搜档网
当前位置:搜档网 › 粉煤灰在混凝土中的作用及对混凝土性能影响的机理分析

粉煤灰在混凝土中的作用及对混凝土性能影响的机理分析

粉煤灰在混凝土中的作用及对混凝土性能影响的机理分析
粉煤灰在混凝土中的作用及对混凝土性能影响的机理分析

粉煤灰在混凝土中的作用及对混凝土性能

影响的机理分析

宁靖

(深圳市福盈混凝土实业有限公司,广东深圳20151027)

【摘要】本文对粉煤灰在混凝土中的作用及对混凝土性能影响的机理分析, 粉煤灰掺入混凝土后,不仅可以取代部分水泥,降低混凝土的成本,保护环境,而且能与水泥互补短长,均衡协合,改善混凝土的一系列性能,粉煤灰混凝土具有明显的技术经济效益。本人根据自己的实际经验,总结了一些方法,并且在施工中收到了良好的效果,供大家参考。

【关键词】粉煤灰;混凝土;作用;混凝土性能;机理分析

一、粉煤灰在混凝土中的机理分析

1、粉煤灰的形态效应粉煤灰的主要矿物组成是海绵状玻璃体,铝硅酸盐玻璃微珠,这些球状玻璃体表面光滑、粒度细,质地致密,内比表面积小,不仅使水泥浆需水量小,而且它们往往填充水泥浆体孔隙中,使混凝土密实性大大提高,或者在相同用水量的情况下,可增大流动性,改善和易性和可泵性。

2、粉煤灰的微集料效应。粉煤灰中的微细颗粒均匀分布在水泥颗粒之中,阻止了水泥

颗粒的相互粘聚,而处于分散状态有利于水化反应的进行,同时减少了用水量,硬化后混凝土孔隙率降低,使密实度得以提高。

3、粉煤灰的活性效应。粉煤灰的活性效应也称火山灰效应,粉煤灰中的活性成份SiO2(二氧化硅)和AI2O3(三氧化二铝)与水泥和石灰的水化产物在水溶液中发生反应,生成水化硅酸钙和水化铝酸钙,继而与石膏反应生成水化硫铝酸钙。上述这些反应几乎都是在水泥浆孔隙中进行的,大大降低了混凝土内部的孔隙率,改变了孔结构,提高了混凝土的密实度。

二、粉煤灰指标对混凝土性能的影响

粉煤灰对混凝土最直观的影响是新拌混凝土工作性能的需水量比,和对硬化混凝土的力学强度(强度活性指数)。

1.需水量对于粉煤灰的很多工程应用是非常重要的物理指标,它是指粉煤灰和水的混合物

达到某一流动度下所需要的水量,粉煤灰需水量越小工程利用价值就越大。有的学者采用下列函数表示粉煤灰需水量比Y与粉煤灰细度XM(45μm筛余%)、密度X2、烧失量X3的关系。

Y=104.3 X10.05 X2-0.261 X30.0054 (1.1) Thomas

根据比较多的实验给出需水量比Y与粉煤灰细度XM(45μm筛余%)之间的关系如下式。

当烧失量3~4%时 Y=88.76+ 0.25XM (1.2) 相关系数r=0.86

当烧失量5~11%时Y=89.32+ 0.38XM(1.3) 相关系数r=0.85

上述3个实验归纳式说明细粉煤灰可以降低粉煤灰的需水量比,其中的机理可能是磨细粉煤灰粉碎空心颗粒,释放内部的自由水分,另一方面也提高了粉煤灰的堆积密度所致,因此细磨粉煤灰是改善粉煤灰品质的一项技术措施。

从(1.1)式可以看出影响粉煤灰需水量比的另一因素是烧失量,烧失量越大粉煤灰的需水量比越大,对粉煤灰烧失量贡献最大的物质主要是有机成分的未燃尽的残碳和未变化或变化不

明显的煤粒。

K.Wesche试验粉煤灰掺量为20%,结果表明,随烧失量增加粉煤灰水泥砂浆的相对流动扩展度迅速降低,当烧失量超过10%时,粉煤灰的相对扩展度比基准水泥砂浆还低。烧失量对粉煤灰需水量比的影响是由于未燃尽的残碳的存在,主要以空心碳和网状碳的形貌存在,其存在的状态是单体形式、粘结在粉煤灰颗粒的表面、被包裹在粉煤灰颗粒中三种形式。这些粗大多孔的碳颗粒不仅使粉煤灰的需水量比增大,而且对混凝土的引气剂效果产生不利的影响,因为这些碳粒更容易吸附引气剂。因此掺加高烧失量粉煤灰通常需要更大计量的引气剂。此外高烧失量的粉煤灰因为含炭组分高的颗粒比较轻,在混凝土搅拌、运输和成型过程中容易浮到表面造成混凝土的离析。

由上可见,影响粉煤灰需水量比的因素主要为细度、烧失量。

细度:对和易性的影响主要体现在粘聚性方面,另外掺量过高对强度也有影响。对耐久性也有影响,细度大的粉煤灰耐久性差,实体中混凝土碳化较大。

烧失量:粉煤灰中的未燃碳是有害成分,烧失量越大,含碳量越高,混凝土的需水量就越大,从而导致水胶比提高,严重影响了粉煤灰效用的充分发挥,同时粉煤灰烧失量过高会严重影响对混凝土中含气量的控制。

需水量比:需水量比是核心,关系到外加剂掺量/混凝土需水量等。影响需水量比的因素除了烧失量和细度外,还有含珠率、微珠的粒形状等等因素,是“先天”条件所决定,难以“后天”弥补。

2.粉煤灰细度对混凝土强度的影响

细度是衡量粉煤灰品质的主要指标,粉煤灰细度大小,对所配制的混凝土性能影响很大。(1) 这是因为细灰中含有大量具有火山灰活性的玻璃微珠,当掺入混凝土中时,能与水泥水化析出的Ca(OH)2反应,生成水化硅酸钙和水化铝酸钙等胶凝物质。

(2) 它们在混凝土中,能起到滚珠作用、解絮作用和致密作用,从而减少混凝土的用水量改善和易性,提高密实性。

(3) 这些微珠,均匀分布于水泥浆体中,能增强硬化浆体的结构强度,改交了混凝土的均匀性,填充和细化了混凝土的孔隙和毛细孔(更多关于粉煤灰加气块的技术细节,请关注我们的微信公众平台:混凝土论坛及技术交流,微信号:sz2942530023,QQ交流:465427504,QQ 群 241904460)。所以,掺用这样的粉煤灰,不仅能取代部分水泥和细集料,降低成本,还能改善混凝土的性能,提高工程质量。而颗粒较粗的粉煤灰,多为海绵状多孔体、珠连体和没烧透的碳粒,其强度低、活性小,用于拌制混凝土,不但增加水泥浆体中的疏松颗粒,还会增加用水量,对砼质量有不良影响。为此,国内外有关用于混凝土的粉煤灰技术标准,多把“细度”列为首要考核指标。

三、粉煤灰在混凝土中的作用

粉煤灰是燃烧煤粉后收集到的灰粒,亦称飞灰,其化学成分主要是SiO2(45~65%)、Al2O3(20~35%)及Fe2O3(5~10%)和CaO(5%)等,粉煤灰掺入混凝土后,不仅可以取代部分水泥,降低混凝土的成本,保护环境,而且能与水泥互补短长,均衡协合,改善混凝土的一系列性能,粉煤灰混凝土具有明显的技术经济效益

1 掺入粉煤灰可改善新拌混凝土的和易性

新拌混凝土的和易性受浆体的体积、水灰比、骨料的级配、形状、孔隙率等的影响。掺用粉煤灰对新拌混凝土的明显好处是增大浆体的体积,大量的浆体填充了骨料间的孔隙,包裹并润滑了骨料颗粒,从而使混凝土拌和物具有更好的粘聚性和可塑性。

2 粉煤灰可抑制新拌混凝土的泌水

粉煤灰的掺入可以补偿细骨料中的细屑不足,中断砂浆基体中泌水渠道的连续性,同时粉煤灰作为水泥的取代材料在同样的稠度下会使混凝土的用水量有不同程度的降低,因而掺用粉

煤灰对防止新拌混凝土的泌水是有利的。

3 掺用粉煤灰,可以提高混凝土的后期强度

有试验资料表明,在混凝土中掺入粉煤灰后,随着粉煤灰掺量的增加,早期强度(28天以前)逐减,而后期强度逐渐增加。粉煤灰对混凝土的强度有三重影响:减少用水量,增大胶结料含量和通过长期火山灰反应提高强度。

当原材料和环境条件一定时,掺粉煤灰混凝土的强度增长主要取决于粉煤灰的火山灰效应,即粉煤灰中玻璃态的活性氧化硅、氧化铝与水泥浆体中的Ca(OH)2作用生成碱度较小的二次水化硅酸钙、水化铝酸钙的速度和数量。粉煤灰在混凝土中,当Ca(OH)2薄膜覆盖在粉煤灰颗粒表面上时,就开始发生火山灰效应。但由于在Ca(OH)2薄膜与粉煤灰颗粒表面之间存在着水解层,钙离子要通过水解层与粉煤灰的活性组分反应,反应产物在层内逐级聚集,水解层未被火山灰反应产物充满到某种程度时,不会使强度有较大增长。随着水解层被反应产物充满,粉煤灰颗粒和水泥水化产物之间逐步形成牢固联系,从而导致混凝土强度、不透水性和耐磨性的增长,这就是掺粉煤灰混凝土早期强度较低、后期强度增长较高的主要原因。

4 掺粉煤灰可降低混凝土的水化热

混凝土中水泥的水化反应是放热反应,在混凝土中掺入粉煤灰由于减少了水泥的用量可以降低水化热。水化放热的多少和速度取决于水泥的物理、化学性能和掺入粉煤灰的量,例如,若按重量计用粉煤灰取代30%的水泥时,可使因水化热导致的绝热温升降低15%左右。众所周知,温度升高时水泥水化速率会显著加快,研究表明:与20℃相比,30℃时硅酸盐水泥的水化速率要加快1倍。一些大型、超大型混凝土结构,其断面尺寸增大,混凝土设计强度等级提高,所用水泥强度等级高,单位量增大,施行新标准后水泥的粉磨细度加大,这些因素的叠加,导致混凝土硬化过程温升明显加剧,温峰升高,这是导致许多混凝土结构物在施工期间,模板刚拆除时就发现大量裂缝的原因。粉煤灰混凝土可减少水泥的水化热,减少结构物由于温度而造成的裂缝。

5 掺粉煤灰可改善混凝土的耐久性

在混凝土中掺粉煤灰对其冻融耐久性有很大影响。当粉煤灰质量较差,粗颗粒多,含碳量高都对混凝土抗冻融性有不利影响。质量差的粉煤灰随掺量的增加,其抗冻融耐久性降低。但当掺用质量较好的粉煤灰同时适当降低水灰比,则可以收到改善抗冻性的效果。水泥混凝土中如果使用了高碱水泥,会与某些活性集料发生碱集料反应,会引起混凝土产生膨胀、开裂,导致混凝土结构破坏,而且这种破坏会继续发展下去,难以补救。近年来,我国水泥含碱量的增加、混凝土中水泥用量的提高及含碱外加剂的普遍应用,更增加了碱集料反应破坏的潜在危险。在混凝土中掺加粉煤灰,可以有效地防止碱集料反应,提高混凝土的耐久性。

更多关于粉煤灰的技术细节,请关注我们的微信公众平台:混凝土论坛及技术交流,微信号:sz2942530023,QQ交流:465427504,QQ群 241904460

粉煤灰配合比设计)

粉煤灰混凝土配合比设计 混凝土中掺人适量的粉煤灰,既可降低工程施工成本,改善混凝土的和易性、可泵性,增加混凝土的黏性,减少混凝土离析与泌水,又可使混凝土的凝结时间相对延长,坍落度损失减小,降低水化热,减少或消除混凝土中碱集料反应的危害。但也存在粉煤灰品质波动大,混凝土早期强度偏低的缺点。若在配合比设计时,对原材料、粉煤灰取代率及超掺量系数作正确选择,其混凝土能满足设计施工要求。本文论述桥梁结构中C25灌注桩、承台,C30墩帽及墩身,C40、C50后张法预应力混凝土箱梁的粉煤灰混凝土配合比设计,原材料选择及施工注意事项。 1 原材料 (1)粉煤灰:用于混凝土的粉煤灰按其品质分为I、Ⅱ、Ⅲ3个等级,主要技术指标见表1。 桥梁结构混凝土配合比设计时,选择I、Ⅱ级粉煤灰,其中I级灰用于强度大于40 MPa的混凝土,Ⅱ级灰用于混凝土强度等级小于C30的桩基、承台、立柱、墩台帽工程。 粉煤灰活性:粉煤灰越细,比表面积越大,粉煤灰的活性就越容易被激发,因此,所用粉煤灰越细,混凝土早期强度越高、耐久性越好。 粉煤灰烧失量对需水性影响显著,随粉煤灰烧失量增加,粉煤灰的需水量增加,当烧失量大于10%时,粉煤灰对流动扩展度无有利作用;粉煤灰含碳量增高,烧失量增大,在混凝土搅拌、运送、成型过程,粉煤灰更容易浮到表面,影响混凝土的外观与内在质量。另外,由于烧失量增大,还会降低减水剂的使用效果。 需水量与粉煤灰的细度、烧失量也有一定的关系,一般来说粉煤灰需水量越小,对混凝土性能越有利。粉煤灰越细,需水量越小;烧失量越大,需水量也越大。所以粉煤灰的需水量指标可以综合反映出粉煤灰的性能。 含水量过高,会降低粉煤灰的活性,直接影响使用效果。 SO3含量影响混凝土的强度增长极限和凝结时间,同时粉煤灰中SO3 含量过多还可能造成硫酸盐侵蚀。 (2)水泥:混凝土强度等级小于C30时,选用32.5或42.5的普通硅酸盐水泥;混凝土强度等级大于C30时,选用42.5或52.5的硅酸盐水泥或普通硅酸盐水泥。 (3)黄砂:满足Ⅱ类砂要求的条件下,优先选择级配良好的江砂或河砂。因为江砂或河砂含泥量少,砂中石英颗粒含量较多,级配一般都能满足要求。山砂中含泥量较大,且含有较多风化颗粒,一般不能使用。砂的细度模数控制在2.4

粉煤灰对混凝土性能影响

粉煤灰对混凝土性能影响 粉煤灰是在燃煤电厂烟囱中收集的灰尘,在从高温到温度急剧下降的过程中形成了大量表面光滑的球状玻璃体,其颗粒比水泥细,比表面积很大,因此具有很大的活性。主要化学成分是无定型的Al2O3、SiO2,在碱性环境下极易发生反应,生成凝胶,而水泥水化过程中产生的Ca(OH)2正提供了这样的碱性环境,使粉煤灰在混凝土中的应用成为可能,并且对混凝土的性能有很大的影响! 1.粉煤灰对水泥的水化和强度的影响 1.1提高混凝土的强度 虽然由于粉煤灰的水化速度慢而会导致混凝土的早期强度偏低,但粉煤灰混凝土的最终强度肯定不会低于普通混凝土。粉煤灰的活性是在碱性环境下才能激发出来的,因此它的水化速度比水泥慢,待水泥水化后,粉煤灰和水泥水化后产生的Ca(OH)2反应形成硅酸钙凝胶,既改善了水泥石和粗骨料间的界面结构,增强了界面薄弱层,又对水泥石孔结构起到填实的作用,而且消耗了强度和稳定性都较差的Ca(OH)2,从而提高了混凝土的强度。 混凝土的工作性能主要表现在混凝土的流动性、粘聚性和保水性等方面。论文发表。粉煤灰掺入混凝土后,降低了混凝土的砂率,从而可以减少细骨料对运输管壁的摩擦;粉煤灰对水泥颗粒起到物理分散作用,使它们分布得更均匀,阻止了水泥颗粒的粘聚。这些都有效提高了混凝土的流动性。由于粉煤灰的活性是在水泥水化后的碱性环境中被激发的,因此它并不参加初期的水化反应,在相同水胶比和胶凝材料用量的情况下,就相对提高了混凝土水化初期的水灰比,从而提高了混凝土的流动性和粘聚性。粉煤灰延缓了初期的水化反应,还可以明显减少坍落损失,满足混凝土运输、浇筑的要求。粉煤灰在混凝土中可以弥补水泥用量和细集料的细粉部分的不足,有利于提高混凝土的保水性,还可以堵截泌水的通道,从而减少泌水现象。粉煤灰有效地改善了混凝土的工作性能,提高了混凝土的施工质量,也使混凝土的自密实和高可泵性成为可能。 1.2对水泥水化的影响 水泥浆体各个龄期的化学结合水含量均随着粉煤灰的增加而降低,但是水泥浆体各个龄期的等效化学结合水量却随着粉煤灰掺入的增加而逐渐的增大。粉煤灰的掺入加速了硅酸盐水泥的水化速度,却减缓了水泥—粉煤灰体系的水化进程。 这主要是粉煤灰取代水泥导致水泥熟料减少,有效的水灰比增大而产生的稀释作用,稀释作用促进了水泥熟料的水化。此外粉煤灰的二次水化效应使得粉煤灰于Ca(OH)2发生化学反应形成低钙硅比的水化硅酸钙,水化铝酸钙和水化硫酸钙,在粉煤灰颗粒表面形成了薄层C-S-H凝胶,增大了化学结合水量。但是,粉煤灰取代了部分的水泥,减少了水泥—石灰石粉体系中水泥熟料的含量,导致了体系的水化速度减慢,化学结合含水量的降低。 因此,粉煤灰对结合含水量的影响可以归结为两个方面:意识粉煤灰消耗水泥的水化产物Ca(OH)2,形成C-S-H凝胶,并且粉煤灰对新拌浆体中的水泥颗粒的分散,解聚作用能够促进水泥的水化,增加结合水的含量,即正效应;二是,水泥含量随着粉煤灰的掺量的增加而降低,水泥水化结合水含量也相应的减少,即负效应! 2.粉煤灰对混凝土孔隙率的影响 粉煤灰的掺入能够有效的降低混凝土的总孔隙率,但是28d时,随粉煤灰掺入量的增加,混凝土中大孔(孔径在30nm以上)孔隙率占总孔隙率的比例有所增加。随龄期的增加,粉煤灰混凝土中总孔隙率和大孔于总孔德比例下降的较普通混凝土明显。论文发表。论文发表。28d时,粉煤灰掺量增加,混凝土强度有所下降,这主要是由于粉煤灰混凝土中大孔比例增加所致。随龄期的增加,粉煤灰混凝土的强度将会超过普通混凝土。粉煤灰掺入混凝土中,参与二次水化反应,填充与水化产物间,降低了混凝土孔隙率,提高了混凝土的密实性,强度也提高了 3.需注意的几个问题 3.1粉煤灰在混凝土中的适宜掺量

浅谈粉煤灰对混凝土强度的影响.

广东建材2008年第4期 1前言 粉煤灰又称飞灰,是指燃煤电厂中磨细煤粉在锅炉 中燃烧后从烟道排出,被收尘器收集的物质,粉煤灰呈灰褐色,通常呈酸性,比表面积在2500~7000cm2/g,尺寸从几百微米到几微米,通常为球状颗粒,我国大多数粉煤灰的主要化学成分为:SiO240%~60%;Al2O315%~40%;Fe2O34%~20%;CaO2%~7%;烧失量3%~10%。此外,还有少量的Mg、Ti、S、K、Na等氧化物。我国是产煤和烧煤大国,火电厂每年排放的粉煤灰总量逐年增长,预计2005年排粉煤灰量约2亿吨左右,如果这些粉煤灰得不到利用,将污染环境,影响气候,破坏生态。从目前有关资料来看,粉煤灰在建筑工程和基础工程的应用,是最主要的利用方式,也是提高其利用率的根本途径。至今比较成熟的技术和已建成生产线的有:粉煤灰加气混凝土、粉煤灰混凝土、粉煤灰砌筑水泥、粉煤灰硅酸盐水泥、粉煤灰粘土砖、粉煤灰硅酸盐砌块、粉煤灰地面砖、粉煤灰免烧砖、粉煤灰筑路和粉煤灰充填等,由此可见,开发研究以粉煤灰为掺合料的混凝土具有重要意义,配 制粉煤灰混凝土是粉煤灰综合利用的主要途径之一[1] 。 2粉煤灰的主要性质 2.1火山灰效应 粉煤灰的矿物相主要是铝硅玻璃体,含量一般为50%~80%,是粉煤灰具有火山灰活性的主要组成部分,其含量越多,活性越高,其矿物结构为硅氧四面体、铝氧四面体和铝氧三面体,该结构的聚合度很大,键能很高,因而在通常状态下,粉煤灰所表现出的活性很低。粉煤灰的化学活性在于铝硅玻璃体在碱性介质中,OH-

离子打破了Si-O,Al-O键网络,降低了硅氧、铝氧聚合度,并与水泥水化产生的Ca(OH)2发生反应,生成水化硅酸钙 和水化铝酸钙,其化学方程式: XCa(OH)2+SiO2+nH2O→XCaO?SiO2?nH2O YCa(OH)2+Al2O3+mH2O→YCaO?Al2O3?mH2O 粉煤灰的火山灰活性表现出来的技术性质为:①反 应是缓慢的,所以放热速率和强度发展也相应较慢。②反应消耗了层状结构的Ca(OH)2生成了致密结构的水化硅酸钙和水化铝酸钙,粒径细化有利于提高混凝土的强度。③反应产物极为有效地填充了大的毛细空间,孔 径细化使混凝土的强度和抗渗性能得到改善[2]。 2.2微集料效应 细度是衡量粉煤灰品质的主要指标,通常用0.08mm或0.045mm方孔筛余量表示。粉煤灰的细度对混凝土的性能影响很大。粉煤灰的颗粒越细,微小玻璃球形颗粒越多,比表面积也越大,粉煤灰中的活性成分也就越容易和水泥中的Ca(OH)2化合,其活性就越高。另外,随着细度的增加,粉煤灰的比重增大,标准稠度需水量减小,浆体的密实度及强度增大,同时,由于粉煤灰的密度小于水泥30%以上,从而增加了灰浆体积,足量的灰浆填充在混凝土孔隙空间,覆盖和润滑骨料颗粒,增加了拌合物的粘聚力和可塑性,改善了混凝土的和易性,加上细小的粉煤灰颗粒可以填充未水化水泥颗粒空隙,形成更加密实的结构,这些都有利于提高混凝土的强度。 2.3形态效应 优质的粉煤灰中的玻璃珠粒形完整,表面光滑,粒

粉煤灰混凝土强度增长特性研究.

第36卷第3期山 2010年1月文章编号:100926825(2010)0320185203 SHANXI ARCHITECTURE 西建 Vol.36No.3筑 Jan.2010 ?185? 粉煤灰混凝土强度增长特性研究 丁义海 摘要:通过试验对不同粉煤灰掺量、不同强度等级混凝土与空白混凝土的强度增长特性进行了研究,并进行了对比分 析,得出了高强度混凝土和低强度混凝土的粉煤灰最优掺量,从而达到提高混凝土 强度的目的。关键词:粉煤灰,混凝土,强度特性,掺量中图分类号:TU528文献标识码:A 粉煤灰(简称FA)是在发电时燃烧已被磨得很细的煤粉所产 生的渣滓,是一种具有潜在火山灰活性的物质。在普通混凝土中添加适量的粉煤灰,能有效地改善混凝土的力学性能,降低温升、节约水泥、控制污染[1]。目前粉煤 灰混凝土在工程中的应用逐步广泛,但现有文献资料显示,这些应用的粉煤灰混凝 土不能合理地根据粉煤灰混凝土早期强度推算混凝土强度等级,从而不能判定混凝土质量,这是目前粉煤灰混凝土应用亟待解决的问题[2]。本文在采用陕西地产材 料的条件下,用高强度等级水泥、高效减水剂,加入以超细粉煤灰进行了粉煤灰混 凝土的配制试验研究,并测定了不同龄期粉煤灰混凝土强度,为粉煤灰混凝土在工 程中的应用进行了基础试验工作。 水泥:陕西秦岭水泥有限公司生产的秦岭牌P.O42.5R和P.O32.5R水泥;粉煤灰:陕西新型建筑材料有限公司生产的超细粉煤灰;外加剂:上海麦斯特产ST28CN型减水剂;粗集料:西安临潼区产花岗岩,粒径5mm~25mm连续级配碎石,表观密度为2695kg/m3,压碎指标为8.2%,含泥量0.2%;砂:西安沣河产中粗砂,细度模数2.9,表观密度为2665kg/m3,级配合格,含泥量0.8%;水:自来水。 1.2试验方案

粉煤灰在混凝土中的作用及对混凝土性能影响的机理分析

粉煤灰在混凝土中的作用及对混凝土性能 影响的机理分析 宁靖 (深圳市福盈混凝土实业有限公司,广东深圳20151027) 【摘要】本文对粉煤灰在混凝土中的作用及对混凝土性能影响的机理分析, 粉煤灰掺入混凝土后,不仅可以取代部分水泥,降低混凝土的成本,保护环境,而且能与水泥互补短长,均衡协合,改善混凝土的一系列性能,粉煤灰混凝土具有明显的技术经济效益。本人根据自己的实际经验,总结了一些方法,并且在施工中收到了良好的效果,供大家参考。 【关键词】粉煤灰;混凝土;作用;混凝土性能;机理分析 一、粉煤灰在混凝土中的机理分析 1、粉煤灰的形态效应粉煤灰的主要矿物组成是海绵状玻璃体,铝硅酸盐玻璃微珠,这些球状玻璃体表面光滑、粒度细,质地致密,内比表面积小,不仅使水泥浆需水量小,而且它们往往填充水泥浆体孔隙中,使混凝土密实性大大提高,或者在相同用水量的情况下,可增大流动性,改善和易性和可泵性。 2、粉煤灰的微集料效应。粉煤灰中的微细颗粒均匀分布在水泥颗粒之中,阻止了水泥 颗粒的相互粘聚,而处于分散状态有利于水化反应的进行,同时减少了用水量,硬化后混凝土孔隙率降低,使密实度得以提高。 3、粉煤灰的活性效应。粉煤灰的活性效应也称火山灰效应,粉煤灰中的活性成份SiO2(二氧化硅)和AI2O3(三氧化二铝)与水泥和石灰的水化产物在水溶液中发生反应,生成水化硅酸钙和水化铝酸钙,继而与石膏反应生成水化硫铝酸钙。上述这些反应几乎都是在水泥浆孔隙中进行的,大大降低了混凝土内部的孔隙率,改变了孔结构,提高了混凝土的密实度。 二、粉煤灰指标对混凝土性能的影响 粉煤灰对混凝土最直观的影响是新拌混凝土工作性能的需水量比,和对硬化混凝土的力学强度(强度活性指数)。 1.需水量对于粉煤灰的很多工程应用是非常重要的物理指标,它是指粉煤灰和水的混合物 达到某一流动度下所需要的水量,粉煤灰需水量越小工程利用价值就越大。有的学者采用下列函数表示粉煤灰需水量比Y与粉煤灰细度XM(45μm筛余%)、密度X2、烧失量X3的关系。 Y=104.3 X10.05 X2-0.261 X30.0054 (1.1) Thomas 根据比较多的实验给出需水量比Y与粉煤灰细度XM(45μm筛余%)之间的关系如下式。 当烧失量3~4%时 Y=88.76+ 0.25XM (1.2) 相关系数r=0.86 当烧失量5~11%时Y=89.32+ 0.38XM(1.3) 相关系数r=0.85 上述3个实验归纳式说明细粉煤灰可以降低粉煤灰的需水量比,其中的机理可能是磨细粉煤灰粉碎空心颗粒,释放内部的自由水分,另一方面也提高了粉煤灰的堆积密度所致,因此细磨粉煤灰是改善粉煤灰品质的一项技术措施。 从(1.1)式可以看出影响粉煤灰需水量比的另一因素是烧失量,烧失量越大粉煤灰的需水量比越大,对粉煤灰烧失量贡献最大的物质主要是有机成分的未燃尽的残碳和未变化或变化不

粉煤灰的技术要求

粉煤灰的技术要求 1.1 分级及技术要求 1.1.1 用于水工混凝土的粉煤灰分为Ⅰ级、Ⅱ级、Ⅲ级三个等级,其技术要求应符合 下表 项目 技术要求Ⅰ级 Ⅱ级Ⅲ级细度(45μm方孔筛筛余) % F类粉煤灰≤12.0 ≤25.0 ≤45.0 C类粉煤灰需水量比 % F类粉煤灰≤95 ≤105 ≤115 C类粉煤灰烧失量 % F类粉煤灰≤5.0 ≤8.0 ≤15.0 C类粉煤灰含水量 % F类粉煤灰≤1.0 C类粉煤灰三氧化硫 % F类粉煤灰≤3.0 C类粉煤灰游离氧化钙 % F类粉煤灰≤1.0 C类粉煤灰≤4.0 安定性 C类粉煤灰 合格 1.1.2 粉煤灰的放射性应合格。 1.1.3 当粉煤灰用于活性骨料混凝土时,需限制粉煤灰的碱含量,其允许值应经实验论证确定。粉煤灰的碱含量以钠当量(Na2O+0.658K2O)计。 1.1.4 宜控制粉煤灰的均匀性,粉煤灰的均匀性可用需水量比或细度为考核依据。 1.2 标识 1.2.1 粉煤灰生产厂应按批检验,并向用户提交每批粉煤灰的检验结果及出厂产品合格证。 1.2.2 出厂粉煤灰应标明产品名称、类别、等级、生产方式、批号、执行标准号、生产厂名称和地址、出厂日期。袋装粉煤灰还应标明净质量。 1.3 检验与验收 1.2.1 对进场的粉煤灰应按批次取样检验。粉煤灰的取样以连续供应是相同等级、相同种类的200t为一批,不足200t者按一批计。 1.2.2 取样要具有代表性,从不同的部位取样,粉煤灰的品质检验按现行国家和有关行业标准进行。 1.2.3 对进场的粉煤灰抽取的检验样品,应留样封存,并保留3个月。当有争议时,对留洋进行复检或仲裁检验。 1.2.4 每批F类粉煤灰应检验细度、需水量比、烧失量、含水量.三氧化硫和游离氧化钙可按5-7个批次检验一次。每批C类粉煤灰应位验细度、需水量比、烧失量、含水量、游离氧化钙和安定性,三氧化硫可按5-7个批次检脸一次。 1.4 保管 1.4.1 粉煤灰的储存应设置专用料仓或料库,分类分级存放.井应采取防尘、防溯措施。 1.4.2 粉煤灰的运输、储存、使用应遥免对环境的污染。

粉煤灰对混凝土性能有何影响

粉煤灰具有三大效应: (1)表面效应:粉煤灰表面可吸附浆体中的某些离子,有利于粉煤灰固化混凝土中的某些有害离子以及作为晶核形成水化产物。 (2)填充效应:粉煤灰与水泥颗粒粒径的差异可以填充水泥和骨料孔隙中,减小混凝土的孔隙率,增加混凝土密实性; (3)火山灰活性效应:粉煤灰中的活性SiO2与水泥水化产物CH发生二次反应,生成C-S-H凝胶填充骨料—水泥浆体界面层孔隙,改善混凝土界面结构,提高强度和耐久性。 劣质粉煤灰的主要特点是: 玻璃珠体少,需水量大,使用后易造成混凝土泌水或滞后泌水,降低混凝土的工作性能,易导致混凝土28d强度不足,后期强度增长低,造成混凝土工程质量不合格。 优质粉煤灰对混凝土的性能影响 (1)工作性能 粉煤灰可以改善胶凝材料体系的颗粒级配,降低空隙率,释放水泥颗粒间的“填充水”,改善混凝土工作性。 粉煤灰中含有大量球形玻璃体,起到“滚珠、轴承”润滑效应,减少颗粒间的摩擦力,改善混凝土的工作性。 粉煤灰活性大大低于水泥活性,可以降低混凝土坍落度损失。优质粉煤灰对外加剂的吸附低于水泥,使用优质粉煤灰相当于增加外加剂用量,混凝土初始坍落度及保持能力都有提高。 粉煤灰的密度小于水泥,等量取代水泥后,混凝土中的浆体量增加,改善混凝土的粘聚性,提高抗离析能力,减水泌水,改善混凝土工作性能,使混凝土具有更好的流动性、密实性、匀质性,便于混凝土的施工。 (2)力学性能 粉煤灰自身不能进行水化反应,只能与水泥水化产物进行二次水化,因此,用粉煤灰等量替代水泥后,早期强度将会降低,随着二次水化的进行,中后期会达到甚至超过不掺粉煤灰的混凝土。随着粉煤灰替代水泥量的增加,早期强度逐渐降低,但掺加粉煤灰的混凝土后期强度增长较快,而且在一定范围内(<50%)随粉煤灰掺量增加而增大。(3)

粉煤灰在混凝土中的作用

粉煤灰在混凝土中的作用 粉煤灰是燃烧煤粉后收集到的灰粒,亦称飞灰,其化学成分主要是SiO2(45~65%)、Al2O3(20~35%)及Fe2O3(5~10%)和CaO(5%)等,粉煤灰掺入混凝土后,不仅可以取代部分水泥,降低混凝土的成本,保护环境,而且能与水泥互补短长,均衡协合,改善混凝土的一系列性能,粉煤灰混凝土具有明显的技术经济效益 1 掺入粉煤灰可改善新拌混凝土的和易性 新拌混凝土的和易性受浆体的体积、水灰比、骨料的级配、形状、孔隙率等的影响。掺用粉煤灰对新拌混凝土的明显好处是增大浆体的体积,大量的浆体填充了骨料间的孔隙,包裹并润滑了骨料颗粒,从而使混凝土拌和物具有更好的粘聚性和可塑性。 2 粉煤灰可抑制新拌混凝土的泌水

粉煤灰的掺入可以补偿细骨料中的细屑不足,中断砂浆基体中泌水渠道的连续性,同时粉煤灰作为水泥的取代材料在同样的稠度下会使混凝土的用水量有不同程度的降低,因而掺用粉煤灰对防止新拌混凝土的泌水是有利的。 3 掺用粉煤灰,可以提高混凝土的后期强度 有试验资料表明,在混凝土中掺入粉煤灰后,随着粉煤灰掺量的增加,早期强度(28天以前)逐减,而后期强度逐渐增加。粉煤灰对混凝土的强度有三重影响:减少用水量,增大胶结料含量和通过长期火山灰反应提高强度。 当原材料和环境条件一定时,掺粉煤灰混凝土的强度增长主要取决于粉煤灰的火山灰效应,即粉煤灰中玻璃态的活性氧化硅、氧化铝与水泥浆体中的Ca(OH)2作用生成碱度较小的二次水化硅酸钙、水化铝酸钙的速度和数量。粉煤灰在混凝土中,当Ca(OH)2薄膜覆盖

在粉煤灰颗粒表面上时,就开始发生火山灰效应。但由于在Ca(OH)2薄膜与粉煤灰颗粒表面之间存在着水解层,钙离子要通过水解层与粉煤灰的活性组分反应,反应产物在层内逐级聚集,水解层未被火山灰反应产物充满到某种程度时,不会使强度有较大增长。随着水解层被反应产物充满,粉煤灰颗粒和水泥水化产物之间逐步形成牢固联系,从而导致混凝土强度、不透水性和耐磨性的增长,这就是掺粉煤灰混凝土早期强度较低、后期强度增长较高的主要原因。 4 掺粉煤灰可降低混凝土的水化热 混凝土中水泥的水化反应是放热反应,在混凝土中掺入粉煤灰由于减少了水泥的用量可以降低水化热。水化放热的多少和速度取决于水泥的物理、化学性能和掺入粉煤灰的量,例如,若按重量计用粉煤灰取代30%的水泥时,可使因水化热导致的绝热温升降低15%左右。众所周知,温度升高时水泥水化速

粉煤灰对混凝土的作用

粉煤灰对混凝土的作用文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

粉煤灰的燃烧过程:煤粉在炉膛中呈悬浮状态燃烧,燃煤中的绝大部分可燃物都能在炉内烧尽,而煤粉中的不燃物(主要为)大量混杂在高温烟气中。这些不燃物因受到高温作用而部分熔融.同时由于其面张力的作用,形成大量细小的球形颗粒。在尾部引风机的抽气作用下,含有大量灰分的烟气流向炉尾。随着烟气温度的降低,一部分熔融的细粒因受到一定程度的急冷呈体状态,从而具有较高的潜在活性。在引风机将烟气排入大气之前,上述这些细小的球形颗粒,经过除尘器,被分离、收集,即为粉煤灰。 粉煤灰是我国当前较大的工业废渣之一。现阶段我国年排渣量已达3000万t。随着工业的发展,燃煤电厂的粉煤灰排放量逐年增加。大量的粉煤灰不加处理,就会产生扬尘,污染大气;若排入系会造成河流淤塞,而其中的有毒物质还会对人体和造成危害。因此粉煤灰的处理和利用问题引起人们广泛的注意。 粉煤灰的三大效应 我国着名学者沈旦申、张荫济先生早在上世纪80年代总结国内外大量研究成果,提出粉煤灰《三大效应》理论,科学全面的阐述了粉煤灰在混凝土及粉煤灰制品中的作用和机理。对指导我国粉煤灰综合利用起到了积极的作用。 一、粉煤灰的“形态效应” 在显微镜下显示,粉煤灰中含有70%以上的玻璃微珠,粒形完整,表面光滑,质地致密。这种形态对混凝土而言,无疑能起到减水作用、致密作用和匀质作用,促进初期水泥水化的解絮作用,改变拌和物的流变性质、初始结构以及硬化后的多种功能,尤其对泵送混凝土,能起到良好的润滑作用。 二、粉煤灰的“活性效应” 粉煤灰的“活性效应”因粉煤灰系人工火山灰质材料,所以又称之为“火山灰效应”。因粉煤灰中的化学成份含有大量活性SiO2及Al2O3,在潮湿的环境中与Ca(OH)2

[全]粉煤灰品质对混凝土性能的影响

粉煤灰品质对混凝土性能的影响 (一)粉煤灰品质对混凝土性能的影响 1.对混凝土拌和物性能的影响 对混凝土和易性影响。在优质(如I级)粉煤灰中含有许多微小的球形颗粒,如同“滚球作用”,能够减小混凝土中较大的骨料之间啮合的摩阻力,减少用水量,-般优质粉煤灰可减少用水量5% ~8%。另外,由于粉煤灰的密度较低(只相当于水泥密度的2/3),在用等量粉煤灰取代水泥时,掺加了粉煤灰的混凝土体积中胶凝材料增加,从而增大了混凝土的塑性。由于优质粉煤灰具有减水作用,使用水量降低,同时粉煤灰的微小颗粒也能改善混凝土内部结构。这些微小粒子使混凝土内部原先相互连通的孔隙被其阻隔,内部自由水不易流动,泌水性能得到改善,富有黏聚性,从而提高拌和物的和易性和稳定性。这种良好的和易性,对于泵送混凝土十分有利。因此,在泵送混凝土中掺加一定数量粉煤灰,不仅能改善混凝土的可泵性;节约水泥,还能延长泵送机械的使用寿命。但是,混凝土中掺加粉煤灰后,由于含碳量增加,多孔结构的碳粒具有较强的吸附能力,能减少拌和物中含气量。比如在碾压混凝土中由于粉煤灰掺量较多,往往要使其达到- -定含气量,必须沉源上多数信的引气别。掺加粉煤厌的混凝土的凝结时间也会延长,而且随着掺加量增力加而延长。

2.对混凝凝土强度的影响. 粉煤灰对强度的影响取决于其减水效果和火山灰效应。优质粉煤灰减水效果明显,在是的和易性和胶材用最条件下,减水意味着减小水胶比,有利于提高强度,而粉煤灰自身的胶凝性比水泥小,必须在有激发剂下产生二次水化反应。因此,掺加粉煤灰的混凝土表现为期强度发展缓慢,后期增长率高的特点。掺加粉煤灰混凝土的3d.7 d强度低于不掺的为混凝土.但是到了90 d,粉煤灰的水化反应加快,可能接近或达到不掺粉煤灰的混凝土。随着龄期延长,,粉煤灰的活性发挥更快些,到180d 就有可能超过不掺粉煤灰的混凝土。这对水工混凝土建筑物来说,利用其后期强度的发展,有利于混凝土性能改善和提高。根据一些工程资料统计,粉煤灰混凝土抗压强度发展如图所示。 粉煤灰对混凝土的抗拉强度影响与对抗压强度影响相似。 3.对混凝土温升的影响 在等量取代水泥时,水泥水化热随粉煤灰掺量增加而降低,水化热降幅小于掺量。比如在42.5级中热水泥中掺30% I级粉煤灰,7 d水化热降低约15%,掺40%时降低约25%,掺50%时降低约32%,掺60%时降低约43%。掺粉煤灰减小水泥水化热,也就是降低混凝土温升,粉煤灰不仅降低温升,,还具有削减温峰和推迟最

粉煤灰对混凝土强度及弹性模量值的影响

3.5 错台处治 对于完好的混凝土板与板之间发生错台,处治方法为采用压浆抬板并辅以磨平法。对于板块因脱空下沉,在压浆完毕弯沉检测满足其要求后,仍有错台的板块采用磨平机磨平(对高差小于10mm的错台,直接用磨平机磨平;对大于10mm的错台,借助人工将高出的错台板基本凿平,然后再用磨平机磨平。),从错台最高点开始向四周扩展,边磨边用 3m直尺找平,直至相邻两块板齐平为止。磨平后,将接缝内杂物清除干净,并吹净灰尘,及时用聚氨酯填缝料填缝。 3.6 接缝维修 对于纵横向接缝填缝料采用填缝料进行重新灌缝处理;灌缝时将缝内碎屑及杂物用勾子清除,并将专用填缝料灌入缝内。 3.7 混凝土板块病害处治合格的标准 经过对混凝土板块病害的处理后,砼的弯拉强度不低于5MPa;采用落锤式弯沉仪FWD逐板检测板角处的弯沉,满足不同荷载下弯沉曲线的截距小于 30mm、单点弯沉小于0.14mm,相邻板块的弯沉差小混凝土路面结构内部。 4.2 加铺层材料选择 沥青的添加剂、改性剂伴随着沥青在道路工程 上的使用而逐渐发展起来,现在市场上有各种各样 的添加剂、改性剂来有针对性地改善沥青的各种性 能。如纤维就是一种典型的已经证明能有效抑制反 射裂缝的添加剂,它可以提高沥青混合料的抗拉强 度从而减少反射裂缝。 罩面层常采用的已经证明对抑制反射裂缝有良 好效果的改性沥青有橡胶改性沥青、SBS改性沥青 等。由于橡胶沥青当时在省内没有生产成规模、质 量较稳定的橡胶沥青厂家,因此采用SBS改性沥青。 同时采用改性沥青和纤维的沥青玛蹄脂碎石SMA 性能优良,不但具有良好的高温稳定性具有良 好的抗反射裂缝能力。因此经过综合比较,三环路 采用SBS改性沥青玛 蹄脂碎石SMA作为路面抗滑表 层 4.3 加铺层厚度设计 我国现行规范并没用白改黑加铺层厚度设计内 容。根据国内外使用经验,较厚的加铺层厚度能减 轻反射裂缝的产生。 沥青面层厚度对防治或减轻反射裂缝的原因有 两点: (1)沥青面层越厚,原水泥混凝土面板的温缩 应力将减小; (2)反射裂缝通过较厚的沥青面层需要较长的 时间。 但较厚的沥青面层需要花费较高的费用,且根 据国内外的研究资料来看,仅仅依靠增加罩面层厚 度来防治反射裂缝的尝试仅部分成功,且最少厚度 必须在15cm以上才有明显效果[6]。对于我国超载情 况较严重的实际情况,单靠增 加沥青层厚度来防治“白加黑”水泥面板的反射裂 缝显然是不现实的。因此,三环路加铺层厚度的设 计根据交通荷载、提高路面平整度以及抗反射裂缝 的要求综合确定采用10cm沥青混凝土加铺层。 粉煤灰对混凝土强度及弹性模量值的影响 达生润 (四川济通水运公路工程检测有限责任公司成都610225) 【摘 助。 要】通过分析粉煤灰对混凝土强度及弹性模量值的影响,为优化混凝土配合比提供一定的帮 【关键词】混凝土强度;弹性模量;粉煤灰;掺量 性模量的影响。 在水胶比及其他因素不变的情况下,调整粉煤 灰掺量,用以判断粉煤灰对混凝土强度和混凝土弹 性模量的影响。 根据试验方案设计配合比进行数据收集见表1。 表1 设计配合比汇总表 0前言 伴随科学技术的发展,工程技术和各种社会需求 也不断增长,工程中使用的混凝土除了保证工程质量 以外,还要追求较高的经济价值和实用性。这样,多 组分混凝土在实际生产过程中的应用也越来越普及。 现代工程施工中的混凝土主要以强度,坍落度作为控 制指标外,经常还需要规定混凝土的抗渗、抗冻、以 及弹性模量值。在计算钢筋混凝土的变形,裂缝扩展 及大体积混凝土的温度应力时,施工单位都需要准确 了解对应混凝土的弹性模量值。在施工过程中,也经 常出现混凝土强度达到设计要求而弹性模量偏低,使 混凝土构件变形较大而不能正常使用,导致混凝土结 构失衡而发生工程质量事故。本文主要讨论粉煤灰对 混凝土强度及混凝土弹性模量的影响。 4加铺沥青面层施工 沥青罩面层的厚度一般根据交通量的情况取 5cm及以上。由于水泥混凝土面板强度较高,作为基层路面的结构强度一般能满足要求,关键是如何防止沥青加铺层产生反射裂缝。 4.1 应力吸收中间层 在水泥面板处治合格后考虑设置抗反射裂中间层材料。常见的有各类土工类材料,用于防止反射裂缝实际工程中的效果报道相差较大,从没有效果,甚至因为使用不当造成水损坏等反作用,到效果优越的都有报道。因此使用这类材料时应根据具体的裂缝病害选择合适的材料,在施工中应认真细致,不要造成材料的卷起或不平,特别是土工布类材料使用时候要让沥青浸透,否则还会起到相反的效果。 根据历史资料及使用经验,三环路选择采用橡胶沥青同步碎石应力吸收层作为盈利吸收层使用,这种结构具有优良的柔韧性和粘结性,可抑制和减缓水泥混凝土路面接缝引起的反射裂缝,同时也是一层优良的防水层,可以有效地防止路表水分渗入 1 1.1 试验情况及其设计原理 原材料 水泥:广西东泥股份有限公司生产的P.0 42.5各 2试验数据分析 根据设计试验方案收集整理出的数据见表2。 表2 不同实验方案混凝土的力学性能指标汇总表 项技术指标均符合国家标准的规定。 细骨料:田阳那坡镇机制砂场生产的机制砂, 细度模数2.8。 粗骨料:可袍采石场山碎石,5~31.5mm连续级 配。粉煤灰:广西田东创源股份有限公司生产 的F类 粉煤灰。 搅拌方式:采用120型生产用强制式搅拌机。 1.2 试验方案 在粉煤灰掺量及其他因素不变的情况下,调整 水胶比,用以判断粉煤灰对混凝土强度和混凝土弹 5结束语 三环路路面整治工程于2011年6月27日开 始,于 同年9月20日结束,施工仅用了不足3个月的时 间。 通过各种性能指标的检测,取得(下转第34 序号 1d抗压 强度代表 值(MPa) 3d抗压 强度代表 值(MPa) 7d抗压 强度代表 值(MPa) 28d抗压 强度代表 值(MPa) 28d弹性 模量代表 值(MPa) 56d抗压 强度代表 值(MPa) 90d抗压 强度代表 值(MPa) A17.3011.3715.4925.563422325.6828.03 B17.3011.2618.1626.613528436.2639.51 C114.1021.2126.8933.063832644.2543.85 A2 4.907.1010.5618.503037522.7924.70 B2 5.809.9113.3225.703330727.9837.39 C211.3017.5022.2733.303808940.2041.96 A3 3.60 5.959.0516.252953920.9623.77 B3 5.507.9913.2025.282900730.8436.05 C38.3013.0417.9233.133745435.0040.05 序号 设计 标准 水泥用 量(kg) 粉煤灰 用量(k g) 粉煤灰 参量(%) 细集料 用量(k g) 粗集料 用量(k g) 水用量 (kg) 水胶比 A1C20266662077711201780.54 B1C30317792076410561930.49 C1C40349872073210551860.43 A2C202321003077711201780.54 B2C302771193076410561930.49 C2C403051313073210551860.43 A3C201991334077711201780.54 B3C302381584076410561930.49 C3C402621744073210551860.43

粉煤灰对商品砼表面强度影响的研究

粉煤灰对商品砼表面强度影响的研究 摘要:对某些混凝土表面硬度低的实例进行分析的基础上,进行了生产性试验验证,论述了粉煤灰对混凝土表面硬度的影响及某些混凝土表面硬度偏低的原因。关键词:粉煤灰;表面硬度;泌水;含碳量目前,由于粉煤灰质量及配比、施工养护等方面的原因,使许多人认为掺灰混凝土的表面硬度必然偏低。这种观念阻碍了粉煤灰在混凝土中的应用。例如一些商品混凝土搅拌站在路面混凝土中不敢掺用粉煤灰或者只掺很小比例的粉煤灰。他们担心掺加粉...... 摘要:对某些混凝土表面硬度低的实例进行分析的基础上,进行了生产性试验验证,论述了粉煤灰对混凝土表面硬度的影响及某些混凝土表面硬度偏低的原因。关键词: 粉煤灰;表面硬度;泌水;含碳量目前,由于粉煤灰质量及配比、施工养护等方面的原因,使许多人认为掺灰混凝土的表面硬度必然偏低。这种观念阻碍了粉煤灰在混凝土中的应用。例如一些商品混凝土搅拌站在路面混凝土中不敢掺用粉煤灰或者只掺很小比例的粉煤灰。他们担心掺加粉煤灰会影响混凝土的回弹强度,以致在某些可能会现场回弹检测的结构部位不掺或少掺粉煤灰。本文结合我们近年遇到的有关混凝土表面硬度问题的典型实例进行分析,并做了大量模拟试验,以探讨粉煤灰对混凝土表面硬度的影响和某些混凝土表面疏松的原因。 1 典型实例实例1 某工程C50 混凝土构造柱,在验收过程中发现,混凝土回弹推定值刚满足C40 强度等级混凝土的要求,但随后钻芯取样表明,其强度值均在50MPa 以上,完全满足工程设计要求。类似的情况在近几年的监督检测、验收过程中时有出现,且都集中在C40 及以上强度等级的混凝土中。于是有人认为这是掺用粉煤灰影响了混凝土的表面硬度,有些搅拌站为避免纠纷,在工程重点部位尤其是需要通过回弹验收质量的部位限制粉煤灰掺量,但效果也并不明显。实例2 某厂区道路工程,采用C25 非泵送商品混凝土。水泥为立窑产普硅水泥,在混凝土中掺用10 % Ⅱ级粉煤灰。使用一段时间后发现局部路面起砂,且面层疏松。有人认为这是掺用大量粉煤灰所致。在当年的济南市混凝土企业技术交流会上,几家预拌混凝土企业一致反映使用上述水泥也出现过类似的情况,于是认为这是粉煤灰富集于混凝土表面所致。后来这几家搅拌站找到该水泥生产厂家时却发现该水泥生产时并未过多掺入粉煤灰,且主要掺合料也不是粉煤灰。 实例3 济南市某集团公司院内路面工程,使用C20 商品混凝土800余m3。投入使用后不到一个月,部分混凝土路面有“起粉”、“起砂露石”现象,混凝土表面硬度较低,局部甚至在清扫过程就能扫出大量粉尘,汽车驶过则出现“扬尘”。建设及施工单位怀疑混凝土强度不合格,但质检部门对“起砂露石”较严重部位的混凝土钻芯取样检验表明,其强度完全符合设计施工要求。于是有人认为是混凝土中粉煤灰质量较轻,过振后富集于新拌混凝土表面,导致表面硬度下降,造成“起粉”。但混凝土生产厂家对此认为,他们所用水泥为大厂旋窑水泥,一部分掺粉煤灰10 % ,另一部分则未掺加粉煤灰。施工日志及混凝土厂家生产记录表明,未掺灰的混凝土也有起粉现象。至于该配比已多次用于路面混凝土工程,并未出现过类似现象。实例4 2001 年施工的某公司厂房地面工程,厚度10cm ,采用C20 商品混凝土。施工后一个月,发现局部混凝土表面疏松,干燥处也出现“起粉”现象,另外一部

粉煤灰对混凝土性能的作用

粉煤灰对混凝土性能的作用 1、粉煤灰是燃煤电厂中磨细煤粉在锅炉中燃烧后从烟道排出、被收尘器收集的物质。粉煤灰混凝土是指掺加粉煤灰的混凝土,包括用水泥厂生产中掺粉煤灰的硅酸盐水泥制备的混凝土。通常所讲的粉煤灰混凝土是指配制混凝土混合料时将粉煤灰作为一种组分加入搅拌机配制而成的混凝土。粉煤灰作为一种重要而已被普遍利用的混凝土辅料,一般具备改变基准混凝土的新拌、硬化和使用诸性能的能力。随着对粉煤灰认识的逐渐深入,人们充分认识到利用粉煤灰已不仅仅是取代水泥、节约能源以及减少环境污染的问题,粉煤灰已经成为对混凝土改性的一种重要组分。 2、粉煤灰的特性 2.1粉煤灰的物理性质 粉煤灰的比重在1.95~2.36之间,松干密度在450 kg/m3~700kg/m3范围内,比表面积在220 kg/m3~588 kg/m3之间。由于粉煤灰的多孔结构、球形粒径的特性,在松散状态下具有良好的渗透性,其渗透系数比粘性土的渗透系数大数百倍。粉煤灰在外荷载作用下具有一定的压缩性,同比粘性土其压缩变形要小的多。粉煤灰的毛细现象十分强烈,其毛细水的上升高度与压实度有着密切关系。粉煤灰是一种高度分散的微细颗粒集合体,主要由氧化硅玻璃球组成,根据颗粒形状可分为球形颗粒与不规则颗粒。球形颗粒又可分为低铁质玻璃微珠与高铁质玻璃微珠,若据其在水中沉降性能的差异,则可分出飘珠、轻珠和沉珠;不规则颗粒包括多孔状玻璃体、多孔碳粒以及其他碎屑和复合颗粒。 2.2粉煤灰的化学成分粉煤灰是一种火山灰质材料,来源于煤中无机组分,而煤中无机组分以粘土矿物为主,另外有少量黄铁矿、方解石、石英等矿物。因此粉煤灰化学成分以氧化硅和氧化铝为主(含量约氧化硅48%,氧化铝含量约27%),其他成分氧化铁、氧化钙、氧化镁、氧化钾、氧化钠、三氧化硫及未燃尽有机质(烧失量)。不同来源的煤和不同燃烧条件下产生的粉煤灰,其化学成分差别很大。 3、粉煤灰对混凝土施工性能的影响 掺加粉煤灰可以改变混凝土和易性,增加混凝土粘性,减少离析与泌水,降低由于水化热带来的混凝土温度升高,减少或消除混凝土中碱基料反应,同时,

关于粉煤灰对混凝土影响的探讨

龙源期刊网 https://www.sodocs.net/doc/1c14098980.html, 关于粉煤灰对混凝土影响的探讨 作者:卢炳旭 来源:《商品与质量·学术观察》2013年第03期 摘要:自改革开放以来,我国的市场经济得到了快速的发展,城市化进程也随之加快,当建筑物在人们身边不断竣工的同时,建筑的质量问题也成为社会关注的焦点。本文作者从实际工作出发,就粉煤灰对混凝土的影响问题进行了全面的阐述。 关键词:粉煤灰;混凝土;试验;影响 一、前言 作为混凝土常用掺料的粉煤灰,具有本身材料再利用的经济价值,也符合当前对环保的要求,具备降低污染、节省能源的特点。然而如果不分析粉煤灰对混凝土的影响,盲目的加大使用量,不仅不能有效达到取代胶凝材料的作用,而且对混凝的强度,持久性、稳定性也会受到影响。只有在反复试验中取得科学可靠数据合理使用,才能达到预期效果。 二、原材料和试验方法 2.1 原材料 2.1.1 水泥:采用P. O 42. 5祁连山水泥; 2.1.2 粉煤灰:采用平凉电厂的Ⅰ级粉煤灰; 2.1.3 砂:平凉泾川Ⅱ区中砂; 2.1.4 石:粒径为5~25 mm 的陕西长武碎石; 2.1.5 外加剂:山西桑穆斯聚羧酸减水剂,掺量为胶凝总量的1.2%。 2.2 试验方案 在普通混凝土中,影响混凝土抗压强度的主要因素为水泥强度等级和水灰比。同样我们可以认为在粉煤灰混凝土中,影响混凝土抗压强度的主要因素为胶凝材料强度和水胶比。本试验中,胶凝材料强度近似转化为粉煤灰掺量来表示。为了缩短试验时间,保证研究质量,达到事半功倍的目的,我们采用了水胶比与粉煤灰掺量的双因子水平正交试验方法。参照J GJ / T55-2000、GBJ146-90、GBJ28-86技术规程中的有关规定,普通混凝土的水胶比一般为0.4~0.6,因而本试验中水胶比暂且取0.36,0.40,0.44;根据以往经验,在粉煤灰混凝土中粉煤灰掺量一般在20%~40%,我们把粉煤灰掺量定为10%,20%,30%,40%,50%五个值。

粉煤灰对混凝土的力学性能有什么影响

粉煤灰对混凝土力学性能的影响是一个很复杂的问题,这不仅取决于粉煤灰的品质,还取决于它的掺人方式。 (1)对于Ⅰ级粉煤灰,它的最显著特点是具有较强的减水作用 以固定水胶比的方式掺人粉煤灰,它的这一作用没有得到体现。由于粉煤灰的活性不及水泥熟料,特别是在早龄期,粉煤灰几乎不发生火山灰反应,因此,在早龄期,随着粉煤灰掺量的增加,混凝土压缩强度降低。在晚龄期,由于粉煤灰火山灰作用和对水泥熟料水化反应的促进作用,以及它的微集料效应,使得在较小掺量情况下,粉煤灰混凝土的压缩强度可以赶上和超过不掺粉煤灰混凝土的压缩强度,但当粉煤灰掺量较大时,粉煤灰混凝土的压缩强度则低于不掺粉煤灰混凝土的压缩强度。对于混凝土的拉伸强度和极限拉伸变形,它们与水泥浆体含量有着密切的关系。由于I级粉煤灰具有较强的减水作用,在固定水胶比下,混凝土用水量的减少必将伴随着胶材用量的减少,使得水泥浆体含量减少。因此,以这种方式掺入Ⅰ级粉煤灰,混凝土的拉伸强度和极限拉伸变形必然降低。以固定胶材用量的方式掺人I级粉煤灰,它的减水作用体现在降低水胶比上。水胶比是混凝土力学性能的最敏感因素,水胶比的降低将使得混凝土力学性能提高,这可以补偿水化反应的不足。因此,以这种方式掺用品质优良的I级粉煤灰可以在较大的范围内使混凝土强度提高,即便在较早的龄期,混凝土力学性能也不会显著地降低。对于拉伸强度和极限拉伸变形,由于水泥浆体含量没有减少,硬化水泥石的性能有所提高,因而混凝土的拉伸强度和极限拉伸变形不会显著降低,甚至会有所提高。以粉煤灰取代砂的方式掺人工级粉煤灰,水泥用量没有减少,粉煤灰的活性毕竟高于砂,加之它的优良的形态效应和微集料效应,因而以这种方式掺入粉煤灰,混凝土力学性能必将提高。采取超量取代的方式掺人I级粉煤灰,它从提高胶材用量和减少用水量两个方面降低水胶比,一般说来,都将使混凝土力学性能提高,这与粉煤灰的超量取代系数有关。 (2)对于Ⅱ级粉煤灰,它的掺人对混凝土用水量影响不大 对于这种粉煤灰,固定水胶比的掺人方式与固定胶材用量的掺人方式是一致的。以这种方式掺人Ⅱ级粉煤灰,在早龄期,混凝土的力学性能随粉煤灰掺量的增加而降低;在晚龄期,如若掺量较小,则粉煤灰混凝土的力学性能可以赶上和超过不掺粉煤灰的混凝土,但若掺量较大,粉煤灰混凝土的力学性能则低于不掺粉煤灰的混凝土。用粉煤灰取代砂,可提高混凝土的力学性能。用Ⅱ级粉煤灰超量取代水泥,由于用水量基本不变,只有胶材用量的增加引起水胶比的变化,这是否能提高混凝土的力学性能,取决于粉煤灰的超代系数。 (3)对于Ⅲ级粉煤灰和等外粉煤灰,它们不仅没有减水作用,而且还显著增加混凝土用水量。 以固定水胶比方式掺人这种粉煤灰,它的这种负作用将被盖。尽管如此,由于粉煤灰活性远低于水泥,它的掺入仍将使混凝土压缩强度降低。这在早龄期尤其显著,而在晚龄期,小掺量粉煤灰混凝土的压缩强度可能赶上不掺粉煤灰混凝土的压缩强度,但大掺量时仍将低于不掺粉煤灰混凝土的压缩强度。对于混凝土的拉伸性能,尽管一般来说,掺较差粉煤灰混凝土的拉伸性能低于不掺粉煤灰混凝土的拉伸性能,但不像掺I级粉煤灰时那样明显,其原因是掺Ⅲ级粉煤灰和等外粉煤灰将导致混凝土用水量的显著增加,而在相同水胶比下,用水量的增加必将伴随着胶凝材料用量的显著增加。以固定胶凝材料用量方式掺人Ⅲ级粉煤灰和等外粉煤灰,伴随而来的不是水胶比的降低,而是水胶比的提高,因而将使得混凝土力学性能更大幅度的降低。以Ⅲ级粉煤灰和等外粉煤灰取代砂,或者采用超量取代方式掺人Ⅲ级粉煤灰,由于它将使混凝土用水量增加,因而都不能有效地提高混凝土的力学性能。

相关主题