搜档网
当前位置:搜档网 › 化工传递过程

化工传递过程

化工传递过程
化工传递过程

《化工传递过程导论》课程作业参考答案

《传递过程原理》课程第三次作业参考答案 1. 不可压缩流体绕一圆柱体作二维流动,其流场可用下式表示 θθθsin ; cos 22??? ? ??+=??? ? ??-=D r C u D r C u r 其中C ,D 为常数,说明此时是否满足连续方程。 解:由题意,柱坐标下的连续性方程一般表达式为: ()()11()0r z u ru u t r r r z θρρρρθ???? +++=???? 不可压缩流体:0t ρ ?=?且上式后三项可去除密度ρ 二维流动: ()0z u z ρ? =? 则连续性方程简化为: ()110r u ru r r r θ θ ??+=?? 22()111(cos )cos r ru C C r D D r r r r r r r θθ?????? =-=-- ? ??????? 22111(sin )cos u C C D D r r r r r θθθθθ?????? =+=+ ? ??????? 故:22()()1111cos cos 0r u ru C C D D r r r r r r r θθθθ??????+=--++= ? ??????? 由题意,显然此流动满足连续方程。 2. 判断以下流动是否可能是不可压缩流动 (1) ??? ??-+=--=++=z x t u z y t u y x t u z y x 222 (2) () () () ?????????? ?=-==-=22 221211t tz u xy u x y u z y x ρρρρ 解:不可压缩流动满足如下条件: 0y x z u u u x y z ???++=??? (1)2110y x z u u u x y z ???++=--=???故可能为不可压缩流动 (2)122(222)0y x z u u u t x x t x y z t ρρ???++=-+-=-=-≠???2t ρ=且。 显然不可能是不可压缩流动。 3. 对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体

《化工传递过程》课程教学大纲

《化工传递过程》课程教学大纲 一、课程说明 课程编码4302026 课程类别专业主干课 修读学期第五学期学分 2 学时48 课程英文名称Transfer Processes in Chemical Engineering 适用专业化学工程与工艺 先修课程物理化学、化工原理、化工热力学 二、课程的地位及作用 《化工传递过程》是针对化学工程与工艺方向的必修课。是一门探讨自然现象和化工过程中动量、热量和质量传递速率的课程。化学工程中各个单元操作均被看成传热、传质及流体流动的特殊情况或特定的组合,对单元操作的任何进一步的研究,最终都是归结为这几种传递过程的研究。将化工单元操作(化工原理)的共性归纳为动量、热量和质量传递过程(三传)的原理系统地论述,将化学工程的研究方法由经验分析上升为理论分析方法。各传递过程既有独立性又有类似性,虽然课程中概念、定义和公式较多,基本方程又相当复杂,给学习带来一定的困难,但可运用三传的类似关系进行研究理解,使学生掌握化学工程专业中有关动量、热量和质量传递的共性问题。该课程的学习有助于学生深入了解各类传递过程的机理,为改进各种传递过程和设备的设计,操作和控制提供理论基础;为今后的科学研究提供各种的基础数学模型;为速度、温度、浓度分布及传递速率的确定提供必要的帮助,为分析和解决过程工程和强化设备性能等问题提供坚实的理论基础。 三、课程教学目标 1. 侧重于熟悉掌握传递过程的各种基本理论;正确的提供所求强度量的分布规律及传递速率表达式; 2. 掌握传递过程的微分方程并达到能够熟练地运用方程的水平;

3. 能够正确地分析、简化三传基本微分方程;对实际情况建立必要的数学模型; 4. 了解传递过程的发展趋势、方向和其在化学工程中的具体运用领域; 5. 通过学习加深对化学工程基本原理的理解,使学生能顺利学习后续的专业课,提高自学与更新本专业知识的能力。 四、课程学时学分、教学要求及主要教学内容 (一) 课程学时分配一览表 章节主要内容总学时 学时分配讲授实践 第1章传递过程概论 2 2 0 第2章动量传递概论与动量传递微分方程 6 6 0 第3章动量传递方程的若干解 6 6 0 第4章边界层流动 6 4 0 第5章湍流 6 4 0 第6章热量传递概论与能量方程 6 6 0 第7章热传导 2 2 0 第8章对流传热 2 2 0 第9章质量传递概论与传质微分方程 4 4 0 第10章分子传质 4 4 0 第11章对流传质 2 2 0 第12章多种传递同时进行的过程 2 2 0 (二) 课程教学要求及主要内容 第一章传递过程概论 教学目的和要求: 1.流体流动的基本概念; 2.掌握传递过程的类似性; 3.传递过程的衡算方法。 教学重点和难点:

化工传递过程 试题-题 一

一.选择填空,将正确答案的标号填入括号内。(每空2分) 例: Re 数小于2000的管内流动是( a )。 a 层流 b 湍流 c 过渡流 1.采用拉格朗日导数描述大气压力变化时,θ D Dp 反映的应是置于(b )上的气压计的测量值。 a 高山顶 b 气球 c 飞机 2.进行流体微分能量衡算时,若采用随动坐标,可得到的结论是流体的( a )变化为零。 a 动能、位能 b 体积、密度 c 膨胀功、摩擦功 3.小雷诺数蠕动流求解中,(c )作用无关紧要,可以忽略。 a 动压力 b 粘滞力 c 惯性力 4. 小直径粒子自由沉降时,粒子所受流体总曳力中( a )。 a 以表面曳力为主 b 以形体曳力为主 c 形体曳力与表面曳力所占比例相等 5. 依据普兰特混合长理论,湍流附加应力可按( b )式计算。 a 2???? ??=dy du l ρτ b 2 2???? ??=dy du l ρτ c ??? ? ??=dy du l 2ρτ 6. 依据管内极度湍流流动时摩擦曳力计算式2 max 1142.0? ?? ? ??-=b u u f 可知,随雷诺数增加,摩擦系数f 的数值应该( c )。 a 逐渐增加 b 逐渐减小 c 趋于恒定 7. 采用数值解求解一维非稳态导热问题时,( b )边界n 处节点温度方程为:1-='n n t t 。 a 对流 b 绝热 c 与其他物体相接的导热 8. 管内流动时,若摩擦系数与对流传热系数均趋于稳定则表明边界层内速度与温度分布属于( c )。 a 发展着的速度分布和温度分布 b 充分发展了的速度分布和发展着的温度分布 c 充分发展了的速度分布和温度分布 9. A 组分通过静止的B 组分稳态单向扩散时,两组份的分子扩散通量的关系应该是:( b )。 a B A J J -> b B A J J -= c B A J J -<

反应工程课程教学大纲

《化工传递过程》课程教学大纲 第一部分:课程基本信息 一、课程名称:化工传递过程/TRANSPORT PROCESSES IN CHEMICAL ENGINEERING 二、课程性质:硕士研究生学位课(专业方向课) 三、适用专业:应用化学、化学工程、生物化工等专业 四、先修课程:化工原理、化工热力学、化工数值计算等课程 五、学时学分:36学时,2学分 六、教学方法:课堂讲授 七、考核方法:考试 第二部分:教学目标 本课程为技术基础课,是化学工程与工艺专业的骨干课程。通过该课程的学习,使学生掌握动量、热量传递和质量传递的基本原理、传递速率的计算、相关数学模型的建立及求解,掌握速度、浓度及温度分布规律,能针对具体问题对模型方程进行简化,了解解决实际传递问题的方法,为未来的科研和教学工作打下坚实的理论基础。 第三部分:教学内容 第一章传递过程概论 一、传递过程的基本概念 第二章动量传递的变化方程 一、动量传递的两种方式 二、对流传递系数的定义式 三、对流传递系数求解的一般途径 第三章动量传递方程的若干解 一、层流流动时的动量传递方程 二、层流流动时的动量传递方程的典型求解 第四章传热概论与能量方程 一、热量传递的基本方式 二、传热过程的机理

三、能量方程的推导 第五章热传导方程 一、热传导方程的推导 二、热传导方程的求解方法 第六章对流传热方程 一、对流传热方程的推导 二、对流传热方程的求解方法 第七章传质概论与传质微分方程 一、质量传递的基本方式 二、传质的速度与通量 三、传质微分方程的推导 第八章分子传质 一、气体、液体和固体内部的分子扩散速率与通量 二、稳态扩散与等分子反方向扩散 第九章对流传质 一、平壁对流传质方程的求解 二、管内对流传质方程的求解 三、动量、热量与质量传递的类似性 第四部分:教材及参考书目 一、推荐教材 《化工传递过程》,谢舜韶,谷和平,肖人卓,化学工业出版社,2008年 二、参考书目 1.《化工传递过程基础》,王绍亭,化学工业出版社,1987年 2.《动量、热量与质量传递》,王绍亭,天津科技出版社,1988年 3.《传递现象导论》,戴干策,化学工业出版社,1996年

西安交通大学《化工传递过程》第二章 期末考试拓展学习7

西交《化工传递过程》第二章动量传递概论与动量传递微分方程 单元操作中常用的一些基本概念 在研究化工单元操作时,经常用到下列四个基本规律,即物料衡算,能量衡算,物系的平衡关系,传递速率等。这四个基本概念贯串于本课程的始终,在这里仅作简要说明,详细内容见各章。 1.物料衡算 依据质量守恒定律,进入与离开某一化工过程的物料质量之差,等于该过程中累积的物料质量,即 ∑m f - ∑m p = A (0-1) 式中:∑m f ——输入量的总和 ∑m p ——输出量的总和; A——∑累积量 对于连续操作的过程,若各物理量不随时间改变,即为稳定操作状态时,过程中不应有物料的积累。则物料衡算关系为: ∑m f =∑m p (0-2) 用物料衡算式可由过程的已知量求出未知量。物料衡算可按下列步骤进行:(1)首先根据题意画出各物流的流程示意图,物料的流向用箭头表示,并标上已知数据与待求量。(2)在写衡算式之前,要计算基准,一般选用单位进料量或排料量、时间及设备的单位体积等作为计算的基准。在较复杂的流程示意图上应圈出衡算的范围,列出衡算式,求解未知量。 例0-1 用连续操作的蒸发器把含盐浓度为(质量分率)的含盐水溶液蒸发到浓度为(质量分率)的浓盐水溶液,每小时含盐水溶液的进料量为Fkg。试求每小时所得浓盐水溶液量W及水分蒸发量V各为多少。 解:计算基准取1小时,由于是连续稳定操作, 总物料衡算式为F=V+W 由此两式解得 W=(x F /x w )F,V=(1-x F /x w )F 2.能量衡算 本教材中所用到的能量主要有机械能和热能。能量衡算的依据是能量守恒定律。机械能衡算将在第一章流体流动中说明;热量衡算也将在传热、蒸馏、干燥等章中结合具体单元操作有详细说明。热量衡算的步骤与物料衡算的基本相同。 3.物系的平衡关系

化工传递过程过程性考核(一) - 答案

化工传递Array过程过程 性考核试 卷 (一) 一.填空题(每空1分,本大题共41分) 1. 流体静力学基本方程的应用包括压力压差的测量、液位的测量和液封高度的计算。 2. 甲地大气压为100 kPa,乙地大气压为80 kPa。某刚性设备在甲地,其内部的真空度为25 kpa,则其 内部的绝对压强为75 kpa;若将其移至乙地,则其内部的表压强为-0.5 mH2O。 3. 流体流动有两种基本形态,即层流和湍流。判断流体流动形态的无量纲数群为雷诺数, 其表达形式为Re=duρ/μ,物理意义为表示流体惯性力与与黏性力比值。 4. 复杂管路分为分支管路和并联管路。 5. 常用的流量计中,孔板流量计和文丘里属于差压流量计;转子流量计属于截面流量计; 测速管可测量点速度。 6. 流体在圆形直管内做层流流动,若流量不变,将管径变为原来的两倍,则平均流速变为原来的1/4 , 流动摩擦系数变为原来的2倍,直管阻力损失变为原来的1/16 。 7. 流体在一套管环隙内流动,若外管内径为50 mm,内管外径为25 mm,则其流动当量直径为 25 mm.

8. 流体在圆形直管内做稳态层流流动,若管截面上平均流速为0.05 m/s ,则最大流速为 1.0 m/s 。 9. 联系各单元操作的两条主线为 传递过程 和 研究工程问题的方法论 。 10. 湍流边界层可以分为 层流底层 、 过渡层 和 湍流主体 ,其中传热、传质阻力主要集中在 层流底层 。 11. 随体导数的表达形式为 z u y u x u θz y x ??+??+??+??=θD D 。 12. 不可压缩流体连续性方程的一般表达形式为0=??u 。 13. 量纲分析的基础是 量纲一致性原则 和 π 定理。 14. 在研究流体的运动时,常采用两种观点,即 欧拉 观点和 拉格朗日 观点。 15. 牛顿黏性定律的表达形式为y u x d d μ τ-=。 16. 流体质点的运动轨迹称为 迹线;在某一时刻,在流线上任一点的切线方向与流体在该点的速度方向 相同 。 17. 流体在管路中的流动总阻力应为 直管 阻力和局部阻力之和,其中局部阻力的计算方法有 局部 阻力系数 法和 当量长度 法。 18. 流体静力学基本方程适用于 连通着的 、 同一种连续的 、 不可压缩 的静止流体。 二、单项选择题:(每空1分,本大题共8分) 在每小题列出的四个备选项中选出一个正确答案的代号填写在题后的括号内。 19. 流体在并联的两支管内层流流动,两支管的长度之比l 1: l 2=2: 1,内径之比d 1: d 2=1: 2,则两支管内的 流量之比Q 1: Q 2为( D ) A. 1/4 B. 1/8 C. 1/16 D. 1/32 20. 黏度为1 cP ,密度为800 kg/m 3的流体以16 m 3/h 的流量在Ф89 mm×4.5 mm 的管内流动,其流动雷诺数为( B ) A. 4.3×104 B. 5.7×104 C. 3.3×104 D. 7.8×104 21. 一般说来,温度升高,液体的黏度( B ),气体的黏度( A ) A. 升高 B. 降低 C. 不变 D. 不确定 22. 在摩擦系数图中,在层流区,摩擦系数λ与平均流速的( A )成正比;在完全湍流区,摩擦系数λ

化工传递过程答案

中国海洋大学继续教育学院命题专用纸 试题名称 :化工传递过程 学年学期: 2019学年第一学期 站点名称: 层次: 专业: 年级: 学号: 姓名: 分数: 一、选择题(共10小题,每小题4分,共40分) 1.粘性是指流体受到剪切作用时抵抗变形的能力,其原因是( B )。 a 组成流体的质点实质是离散的 b 流体分子间存在吸引力 c 流体质点存在漩涡与脉动 2. 连续方程矢量式中哈密顿算符“k z j y i x ?? +??+??= ?”的物理意义可以理解为计算质量通量的( C ) 。 a 梯度 b 旋度 c 散度 3.描述流体运功的随体导数中局部导数项 θ ?? 表示出了流场的( B )性。 a 不可压缩 b 不确定 c 不均匀 4.分析流体微元运动时,在直角坐标x-y 平面中,微元围绕z 轴的旋转角速度z ω正比于特征量( A )。 a y u x u x y ??- ?? b y u x u x y ??+?? c x u y u x y ??-?? 5.流体爬流流过球形固体时,流动阻力中形体阻力与表面阻力之比应为( C )。 a 1:1 b 1:2 c 2:1 6.推导雷诺方程时,i 方向的法向湍流附加应力应表示为( B )。 a i r ii u '-=ρτ b 2ιρτu r ii '-= c j i r ii u u ''-=ρτ 7.固体内发生非稳态导时,若固体内部存在明显温度梯度,则可断定传热毕渥准数Bi 的数值( A )0.1。 a 大于等于 b 等于 c 小于等于 8.依据普兰特混合长理论,湍流传热时,涡流热扩散系数h α可表示为( C )。 a dy du l h =α b 2 ??? ? ??=dy du l h α c dy du l h 2=α 9.流体流入溶解扩散管后形成稳定的湍流边界层,溶质溶解扩散进入流体,则沿管长方向对流传质系数的变化规律应是( B )。a 始终不变 b 先下降,后上升,最终趋于稳定 c 先上升,后下降,最终趋于稳定 10.利用雷诺类似求解湍流传质问题的前提是假定( C )。a 1S >c b 1

完整word版,化工传递过程 试题与解答 一

1.粘性是指流体受到剪切作用时抵抗变形的能力,其原因是( b )。 a 组成流体的质点实质是离散的 b 流体分子间存在吸引力 c 流体质点存在漩涡与脉动 2. 连续方程矢量式中哈密顿算符“k z j y i x ??+??+??=?”的物理意义可以理解为计算质量通量的( c )。 a 梯度 b 旋度 c 散度 3.描述流体运功的随体导数中局部导数项 θ ?? 表示出了流场的( b )性。 a 不可压缩 b 不确定 c 不均匀 4.分析流体微元运动时,在直角坐标x-y 平面中,微元围绕z 轴的旋转角速度z ω正比于特征量( a )。 a y u x u x y ??-?? b y u x u x y ??+ ?? c x u y u x y ??- ?? 5.流体爬流流过球形固体时,流动阻力中形体阻力与表面阻力之比应为( c )。 a 1:1 b 1:2 c 2:1 6.推导雷诺方程时,i 方向的法向湍流附加应力应表示为( b )。 a i r ii u '-=ρτ b 2ιρτu r ii '-= c j i r ii u u ''-=ρτ 7.固体内发生非稳态导时,若固体内部存在明显温度梯度,则可断定传热毕渥准数Bi 的数值( a )0.1。 a 大于等于 b 等于 c 小于等于 8.依据普兰特混合长理论,湍流传热时,涡流热扩散系数h α可表示为( c )。 a dy du l h =α b 2 ??? ? ??=dy du l h α c dy du l h 2=α 9.流体流入溶解扩散管后形成稳定的湍流边界层,溶质溶解扩散进入流体,

则沿管长方向对流传质系数的变化规律应是( b )。 a 始终不变 b 先下降,后上升,最终趋于稳定 c 先上升,后下降,最终趋于稳定 10.利用雷诺类似求解湍流传质问题的前提是假定( c )。 a 1S >c b 1

化工传递过程导论热量传递作业参考答案

《化工传递过程导论》课程第九次作业解题参考 第5章 热量传递及其微分方程 1. 某不可压缩的黏性流体层流流过与其温度不同的无限宽度的平板壁面。设流动为定态,壁温及流 体的密度、黏度等物理性质恒定。试由方程(5-13a)出发,简化上述情况的能量方程,并说明简化过程的依据。 解:课本(5-13a)式如下: 222222()x y z T T T T T T T u u u t x y z x y z α???????+++=++??????? 由题意可知,定态流动0T t ?? =?。在直角坐标系中,三维方向对应长、宽、高,题中“无限宽度的平板壁面”则可认为是在宽这个维度上无限,姑且设定此方向垂直于纸面且为z 方向,故可认为题意所指流动过程为二维流动,且 0z u = 且2200T T z z ??=?=?? 则(5-13a)式可简化为 2222()x y T T T T u u x y x y α????+=+???? 如果引入热边界层概念,则基于尺度和量级的考虑,可进一步简化上式为 22x y T T T u u x y y α???+=??? 其中,y 方向为垂直主流方向(x )的距壁面的距离。 2. 假定人对冷热的感觉是以皮肤表面的热损失(刘辉注:换言之,是传热或散热速率)作为衡量依 据。设人体脂肪层的厚度为3mm ,其内表面温度为36℃且保持不变。在冬天的某一天气温为-15℃。无风条件下裸露皮肤表面与空气的对流传热系数为25W/(m 2·K);有风时,表面对流传热系数为65W/(m 2·K)。人体脂肪层的导热系数k =0.2W/(m ·K)。试确定: (a) 要使无风天的感觉与有风天气温-15℃时的感觉一样(刘辉注:换言之,是传热或散热速率一样),则无风天气温是多少? (b) 在同样是-15℃的气温下,无风和刮风天,人皮肤单位面积上的热损失(刘辉注:单位面积上的热损失就是传热通量)之比是多少? 解:(a )此处,基本为对象是:人体皮下为脂肪层,层内传热为导热;体外或体表之外暴露在流动的空气中,紧邻表面之上为对流传热。上述导热和对流传热为串联过程,在定态下(如空气流动相

《化工传递过程原理》教学大纲

《化工传递过程原理》课程教学大纲 课程名称:化工传递过程原理/Chemical Transfer Process(中文/英文) 课程类别:专业课 学时/学分:32/2.0 开课单位:化学与制药工程系 开课对象:化学工程与工艺专业(本科) 选定教材:《化工传递过程基础》,陈涛,北京,化学工业出版社,2008。 参考书:《动量,热量与质量传递原理》,威尔特(美),北京,化学工业出版社,2005。 一、课程性质、目的和任务 《化工传递过程原理》是针对化学工程与工艺方向的必修课。是一门探讨自然现象和化工过程中动量、热量和质量传递速率的课程。化学工程中各个单元操作均被看成传热、传质及流体流动的特殊情况或特定的组合,对单元操作的任何进一步的研究,最终都是归结为这几种传递过程的研究。将化工单元操作(化工原理)的共性归纳为动量、热量和质量传递过程("三传")的原理系统地论述,将化学工程的研究方法由经验分析上升为理论分析方法。各传递过程既有独立性又有类似性,虽然课程中概念、定义和公式较多,基本方程又相当复杂给学习带来一定的困难,但可运用"三传"的类似关系进行研究理解,使学生掌握化学工程专业中有关动量、热量和质量传递的共性问题。 本课程的教学目的是了解和掌握三传现象的机理及其数学描述,建立微分方程。确定边界条件从而分别求出过程的解析、数值解或转化为准数关联式,培养学生分析和解决化学工程中传递问题的能力,为在工程上进一步改善各种传递过程和设备的设计、操作及控制过程打下良好的理论基础。具体为包括动量传递、热量传递和质量传递过程、非牛顿流体中的传递现象、粘弹性及广义牛顿流体连续性方程和运动方程及其应用、边界层方程及其应用、湍流理论评价、能量方程、对流传热的解析、温度边界层、平壁和楔形强制层流传热的数学描述、湍流传热的解析计算、自然对流的传热过程等。 二、课程内容的基本要求 本课程系统论述了化学工程中“三传”的基本原理,数学模型和求解方法,传递速率的理论计算,“三传”的类比及传递理论的工程应用等内容,全书共分三篇,共12章。 1、绪论。传递过程概论,阐述流体流动导论,了解三传的类似性和衡算方法。 2、第一篇(第2章~第5章)。动量传递,包括动量传递概论与动量传递微分方程,动量传递方程的若干解,边界层流动和湍流。了解平壁间的稳态平行层流,掌握圆管与套管环隙中的稳态层流及

化工传递过程

化工传递过程主观题 简述题 1. 如何从分子传递的角度理解三传之间存在的共性。 1. 答:从分子传递的角度出发,动量、热量、质量传递可分别以牛顿粘性定律,傅立叶定律和费克定律表示, ()dy u d ρντ-=、()dy t c d A q p ρα-=、dy d D J A AB A ρ-=,其物理意义分别为(动量、能量、质量)在(速度、温度、浓度)梯度的作用下从(高速、高温、高浓)区向(低速、低温、低浓)区转移,转移量与浓度梯度成正比。在数学上其可统一采用现象方程表示为: 物理量的通量=(-扩散系数)×(物理量的浓度梯度) 2.简述气液相间传质双膜模型。 2. 答:怀特曼(Whitman)1923年提出。在气液接触传质时,气液相间存在稳定的界面,界面两侧分别有一层稳定、停滞的气液膜。气液在界面上达到平衡,在膜内为分子扩散,传质系数正比于分子扩散系数,传质阻力集中于膜内。 计算题 1. 试求与速度势=2534x xy y ?-++相对应的流函数ψ。 1. 解:由4352++-=y xy x ? 可得y y x u x ?ψ?=-=??=53?,通过此式对y 积分得 )(2522x g y y +- =ψ x g x x y u y ??-=?ψ?-=-=??= 53?,可得 C x x g +-= 32 52 故 C x x y y +-+- =ψ32525222 2. 含乙醇(组分A)12%(质量分数)的水溶液,其密度为980kg/m 3,试计算乙醇的摩尔分数及物质的量浓度。

2. 解:乙醇的摩尔分数为: ()0507.018 /88.046/12.046/12.0//21=+==∑=i i i A A A M a M a x 溶液的平均摩尔质量为: kmol kg /42.19189493.0460507.0M =?+?= 乙醇的物质的量浓度为: 3/558.20507.042.19980m kmol x M Cx c A A A =?===ρ

《化工传递过程导论》课程作业参考答案

《传递过程原理》课程第三次作业参考答案 1. 不可压缩流体绕一圆柱体作二维流动,其流场可用下式表示 θθθsin ;cos 22??? ? ??+=???? ??-=D r C u D r C u r 其中C ,D 为常数,说明此时是否满足连续方程。 解:由题意,柱坐标下的连续性方程一般表达式为: ()()11()0r z u ru u t r r r z θρρρρθ????+++=???? 不可压缩流体:0t ρ?=?且上式后三项可去除密度ρ 二维流动:()0z u z ρ?=? 则连续性方程简化为:()110r u ru r r r θ θ??+=?? 22()111(cos )cos r ru C C r D D r r r r r r r θθ??????=-=-- ? ??????? 22111(sin )cos u C C D D r r r r r θθθθθ??????=+=+ ? ??????? 故:22()()1111cos cos 0r u ru C C D D r r r r r r r θθθθ??????+=--++= ? ??????? 由题意,显然此流动满足连续方程。 2. 判断以下流动是否可能是不可压缩流动

(1) ?????-+=--=++=z x t u z y t u y x t u z y x 222 (2) ()()()???????????=-==-=22221211t tz u xy u x y u z y x ρρρρ 解:不可压缩流动满足如下条件: 0y x z u u u x y z ???++=??? (1)2110y x z u u u x y z ???++=--=???故可能为不可压缩流动 (2)122(222)0y x z u u u t x x t x y z t ρρ???++=-+-=-=-≠???2t ρ=且。 显然不可能是不可压缩流动。 3. 对于下述各种运动情况,试采用适当坐标系的一般化连续性方程 描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。 (1) 在矩形截面流道内,可压缩流体作定态一维流动; (2) 在平板壁面上不可压缩流体作定态二维流动; (3) 在平板壁面上可压缩流体作定态二维流动; (4) 不可压缩流体在圆管中作轴对称的轴向定态流动;

西安交通大学18年9月课程考试《化工传递过程》作业考核试题

(单选题) 1: 流体处于手里平衡时指的是受到的()为零。 A: 表面力 B: 质量力 C: 压力 D: 合力 正确答案: (单选题) 2: 以下与涡流扩散系数无关的是()。 A: 流体性质 B: 湍动程度 C: 流道中的位置 D: 边壁粗糙度 正确答案: (单选题) 3: 不稳态热传导中给出任何时刻物体端面的温度分布的边界条件是() A: 第一类边界条件 B: 第二类边界条件 C: 第三类边界条件 D: 混合边界条件 正确答案: (单选题) 4: 温度边界层厚度()速度边界层厚度。 A: 大于 B: 等于 C: 小于 D: ABC都有可能 正确答案: (单选题) 5: 对流动流体中流体委员进行进行受力分析时,微元所受法向应力应该包括( ) A: 静压力和粘滞力 B: 静压力和体积力 C: 粘滞力和体积力 正确答案: (单选题) 6: 无界固体壁面上的稳态湍流主体速度分布形状为() A: 均匀分布 B: 线性分布 C: 抛物线 D: 对数 正确答案: (单选题) 7: 湍流边界层包括() A: 层流内层 B: 湍流核心 C: 层流内层、缓冲区和湍流核心 D: 层流内层和湍流核心 正确答案: (单选题) 8: 一流体以u0沿板层流流动,已知层流时的摩擦阻力系数为 f=1.328Re-1/2,当流速增为2u0时(仍为层流),阻力增为原来的()倍。 A: 4 B: 2.38 C: 2.83 D: 2 正确答案: (单选题) 9: 对于大Re数的流动问题,粘滞力的作用远()惯性力。 A: 大于 B: 等于 C: 小于

(单选题) 10: 斯蒂芬玻尔兹曼定律描述黑体辐射与物体热力学温度的()次方成正比 A: 1 B: 2 C: 3 D: 4 正确答案: (单选题) 11: 流体流入溶解扩散管后形成稳定的湍流边界层,溶质溶解扩散进入流体,则沿管长方向对流传质系数的变化规律应是()。 A: 始终不变 B: 先下降,后上升,最终趋于稳定 C: 先上升,后下降,最终趋于稳定 正确答案: (单选题) 12: Re数是()之比 A: 惯性力和粘性力 B: 惯性力和重力 C: 局部加速度和对流加速度 D: 压强梯度和惯性力 正确答案: (单选题) 13: 导热系数的单位是:() A: W/(m2.K) B: W/m2 C: W/(m.K) 正确答案: (单选题) 14: 在完全粗糙状态下,阻力系数与()有关。 A: 相对粗糙度 B: Re数 C: Re数和相对粗糙度 D: 粗糙度和Re数 正确答案: (单选题) 15: A: A B: B C: C 正确答案: (单选题) 16: 流体掠过平板对流传热时,在下列边界层各区中,温度降主要发生在()。 A: 主流区 B: 湍流边界层 C: 层流底层 正确答案: (单选题) 17: 充分发展的平壁间的层流平均速度与最大速度为()。 A: 1:2 B: 2:3 C: 1:3 D: 1:1 正确答案: (单选题) 18: 小雷诺数蠕动流求解中,惯性力作用()。 A: 无关紧要,可以忽略 B: 很重要,不能忽略 C: 有时候重要,有时候不重要 D: 不确定 正确答案: (单选题) 19: 热传导中的傅里叶数表示()

化工传递过程试题与解答二

一.选择填空,将正确答案的标号填入括号内。 ( 每空2分 ) 例: Re 数小于2000的管内流动是(层流 )。 1.采用拉格朗日导数描述大气压力变化时,θ D Dp 反映的应是置于( 气球 )上的气压计的测量值。 2.进行流体微分能量衡算时,若采用随动坐标,可得到的结论是流体的( 动能、位能)变化为零。 3.小雷诺数蠕动流求解中,( 惯性力)作用无关紧要,可以忽略。 4. 小直径粒子自由沉降时,粒子所受流体总曳力中( 以表面曳力为主 )。 5. 依据普兰特混合长理论,湍流附加应力可按( 2 2??? ? ??=dy du l ρτ)式计算。 6. 依据管内极度湍流流动时摩擦曳力计算式2 max 1142.0? ?? ? ??-=b u u f 可知,随雷诺数增加,摩擦系数f 的数值应该( 趋于恒定)。 7. 采用数值解求解一维非稳态导热问题时,( 绝热 )边界n 处节点温度方程为:1-='n n t t 。 8. 管内流动时,若摩擦系数与对流传热系数均趋于稳定则表明边界层内速度与温度分布属于( 充分发展了的速度分布和温度分布 )。 9. A 组分通过静止的B 组分稳态单向扩散时,两组份的分子扩散通量的关系应该是:( B A J J -=)。 10.若流体与固体壁面之间发生对流传质时,溶质从壁面进入流体将导致流动边界层厚度( 增大 ) 二.判断,在每题后括号内以“正”“误”标记。(每空2分) 例: Re 数小于2000的管内流动是层流( 正 ) 冯-卡门边界层动量积分方程不仅可以用于层流,也可用于湍流流动。( 正 ) 通过雷诺转换可知时均速度满足连续方程( 正 ) 毕渥准数Bi 的物理意义可以解释为固体内导热热阻与外表面对流传热热阻之比。( 正 ) 普兰特数Pr 等于1是动量传递与热量传递可以简单类比的必要条件。( 正 )

西安交通大学17年3月课程考试《化工传递过程》作业考核试题

西安交通大学17年3月课程考试《化工传递过程》作业考核试题 一、单选题(共30 道试题,共60 分。) 1. 拉格朗日观点选取的研究对象边界上物质和能量() A. 只能进不能出 B. 可以与外界传递 C. 只能出不能进 D. 不能进行传递 正确答案: 2. 采用时均化的处理方法描述湍流运动时,()速度的时均值为零。 A. 瞬时 B. 时均 C. 脉动 正确答案: 3. 热传导中的傅里叶数表示() A. 时间之比 B. 长度之比 C. 速度之比 D. 导热通量之比 正确答案: 4. 导热问题的第二类边界条件是() A. 已知物体边界上的温度分布 B. 已知物体边界上的热流密度 C. 已知物体表面与周围介质之间的换热情况 正确答案: 5. 若对一长度小于临界长度的平板,采用湍流阻力系数计算该板所受的摩擦阻力,则结果() A. 合理 B. 不合理 C. 偏大 D. 偏小 正确答案: 6. 对于大Re数的流动问题,粘滞力的作用远()惯性力。 A. 大于 B. 等于 C. 小于 正确答案:

7. 采用迹线描述流体的运动体现了() A. 拉格朗日分析观点 B. 欧拉分析观点 C. 与A,B均无关的分析观点 正确答案: 8. 在完全粗糙状态下,阻力系数与()有关。 A. 相对粗糙度 B. Re数 C. Re数和相对粗糙度 D. 粗糙度和Re数 正确答案: 9. 不可压缩流体平壁面间稳态层流流动速度分布方程形状为()。 A. 抛物线 B. 线性 C. 对数 D. 均匀分布 正确答案: 10. 计算细微颗粒在流体中所受曳力的斯托克斯方程( Stokes-Equation)的应用前提应该是粒子()沉降运动过程中. A. 加速 B. 匀速 C. 任意速度 正确答案: 11. 竖直平壁面上的降落液膜流动速度分布方程形状为()。 A. 抛物线 B. 线性 C. 对数 D. 均匀分布 正确答案: 12. 常压下20℃的空气,以15m/s的速度流过一温度为100℃的光滑平板壁面,则定性温度为() A. 20℃ B. 60℃ C. 100℃ D. 120℃ 正确答案: 13. 湍流边界层不包括() A. 层流内层 B. 缓冲区 C. 湍流核心 D. 爬流 正确答案: 14. 体系内部存在热传递是因为存在()。 A. 浓度梯度

化工传递过程基础习题.doc

第一章传质过程基础 一、选择与填空(30分,每空2分) 1.传质通量与相对应。 A Q/q ; B C/_4 . C C.jft . D C A 2.传质通量j,\与相对应。 A.C M("?*): B.5“: C.C/村; D. P^A■: 3.传质通量七"与相对应。 A C A(U A-U M);B.C^A. c. %*; D.力% 4.等分了反方向扩散通常发生在单元操作过程中:-?组分通过另-?停滞组分的扩散 通常发生在单元操作过程中。 5.描述动量和质量传递类似律的一层模型是:两层模型是 ;三层模型是。 I.在根管子中存在有由CHA组分A)和Hc(组分B)组成的气体混合物,压力为 1.013x105 Pa、温度为298K。已知管内的CH4通过停滞的He进行稳态维扩散,在相距0.02m的两端,CH4的分压分别为= 6 7 8 08x1 °4 Pa及2.03x10* pa,管内的总压维持恒定。扩散 条件下,CH,在He中的扩散系数为= 675x10-5 m2/s。试求算CH4的传质通量、。 2.298 K的水以0.5 m/s的主体流速流过内径为25mm的荼管,2知荼溶于水时的施密特数衣为2330,试分别用雷诺、普兰德一泰勒、卡门和柯尔本类比关系式求算充分发展后的对流 传质系数。 三、推导(30分,每题15分) 1.对于A、B二组元物系,试采用欧拉(Euler)方法,推导沿x、y方向进行二维分了传 二、计算(40分,每20分) 质时的传质微分方程。设系统内发生化学反应,组分A的质量生成速率为?kg/(m3?s)2.试利用传质速率方程和扩散通量方程,将稣转换成片。 6 通常,气体的扩散系数与有关,液体的扩散系数与有关。 7 '表示对流传质系数,取表示对流 传质系数,它们之间的关系是o 8 对流传质系数与与推动力相对应。 A." B. C. D.矶。 9.推动力与对流传质系数相对应。 A.知; B.匕; C.电; D.。

化工传递过程答案

第 1 页 共 4 页 试题名称 :化工传递过程 层次: 专业: 年级: 学号: 姓名: 分数: 一、选择题(共10小题,每小题4分,共40分) 1.粘性是指流体受到剪切作用时抵抗变形的能力,其原因是( B )。 a 组成流体的质点实质是离散的 b 流体分子间存在吸引力 c 流体质点存在漩涡与脉动 2. 连续方程矢量式中哈密顿算符“k z j y i x ??+??+??=?”的物理意义可以理解为计算质量通量的( C )。 a 梯度 b 旋度 c 散度 3.描述流体运功的随体导数中局部导数项 θ ?? 表示出了流场的( B )性。 a 不可压缩 b 不确定 c 不均匀 4.分析流体微元运动时,在直角坐标x-y 平面中,微元围绕z 轴的旋转角速度z ω正比于特征量( A )。 a y u x u x y ??-?? b y u x u x y ??+?? c x u y u x y ??-?? 5.流体爬流流过球形固体时,流动阻力中形体阻力与表面阻力之比应为( C )。 a 1:1 b 1:2 c 2:1 6.推导雷诺方程时,i 方向的法向湍流附加应力应表示为( B )。 a i r ii u '-=ρτ b 2ιρτu r ii '-= c j i r ii u u ''-=ρτ 7.固体内发生非稳态导时,若固体内部存在明显温度梯度,则可断定传热毕渥准数Bi 的数值( A )0.1。 a 大于等于 b 等于 c 小于等于 8.依据普兰特混合长理论,湍流传热时,涡流热扩散系数h α可表示为( C )。 a dy du l h =α b 2 ???? ??=dy du l h α c dy du l h 2=α 9.流体流入溶解扩散管后形成稳定的湍流边界层,溶质溶解扩散进入流体,则沿管长方向对流传质系数的变化规律应是( B )。a 始终不变 b 先下降,后上升,最终趋于稳定 c 先上升,后下降,最终趋于稳定 10.利用雷诺类似求解湍流传质问题的前提是假定( C )。a 1S >c b 1

化工传递过程复习

“化工传递过程”复习大纲 一课程基本内容 (1)动量传递建立动量传递方程组,介绍方程组礁层流、湍流中的应用。其应用是指在特定的条件下求解:流体的速度分布、应力分布及流量计算。介绍边界层概念和方程,湍流概念和方程。这部分内容是学习传递过程的基础,务必一开始就扎扎实实地加以掌握。 (2)热量传递在这部分内容中首先建立了热量传递方程组,接着在稳态、非稳态热传导和稳态层流、湍流传热领域展开讨论。主要解决在定解条件下固体、流体内的温度分布、局部热量通量和总热流率。稳态导热中要掌握一维导热例子(直角坐标和柱坐标)。在非稳态导热中注意对毕渥特数(Bi)的判别,掌握集总热容法(Bi<0.1),和无限大物体导热的高斯误差函数法,其它情况可采用图解法计算。对沿板的精确解、近似解所导出的公式会正确使用,如利用公式求解温度分布、边界层层厚及热流通量。类比解主要是用在湍流传递中,其思想是利用较易得到的摩擦阻力系数类推得出湍流传热系数和湍流传质系数或是用对流传热系数类推出对流传质系数,类比解注意对J因数类似法的掌握运用。 (3)质量传递在上述部分基础上,进一步讨论了与化工生产最为密切的质量传递,它是传递与分离过程间的桥梁。在这部分中建立了组元的质量传递方程,用于解决浓度分布问题,介绍了传质方式和原理,介绍了对流传质系数的定义和在层流、湍流下传质系数的求解公式。这部分内容在方程的建立,求解思路和所用的数学解法与(1)(2)部分雷同,学习时可注意借鉴上述知识。学完这部分内容后,注意全篇的融会贯通、归纳整理。如每一部分开始都是建立各自的微分方程。三传的层流解、湍流解、类比解、图解等都可加以归纳。进行对比找出一些共性的规律。 二课程考核目标(知识要点、内容难点和考核要求) 第一章传递过程概论 (一)知识要点 1、传递过程的研究对象。 2、传递过程的研究方法。 3、传递过程的名词和三传定义。 (二)考核要求 1、分子传递唯象律表达式及各项物理意义。 2、涡流传递唯象律表达式及各项物理意义。 3、传递通量的表述。

化工传递过程基础简答题

化工传递过程基础简答 题 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

化工传递过程基础简答题 1、如何从分子传质和边界层理论两个角度理解三传之间存在的共性 答:(1)通量=-扩散系数×浓度梯度 (2)动量、热量、和质量的扩散系数的量纲相同,其单位均为m2/s (3)通量为单位时间内通过与传递方向相垂直的单位面积上的 动量、热量和质量各量的量的浓度梯度方向相反,故通量 的表达式中有一负号。 边界层理论:速度、温度、浓度边界层的定义是类似的,它们均为流动方向距离x 的函数。 设流体流动方向为x 方向,垂直壁面的方向为y 方向。 (1)在边界层内(y <δ),受壁面影响,梯度大,不可忽略粘性力、法向热传导或法 向分子扩散。 (2)在层外主流层(y>δ),梯度基本不变,可以忽略粘性力、法向热传导或法向分扩 散。 (3)通常约定:边界层的厚度为达到主体浓度99%是流动方向距离距离x 的长度。 2、以雷诺类似律为例说明三种传递现象之间的类似。 答:设流体以湍流流过壁面,流体与壁面间进行动量、热量和质量传 递。雷诺假定,湍流主体一直延伸到壁面。设单位时间单位面积上 ,流体与壁面间所交换的质量为M 。单位时间单位面积上交换的动量为;; ) (s b s b u u M Mu Mu s -==-τ2b u f s ρτ=

由: 又: 得 单位时间单位面积上交换的热量为 由: 所以 单位时间单位面积上交换的组分A 的质量为 由 联立得 ; 3、简述流体流动的两种观点欧拉法和拉格朗日方法。 答:欧拉观点:着眼于流场中的空间点,以流场中的固定空间点(控制体)为考察对象,研究流体质点通过空间固定点时的运动参数随时间的变化规律。然后综合所有空间点的运动参数随时间的变化,得到整个流场的运动规律 拉格朗日观点:着眼于流场中的运动着的流体质点(系统),跟踪观察每一个流体质点的运动轨迹及其速度、压力等量随时间的变化。然后综合所有流体质点的运动,得到整个流场的运动规律 b u f M ρ2=0=s u ()b b p p s p s q M c t Mc t Mc t t A -==-()q h t t s b A =-/p M h c =)(As Ab As Ab A c c c c M M M N -=-=ρρρ)(0As Ab A c c c k N -=0 c M k ρ=0 2b P c f h M u k c ρρ===

相关主题