件产生一个结束信号使得传送结束,传送数据无效。 (4)、接下来主、从器件正式进行数据的传送,这时在I2C总线上每次传送的数据字节数不限,但每一个字节必须为8位(传送的时候先送高位,再送低位)。当一个字节传送完毕时,再发送一个应答位(第9位),如上一条所述,这样每次传送一个字节都需要9个时钟脉冲。数据的传送过程如下图所示: 从左面的电路连接知:A2A1A0=000,可见如果要对 24C02进行写操作,寻址字节是1010 000 0;如果对24C02进行 读操作,寻址字节是1010 000 1。用单片机的P1.6脚作为串行时 钟线,用P1.7脚作串行数据线。

相关主题