搜档网
当前位置:搜档网 › 电子式互感器分类、特点及应用现状分析

电子式互感器分类、特点及应用现状分析

电子式互感器分类、特点及应用现状分析
电子式互感器分类、特点及应用现状分析

电子式互感器的现状与发展前景

随着电力传输容量的增加,运行电压等级越来越高,传统的电磁式电流,电压互感器暴露出如绝缘要求高,磁饱和、铁磁谐振、动态范围小、频带窄以及有油易燃、易爆炸等一系列缺点。基于光学和电子学原理的电子式电压、电流互感器(分别简称为EVT和ECT)经过30多年的发展以其独特的优点,成为最有发展前途的一种超高压条件下电压、电流的测量设备。

早期的电子式互感器一次侧和二次侧通过光纤来传输信号,也称为光电式互感器。2002年,IEC根据新型电子式电压、电流互感器的发展趋势,制定了关于EVT的IEC60044-7标准和ECT的IEC60044 -8标准,明确了电子式互感器的定义及相成的技术规范。

根据IEC60044-7标准,EVT采用电阻分压器.电容分压器或光学装置作为一次转换部件,利用光纤怍为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。

根据IEC600448标准,ECT采用传统电流互感器(CT)、霍尔传感器、Rogowski线圈或光学装置作为一次转换部件,利用光纤作为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。

电子式互感器的分类

几十年来,电子式互感器产品的种类已经被开发出很多,根据原理的不同,电子式互感器可分为无源式和有源式2类。所谓无源式电子互感器是指高压侧传感头部分不需要供电电源的电于式互感器,而有源式电子互感器是指传感头部分需要供电电源的电子式互感器。

无源式电子互感器的优点是在传感头部分不需要复杂的供电装置,整个系统的线性度比较好,缺点是传感头部分有复杂而不稳定的光学系统,容易受到多种环境因素的影响,影响了实用化的进程,虽然各国学者不断的提出新方法以提高测量准确度,备种方法都在实验室条件下取得了一定成果,但都不同程度地存在着通用性差,装置复杂等缺点,未能有效克服这个困难,其研究还有待进一步深入。

有源式电子式互感器的原理大都比较简单,已被广泛接受。无源式EVT主要利用传统的电阻分压器,电容分压器以及单个电容器测量电压值。在有源式ECT中,作为一次电流采样传感头的元件有传统的电磁式电流互感器、分流器和Rogowski线圈等。

20世纪90年代以来,无源式电子互感器在实用性方面显示出优势,受到了人们的重视,各国学者在供能方式、信号调制方式以及提高系统测最准确度等方面进行丁人量的研究和实验,井有现场挂网的经验,国外一些知名大公司已有市场化的产品。

电子式互感器的特点

与电磁式电流互感器相比,电子式互感器具有如下的一系列优点:

◆绝缘性能优良,造价低。绝缘结构简单,随电压等级的升高,其造价优势愈加明显。

◆在不含铁芯的电子式互感器中,消除了磁饱和.铁磁谐振等问题。

◆电子式互感器的高压侧与低压侧之间只存在光纤联系,抗电磁干扰性能好。

◆电子式互感器低压侧的输出为弱电信号,不存在传统互感器在低压侧会产生的危险,如电磁式电流互感器在低压侧开路会产生高压的危险。

◆动态范围大,测量精度高。电磁感应式电流互感器因存在磁饱和剧题,难以实现大范围测量,问时满足高精度计量和继电保护的需要。电子式电流互感器有很宽的动态范围,额定电流可测到几百安培至几千安培,过电流范围可达几万安培。

◆频率响应范围宽。电子式电流互感器已被证明可以测出高压电力线上的谐波,还可进行暂态电流、高频大电流与直流电流的测量。

◆没有因充油而产生的易燃,易爆等危险。电子式互感器一般不采用油绝缘解决绝缘问题,避免了易燃、易爆等危险。

◆体积小、重量轻。电子式互感器传感头本身的重量一般比较小。据前美国西屋公司公布的345kV的光学电流互感器(OCT),其高度为2.7m,重量为109kg。.而同电压等级的充油电磁式电流互感器高为6. 1m,重达7718kg,这给运输与安装带来了很大的方便。

◆可以和计算机连接,实现多功能,智能化的要求,适应了电力系统大容量、高电压,现代电网小型化、紧凑化和计量与输配电系统数字化,微机化和自动化发展的潮流。

电子式互感器的开发及应用状况

由于电子式电流互感器具有多方面的优点,国外对于电子式互感器的研究已有30多年的历史,投入了较大的人力物力,不断推进电子式互感器的发展,糨关行业的一些大公司已经迈向产品化,市场化的道路。

ABB公司作为国际上提供标准化光学电流和电压传感设备的领先者之一,已研制出多种无源电子安全提示:如果聊天中有涉及财产的操作,请一定先核实好友身份。发送验证问题或点击举报赵一阳10:49:23式互感器及有源电子式互感器,在插接式智能!H台电器(PASS)、SF.气体绝缘开关lG{S).高压直流(I{VDC)及中低压开关柜中都有应用。组合式光电互感器,用于GIS中的复台式电子互感器都已达到0.2级的准确度t数字光学仪用互感器已有电压等级72-800 kV、电流等级50 -4000A的产品推向市场I其33kV GIS空气绝缘开关柜用电子式互感器已应用于我国广州地铁二号线、三号线,实现与保护控制设备的直接弱电接1-.500kV电压等级的电子式电流互感器也在我国的新建变电站巾有了成功的实际应用。

法国AREVA(原ALSTOM)公司主要研究无源电子式互感器,包括CTO、VTO和cMo.自1996年以来,AREVA公司已有70多台电子式互感器在美国,法国、英国、加拿大,荷兰、比利时等多个国家的多个变电站运行,目前正在研究145-llOOkVAlS用光电电流电压互感器和145-500kV GIS用混台式电子互感器。

日本三菱公司的伊丹工厂制造的6.6 kV、600A的组合式光学零序电流、电压互感器,在中部(Chubu)电力公司的配电网中安装,经过长期户外运行试验,满足JFC202-1885标准;日立公司研制的OCT和OVT(光学电压互感器)安装于也在中郝电力公司77/仃kV1200A的GIS投入运行,经过近2年的运行,满足JEC1201要求。另外东芝,东电.住友等都已经开发或正在开发一系列的OCT和OVT产品,并有现场挂网。

另外,加拿大NxtPhase公司,美国PhotonicPuwer Systems公司、德国的RITZ互感器公司也在电子式互感器方面进行了一系列研究;法国施耐德电气公司已有在组合电器中应用的户外MCI - 145型光电式电流互感器、西门子光纤电流互感器在南方电网天广500kV直流输电工程的某变流站里已经可靠地运行了几年。德国斯尼文特公司与河南电力试验研究院,许继电气股份有限公司等联合研制的交流变电站用500kV组合型光电电子式互感器于2005年10月14日在我国500kV郑州小浏变电站投入运行,最高电压至1000 kV、精确度由德国标准胁会认证达到0.1级标准,填补了国内输变电500kV电压等级电子式互感器空白。

目前我国清华大学,华中科技大学、西安交通大学等高校以及电力科学研究院,武汉高压研究所等研究机构和上海互感器厂、沈阳变压器制造有限公司,西安高压开关厂、南瑞继保电气有限公司等单位在从事电子式互感器的研制工作,且已有多种样机研制出来,但绝大多数仅限于实验或者试运行阶段。

在无源方面,清华大学电子系早在20世纪80年代就研制出了全光纤型光纤电流互感器,通过了国家鉴定并有了户外连续运转实验;20世纪90年代叉研制出测量脉冲电压的光电式电压互感器和闭环式混合型光电电流互感器;华中科技大学曾研制出llOkV OVT,于1993

年12月在广东省新会供电局试挂网运行,随后研制的“三相光纤电流互感器”也于1998年投入运行。西安同维公司主要研究磁光式电流互感器,已经有330kV和1lOkV无源式ECT先后于2002年和2005年挂网运行。

近年来,由于宵源式电子互感器的技术较为成熟,国内多家研制单位已开始注重有源式电子互感器的研究,我国对于有源式电子互感器的研究已经走在无源式电子互感器的前面。清华大学电机系已有220kV混台式ECT在河南郑州索河变电站挂网运行2年多,实际运行结果达到0.5级标准,并且研制出0.2级llOkV和220 kV混合式电流互感器,并通过了武汉高压研究所和中国电力科学研究院的型式实验。南瑞继保电气有限公司已研制出可用于IlO kV及220 kV GIS的有源电子式电流互感器.实验表明在40C - +40℃范围内,其计量精度达到0.2缎。2004年8月南自新宁公司“电子式互感器”通过了中电联的鉴定,成为我国第一家正式可以推广电子式互感器的单位。

电子式互感器的发展前景

无源式电子互感器一次侧不需供电电源,具有较大的优势.但光学装置制作工艺复杂,稳定性不易控制,而有源式电子互感器目前研究较为成熟、实际投入运行比较多,获得了大量的现场运行经验,有望首先得以推广应用。

国际电工委员会关于电子式互感器的标准已经出台,我国的电子式互感器国家标准已基本完成,近期将公布.国家电子式互感器的检测中心已经建立于武议高压研究所,这预示着电子式互感器的产品化应用已经具备了行业规范,为其市场化提供了基础平台。

国内外的研究结构和生产厂家经过30多年的研究和探索,不少企业投资电子式瓦感器制造领域,在实验室和现场挂网都积累了一定的经验,推动了产品化、市场化的进程。

电网改造及数字化自动化的需求.在未来的几年内,会在各种电阿等级中将会大量安装和使用.由于电子式互感器的优点,电子式互感器全面代替传统的互感器是不可避免的.电子式互感器是满足电网动态可观测性、提高继电保护可靠性和数字电力系统建设的基础设备。电予式互感器以其特有的技术特点和价格优势将在未来的电力系统中发挥越来越重要的作用,它的推广和应用,将对电力系统特别是变电站的二次设备产生极其深远的影响,加速变电站全数字化,自化的进程。

有待研究的问题

◆对于无源式互感器.要减小磁光材料或者晶体自身的双折射以及环境气候等的影响,必须时造成传感头误差的各种因素进行分析并研究减小其影响的办法。

◆电子式互感器虽然具有绝缘等方面的优点,但在可靠性.稳定性及准确度等方面与传统的电磁测量方法相比还存在着一定差距,有待提高。

◆电子式互感器在变电站属于一次没备,必须要为一没备服务.但是现在国内外厂商多把目光放在了互感器本身,而很少顾及到与二次设备的兼容。如何解决电子式互感器与现有:次设胬的兼容问题,是决定今后几年电子式互感器推广速度的重要课题。

电流互感器的分类及功能

测量用电流互感器 测量用电流互感器(或电流互感器的测量绕组。在正常工作电流范围内,向测量、计量等装置提供电网的电流信息。 测量用电流互感器主要与测量仪表配合,在线路正常工作状态下,用来测量电流、电压、功率等。 测量用微型电流互感器主要要求: 1、绝缘可靠; 2、足够高的测量精度; 3、当被测线路发生故障出现的大电流时互感器应在适当的量程内饱和(如500%的额定电流)以保护测量仪表; 保护用电流互感器 保护用电流互感器(或电流互感器的保护绕组。在电网故障状态下,向继电保护等装置提供电网故障电流信息。 保护用电流互感器主要与继电装置配合,在线路发生短路过载等故障时,向继电装置提供信号切断故障电路,以保护供电系统的安全。保护用微型电流互感器的工作条件与测量用互感器完全不同,保护用互感器只是在比正常电流大几倍几十倍的电流时才开始有效的工作。 保护用互感器主要要求: 1、绝缘可靠; 2、足够大的准确限值系数; 3、足够的热稳定性和动稳定性; 保护用互感器在额定负荷下能够满足准确级的要求最大一次电流叫额定准确限值一次电流。准确限值系数就是额定准确限值一次电流与额定一次电流比。当一次电流足够大时铁芯就会饱和起不到反映一次电流的作用,准确限值系数就是表示这种特性。保护用互感器准确等级5P、10P。 互感器分为电压互感器和电流互感器两大类测量用电压互感器(或电压互感器的测量绕组。在正常电压范围内,向测量、计量装置提供电网电压信息。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供

电流互感器如何按照绝缘介质分类

干式电流互感器。由普通绝缘材料经浸漆处理作为绝缘。 浇注式电流互感器。用环氧树脂或其他树脂混合材料浇注成型的电流互感器。 油浸式电流互感器。由绝缘纸和绝缘油作为绝缘,一般为户外型。当前中国在各种电压等级均为常用。 气体绝缘电流互感器。主绝缘由气体构成。 按电流变换原理分 电磁式电流互感器。根据电磁感应原理实现电流变换的电流互感器。 光电式电流互感器。通过光电变换原理以实现电流变换的电流互感器。 按安装方式分 贯穿式电流互感器。用来穿过屏板或墙壁的电流互感器。 支柱式电流互感器。安装在平面或支柱上,兼做一次电路导体支柱用的电流互感器。 套管式电流互感器。没有一次导体和一次绝缘,直接套装在绝缘的套管上的一种电流互感器。 母线式电流互感器。没有一次导体但有一次绝缘,直接套装在母线上使用的一种电流互感器。 按原理分为电磁感应式和电容分压式两类。 电磁感应式多用于220kV及以下各种电压等级。电容分压式一般用于110kV以上的电力系统,330~765kV超高压电力系统应用较多。电压互感器按用途又分为测量用和保护用两类。对前者的主要技术要求是保证必要的准确度;对后者可能有某些特殊要求,如要求有第三个绕组,铁心中有零序磁通等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

电子式互感器简介

电子式互感器简介 电子式电流电压互感器及智能电器产品简介: 随着计算机技术和电力设备二次系统测量、保护装置的数字化发展,电力系统对测量、保护、控制和数据传输智能化、自动化及电网安全、可靠和高质量运行的要求越来越高,具有测量、保护、监控、传输等组合功能的智能化、小型化、模块化、机电一体化电力设备,对电网安全、可靠和高质量运行具有重要意义。这已成为国内外著名电力设备生产企业进行产品研发的主流。 传统的电磁式电流电压互感器难以直接完成计算机技术对电流电压完整信息进行数字化处理的要求,难以实现电网对电量参数变化的在线监测。阻碍了电力系统自动化向更高水平发展,因此寻求一种能与数字化网络配套使用的新型电流电压互感器成为电网安全高效运行的迫切需要。 电子式电流电压互感器,二次输出为小电压信号,无需二次转换,可方便地与数字式仪表、微机保护控制设备接口,实现计量、控制、测量、保护和数据传输的功能,且消除了传统电磁式电流互感器因二次开路、电压互感器二次短路给电力系统设备和人身安全带来的故障隐患。 作为传统电磁式互感器理想的换代产品,电子式互感器可广泛用于中压领域电力监测、控制、计量、保护系统、工矿企业、高层建筑、配、变电等场所,能有效降低变电站(配电所)的建设成本和运行维护成本,提高电网运行质量、安全可靠性和自动化水平,因其几乎不消耗能量、无铁心(或仅含小铁心)、且减少了许多有害物质的使用而使其成为节能和环保产品。电子式电流电压互感器在发达国家已被广泛采用,国内也有越来越多的产品投入使用。 电子式电流电压互感器原理: 电子式电流互感器采用罗哥夫斯基(Rogowski)线圈和轻载线圈的基本原理。 Rogowski线圈由于采用非磁性的骨架,不存在磁饱和现象。一次电流通过Rogowski线圈得到了与一次电流I1的时间微分成比例的二次电压E,将该二次电压E进行积分处理,获得与一次电流成比例的电压信号,通过微处理器将该信号进行变换、处理,即可将一次电流信息变成模拟量和数字量输出。 轻载线圈它代表着经典感应电流互感器的发展方向。它由一次绕阻、小铁芯和损耗最小化的二次绕组组成。二次绕组上连接着分流电阻Ra,二次电流I2在分流电组Ra两端的电压降U2与一次电流I1成比例,电子式电流互感器比传统的电磁式电流互感器拥有更大的电流测量范围。 电子式电压互感器采用电阻分压原理。 互感器由高压臂电阻、低压臂电阻、屏蔽电极、过电压保护装置组成。通过分压

电子式互感器分类、特点及应用现状分析

电子式互感器的现状与发展前景 随着电力传输容量的增加,运行电压等级越来越高,传统的电磁式电流,电压互感器暴露出如绝缘要求高,磁饱和、铁磁谐振、动态范围小、频带窄以及有油易燃、易爆炸等一系列缺点。基于光学和电子学原理的电子式电压、电流互感器(分别简称为EVT和ECT)经过30多年的发展以其独特的优点,成为最有发展前途的一种超高压条件下电压、电流的测量设备。 早期的电子式互感器一次侧和二次侧通过光纤来传输信号,也称为光电式互感器。2002年,IEC根据新型电子式电压、电流互感器的发展趋势,制定了关于EVT的IEC60044-7标准和ECT的IEC60044 -8标准,明确了电子式互感器的定义及相成的技术规范。 根据IEC60044-7标准,EVT采用电阻分压器.电容分压器或光学装置作为一次转换部件,利用光纤怍为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。 根据IEC600448标准,ECT采用传统电流互感器(CT)、霍尔传感器、Rogowski线圈或光学装置作为一次转换部件,利用光纤作为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。 电子式互感器的分类 几十年来,电子式互感器产品的种类已经被开发出很多,根据原理的不同,电子式互感器可分为无源式和有源式2类。所谓无源式电子互感器是指高压侧传感头部分不需要供电电源的电于式互感器,而有源式电子互感器是指传感头部分需要供电电源的电子式互感器。 无源式电子互感器的优点是在传感头部分不需要复杂的供电装置,整个系统的线性度比较好,缺点是传感头部分有复杂而不稳定的光学系统,容易受到多种环境因素的影响,影响了实用化的进程,虽然各国学者不断的提出新方法以提高测量准确度,备种方法都在实验室条件下取得了一定成果,但都不同程度地存在着通用性差,装置复杂等缺点,未能有效克服这个困难,其研究还有待进一步深入。 有源式电子式互感器的原理大都比较简单,已被广泛接受。无源式EVT主要利用传统的电阻分压器,电容分压器以及单个电容器测量电压值。在有源式ECT中,作为一次电流采样传感头的元件有传统的电磁式电流互感器、分流器和Rogowski线圈等。

电流互感器分类及原理

1、电流互感器(Current Transformer,CT) 电力系统电能计量和保护控制的重要设备,是电力系统电能计量、继电保护、系统诊断与监测分析的重要组成部分,其测量精度、运行可靠性是实现电力系统安全、经济运行的前提。目前在电力系统中广泛应用的是电磁式电流互感器。 2、电流互感器国标(GB 1208-87S) 1)准确级:以该准确级在额定电流下所规定的最大允许电流误差百分数标称。 2)测量用电流互感器的标准准确级有:0.1、0.2、0.5、1、3、5; 特殊要求的电流互感器的准确级有:0.2S和0.5S; 保护用电流互感器准确级有:5P和10P两级。 3、电磁式电流互感器 1)原理: 一次线圈串联于被测电流线路中,二次线圈串接电流测量设备,一二次侧线圈绕在同一铁芯上,通过铁芯的磁耦合实现一次二次侧之间的电流传感过程。一二次侧线圈之间以及线圈与铁芯之间要采取一定的绝缘措施,以保证一次侧与二次侧之间的电气隔离。根据应用场合以及被测电流大小的不同,通过合理改变一二次侧线圈匝数比可以将一次侧电流值按比例变换成标准的1A或5A电流值,用于驱动二次侧电器设备或供测量仪表使用。 2)缺点: ①.绝缘要求复杂,体积大,造价高,维护工作量大; ②.输出端开路产生的高电压对周围人员和设备存在潜在的威胁; ③.固有的磁饱和、铁磁谐振、动态范围小、频率响应范围窄; ④.输出信号不能直接和微机相连,难以适应电力系统自动化、数字化的发展趋势。 4、电子式电流互感器 1)特征: ①.可以采用传统电流互感器、霍尔传感器、空心线圈(或称为Rogowski coils)或光学装置 作为一次电流传感器,产生与一次电流相对应的信号; ②.可以利用光纤作为一次转换器和二次转换器之间的信号传输介质; ③.二次转换器的输出可以是模拟量电压信号或数字量。 2)分类 (1)按传感原理的不同划分:光学电流互感器和光电式电流互感器 I、光学电流互感器(Optical Current Transformer,简称OCT) 原理:传感器完全基于光学技术和光学器件来实现。 II、光电式电流互感器(Opto-Electronic Current Transformer,简称OECT) 原理:传感部分采用电子器件而信号的传输采用光学器件和光学技术,是光电子技术的结合。 (2)按传感侧是否需要电源划分:无源型电流互感器和有源型电流互感器 I、无源型电流互感器:光学电流互感器的传感和传输部分均采用无源光学器件,其利用Farady 磁光效应,传感和传输信号都是来自二次侧的光信号,一次侧不需要额外能量供给。因此光学电流互感器属于无源型电流互感器。 II、有源型电流互感器:一种基于传统电流传感原理、采用有源器件调制技术、由光纤将高压端转换得到的光信号传送到低压端解调处理并得到被测电流信号的新型电流互感器、由于其电路

电子式电流互感器相关问题汇总

电子式电流互感器的定义 2000年,IEC根据基于光学和电子学原理的电流互感器(ECT)的发展趋势,制定了关于ECT的IEC60044-8标准,明确电子式电流互感器(Electronic Current Transformer: ECT)指采用传统电流互感器(CT),霍尔传感器、Rogowski线圈或光学装置作为一次转换部分,利用光纤作为一次转换器和一次转换器之间的传输系统,并且装有电子器件作测量信号的传输和放大,其输出可以是模拟量或数字量。由于其中某些类型要利用光学器件对电流传感且全部利用光纤传输信号,故电子式电流互感器亦称为光学电流互感器(Optical Current Transformer: OCT) 电磁互感器的优点在于性能比较稳定,适合长期运行.并且具有长期的运行经验。 电磁互感器的缺点: 磁式电流4.感器(Current Transformer: CT)己暴露出下述内在的致命弱点:1绝缘问题:传统电磁式电流互感器采用的空气绝缘,油纸绝缘,气体绝缘乃至串级绝缘都不能满足随电压等级日益增长而更为苛刻的运行条件,在超高压等级使用电磁式电流互感器会产生绝缘击穿的潜在危险;2误差问题:电磁式电流互感器的闭合铁芯由于电流的非周期分量作用而饱和,导磁率急剧降低,使误差在过渡过程中上升到不能允许的程度3铁磁谐振效应:由于电流互感器电感饱和作用引起的持续性、高幅值谐振过电压;4电磁式互感器含有铁芯,因此动态测量的范围小,频带窄面对暂态过程测量性能差;此外还有,输出端开路时导致高压危险; 体积重量均大,成本过高; 易产生干扰;不易与数字设备连接;因有绝缘油而导致易燃易爆炸等。已难以满足电力系统在线检测,高精度故障诊断,电力数字网发展需要 电子互感器的优点 1)数字化输出,简化了互感器与二次设备的接口,避免了信号在传输、储存 和处理中的附加误差,提高了系统可靠性。 2)信号光纤传输,抗电磁干扰性能好,在强电磁环境中保证信号的精确性 和可靠性。 3)无铁芯,不存在磁饱和、铁磁谐振现象,线性度好,绝缘简单,动态测量 范围大、频带宽、精度高。而且体积小、重量轻、低成本,减小了变电 站的面积,。 4)低压没有开路危险,没有因存在绝缘油而产生的易燃、易爆等危险 电子式电流互感器没有磁饱和、铁磁谐振等问题由于电磁式电流互感器使用了铁心,不可避免地存在磁饱和、铁磁共振和磁滞效应等问题,而电于式电流互感器采用的是磁光玻璃、光纤或电子线路。不存在这方面的问题。 电子式电流互感器绝缘结构简单,绝缘性能好。电磁式电流互感器的绝缘结构非常复杂,尤其是对于电压等级比较高的电流互感器来说,绝缘部分要消耗大量的电工材料,体积也非常庞大。而电子式电流互感器由于采用了光纤和比较轻便的绝缘子支往,其绝缘结构比较简单,绝缘性能也比较好、 (3)电子式电流互感器动态测量范围大,精度高。电网正常运行时,流过电流互感器的电流并不大,但短路电流一般很大,而且随着电网容量的增加,辣路故障时的电流越来越大。电磁式电流互感器f}I为存在磁饱和问题,难以实现大范围测量,不能同时满足高精度计量和继电保护的需要。电子式电流互感器有很宽的动态范围,测量额定电流的范围从几十安培至几千安培,过电流范围可达几万安墙。个电子式电流互感器可同时满足计量和继电保护的

电子式互感器的应用分析

电子式互感器的应用分析 摘要: 互感器是电力系统中不可缺少变电站的重要设备,按照一定的比例关系将一 次回路上的高电压和大电流变为可直接输入测量仪表和继电保护设备的低电压和 小电流,实现二次设备与高压部分的隔离,保证设备和人身安全。 一、常规互感 1.1常规互感器概述 传统的电力系统中一直采用基于电磁感应原理的电磁式电流互感器(CT)和 电磁式电压互感器(PT),为二次计量和保护等设备提供电流及电压信号,CT的 额定输出信号为1A或5A,PT的额定输出信号为100V或100/√3V。它们的原理 和结构与变压器相似,在铁芯上绕有一、二次绕组,靠一、二次绕组之间的电磁 耦合将信号从一次侧传到二次侧。电磁型互感器的工作原理如下图 额定一次电流与额定二次电流之比称为电磁型互感器的额定电流比,用Kn表示。在理想情况下,二次电流与一次电流成正比,相位差在连接正确时为零: 但实际上一次磁动势中有一小部分将作为励磁磁动势用于产生铁心中主磁通,不能全部转化为二次磁动势。故励磁电流是造成电磁型互感器误差的主要原因, 减小误差必须减小励磁电流。 1.2电子式互感器与常规互感器相比的优势 随着电力系统的发展,继电保护、电气设备自动化程度不断提高,传统电磁 式互感器的缺点多。电子式互感器弥补常规互感器的缺陷,解决电力系统难题。 (1)高低压完全隔离,安全性高,具有优良的绝缘性能。 (2)不含铁心,消除了磁饱和及铁磁谐振等问题。 (3)抗电磁干扰性能好。 (4)动态范围大,测量精度高 (5)频率响应范围宽。 (6)没有因充油而潜在的易燃、易爆炸等危险。 (7)体积小、重量轻。 (8)性价比好。 综上所述,电子式互感器与常规互感器相比具有诸多优势,故选用电子式互 感器。 二、电子式互感器 2.1电子式互感器综述 电子式互感器是互感器传感准确化、传输光纤化和输出数字化发展趋势的必然。便于向数字化、微机化发展等诸多优点,是智能变电站的关键技术之一。 其中,发展较成熟、工程上有应用的是罗氏线圈型电流互感器(下文简写为RCT)用于保护绕组,低功率线圈型电流互感器(下文简写为LPCT)用于测量绕组,全光纤型电流互感器(下文简写为FOCT)和分压型电子式电压互感器(下文简写为EVT)。 2.2有源电子式互感器 有源式电子互感器一次信号变化仍是电气量之间的变化,不涉及到光等其它 物理量,这一点与常规互感器一致。 2.3 无源电子式互感器

电流互感器工作原理

电流互感器 1、原理 一次电流I 1流过一次绕组,建立一次磁动势 (N 1I 1),亦被称为一次安匝,其中N 1为一次绕组的匝数;一次磁动势分为两部分,其中小一部分用于励磁,在铁心中产生磁通,另一部分用来平衡二次磁动势(N 2I 2),亦被称为二次安匝,其中N 2为二次绕组的匝数。励磁电流设为I 0,励磁磁动势(N 1I 0),亦被称为励磁安匝。平衡二次磁动势的这部分一次磁动势,其大小与二次磁动势相等,但方向相反。磁势平衡方程式如下: 120121I N I N I N ? ? ? += 在理想情况下,励磁电流为零,即互感器不消耗能量,则有 12120I N I N ? ? += 若用额定值表示,则 1212 N N I N I N ? ? =- 其中1N I ? ,2N I ? 为一次、二次绕组额定电流。

额定一次、二次电流之比为电流互感器额定电流比,12N N N I K I = P 1 1I ? P 2 2 I ? Z B 电流互感器工作原理 E 2 11I N ? 22I N ? 22I N ? - 01I N ?

电流互感器的等值电路如下图所示: Z 1 Z 2 1 I ? 2I ? ? Z M 2U ? Z B ' 1 E ? 2E ? 根据电工原理,励磁电流在铁心中建立主磁通,它穿过一次、二次绕组的全部线匝。由于互感器铁心有磁滞和涡流损耗,励磁电流的一部分供给这些损耗,称为有功部分,另一部分用于励磁,称为无功部分。所以励磁电流与主磁通相差角,这个角称为铁损角。主磁通在二次绕组中感应出电动势2E ? ,相位相差90(滞后);则: 222()B E I Z Z ? ? =+ 式中 Z 2---二次绕组的内阻抗, Z 2= R 2 +jX2

电子式互感器在智能电网建设中的应用

电子式互感器在智能电网建设中的应用研究 李红岩 周德志 (1.辽宁新创达电力设计研究有限公司 辽宁 沈阳 110179;2.沈阳电力勘测设计院 辽宁 沈阳 110003) 摘 要: 电子式互感器相比与传统电磁式互感器在智能电网中有着诸多的优点,对电子式互感器分类、工作原理进行简单介绍,阐述电子式互感器在智能电网中的应用现状及运维中暴露的问题,并提出解决方案。 关键词: 电子式电流互感器;电子式电压互感器;智能电网;智能变电站 中图分类号:TM45 文献标识码:A 文章编号:1671-7597(2012)1120116-02 表1 电子式电压互感器技术性能比较表 1 电子式互感器的简介 电子式互感器是具有模拟量电压输入或数字量输出,共频 率为15Hz~100Hz的电气测量仪器和继电保护装置使用。其中 图1为数字量输出型电子式互感器的通用图框。 表2 电子式电流互感器技术性能比较表 图1 单相电子式互感器的通用图框 根据IEC和国家标准,电子式互感器可分为有源型和无源 型两种。在图1中,若一次变换器是电子部件,需要一次电源供 电,则称此类电子式互感器为有源式电子式互感器;若一次传 感器是光学原理的,光纤传输系统可以直接将光测量信送出, 无需一次变换器,则称此类电子式互感器为无源式电子式互感 器。其中图2为电子式互感器的分类示意图。 图2 电子式互感器的分类示意图 2 电子式互感器的技术特点及性能比较 电子式互感器与常规互感器相比,具有消除磁饱和现象、 对电力系统故障响应快、消除铁磁谐振、绝缘性能优良、能适 应电能计量与保护数字化发展、动态范围大、频率响应范围 宽、经济型好等优点。其中不同原理的电子式互感器也具有其 自身的技术特点。 在工程应用中,不用原理的电子式互感器有其自身的优势 和弊端。表1、表2中将对电子式电压互感器和电子式电流互感 器根据其分类进行在性能上进行比较。

(完整版)电子式互感器的原理与比较

电子式互感器的原理与比较 随着光纤传感技术、光纤通信技术的飞速发展,光电技术在电力系统中的应用越来越广泛。电子式互感器就是其中之一。电子式互感器具有体积小、重量轻、频带响应宽、无饱和现象、抗电磁干扰性能佳、无油化结构、绝缘可靠、便于向数字化、微机化发展等诸多优点,将在数字化变电站中广泛应用。 电子式互感器的诞生是互感器传感准确化、传输光纤化和输出数字化发展趋势的必然结果。电子式互感器是数字变电站的关键装备之一。传感方法对电子式互感器的结构体系有很大影响。光学原理的电子式互感器结构体系简单,是无源的电子式互感器。电磁测量原理的电子式互感器是有源电子式互感器。 1电子互感器的优点 1.1高低压完全隔离,安全性高,具有优良的绝缘性能,不含铁芯,消除了磁饱和及铁磁谐振等问题 电磁式互感器的被测信号与二次线圈之间通过铁芯耦合,绝缘结构复杂,其造价随电压等级呈指数关系上升。非常规互感器将高压侧信号通过绝缘性能很好的光纤传输到二次设备,这使得其绝缘结构大大简化,电压等级越高其性价比优势越明显。非常规互感器利用光缆而不是电缆作为信号传输工具,实现了高低压的彻底隔离,不存在电压互感器二次回路短路或电流互感器二次回路开路给设备和人身造成的危害,安全性和可靠性大大提高。 电磁式互感器由于使用了铁芯,不可避免地存在磁饱和及铁磁谐振等问题。非常规互感器在原理上与传统互感器有着本质的区别,一般不用铁芯做磁耦合,因此消除了磁饱和及铁磁谐振现象,从而使互感器运行暂态响应好、稳定性好,保证了系统运行的高可靠性。 1.2抗电磁干扰性能好,低压侧无开路高压危险 电磁式电流互感器二次回路不能开路,低压侧存在开路危险。非常规互感器的高压侧和低压侧之间只存在光纤联系,信号通过光纤传输,高压回路与二次回路在电气上完全隔离,互感器具有较好的抗电磁干扰能力,低压侧无开路引起的高电压危险。 1.3动态范围大,测量精度高,频率响应范围宽 电网正常运行时电流互感器流过的电流不大,但短路电流一般很大,而且随着电网容量的增加,短路电流越来越大。电磁式电流互感器因存在磁饱和问题,难以实现大范围测量,同一互感器很难同时满足测量和继电保护的需要。非常规互感器有很宽的动态范围,可同时满足测量和继电保护的需要。

电流互感器分类和作用

电流互感器分类和作用 电流互感器是一种将大电流按一定比例转换成小电流(我国标准为5安倍)的测量元件,其转换输出供测量和继电保护用。电流互感器种类非常多,本文从不同角度描述互感器的分类以及作用。 一、电流互感器按安装方式分类 电流互感器按安装方式可以分为贯穿式电流互感器、支柱式电流互感器、套管式电流互感器、母线式电流互感器。 贯穿式电流互感器:用来穿过屏板或墙壁的电流互感器。 支柱式电流互感器:安装在平面或支柱上,兼做一次电路导体支柱用的电流互感器。 套管式电流互感器:没有一次导体和一次绝缘,直接套装在绝缘的套管上的一种电流互感器。 母线式电流互感器:没有一次导体但有一次绝缘,直接套装在母线上使用的一种电流互感器。 二、电流互感器按用途分类 电流互感器按用途分类可以测量用电流互感器和保护用互感器。 测量用电流互感器:在正常工作电流范围内,向测量、计量等装置提供电网的电流信息。 保护用电流互感器:在电网故障状态下,向继电保护等装置提供

电网故障电流信息。 三、电流互感器按绝缘介质分类 电流互感器按绝缘介质分类可以分为干式电流互感器、浇注式电流互感器、油浸式电流互感器、气体绝缘电流互感器。 干式电流互感器:由普通绝缘材料经浸漆处理作为绝缘。 浇注式电流互感器:用环氧树脂或其他树脂混合材料浇注成型的电流互感器。 油浸式电流互感器:由绝缘纸和绝缘油作为绝缘,一般为户外型,目前我国在各种电压等级均为常用。 气体绝缘电流互感器:主绝缘由气体构成的电流互感器。 四、电流互感器按电流变换原理分类 电流互感器按变换原理分类可以为电磁式电流互感器和光电式电流互感器。 电磁式电流互感器:根据电磁感应原理实现电流变换的电流互感器。 光电式电流互感器:通过光电变换原理以实现电流变换的电流互感器。 五、电流互感器按电流比变换分类 电流互感器按电流比变换分类可以分为单电流比电流互感器、多电流比电流互感器和多个铁芯电流互感器。 单电流比电流互感器:即一、二次绕组匝数固定,电流比不能改变,只能实现一种电流比变换的互感器。

互感器的分类(全)

互感器分为电压互感器和电流互感器两大类。电压互感器可在高压和超高压的电力系统中用于电压和功率的测量等。电流互感器可用在交换电流的测量、交换电度的测量和电力拖动线路中的保护。 一、电压互感器分类 1. 按用途分 测量用电压互感器(或电压互感器的测量绕组),在正常电压范围内,向测量、计量装置提供电网电压信息。 保护用电压互感器(或电压互感器的保护绕组),在电网故障状态下,向继电保护等装置提供电网故障电压信息。 2. 按绝缘介质分 干式电压互感器。由普通绝缘材料浸渍绝缘漆作为绝缘,多用在500V及以下低电压等级。 浇注绝缘电压互感器。由环氧树脂或其他树脂混合材料浇注成型,多用在35KV及以下电压等级。 油浸式电压互感器。由绝缘纸和绝缘油作为绝缘,是我国最常见的结构型式,常用在220KV及以下电压等级。 气体绝缘电压互感器。由气体作主绝缘,多用在超高压、特高压。 3. 按相数分 单相电压互感器,一般在35KV及以上电压等级采用。 三相电压互感器,一般在35KV及以下电压等级采用。 4. 按电压变换原理分 电磁式电压互感器。根据电磁感应原理变换电压,原理与基本结构和变压器完全相似,我国多在220KV及以下电压等级采用。

电容式电压互感器。由电容分压器、补偿电抗器、中间变压器、阻尼器及载波装置防护间隙等组成,目前我国110KV-500KV电压等级均有应用,超高压只生产电容式电压互感器。 光电式电压互感器。通过光电变换原理以实现电压变换,近年来才开始使用。 5. 按使用条件分 户内型电压互感器。安装在室内配电装置中,一般用在35KV及以下电压等级。户外型电压互感器。安装在户外配电装置中,多用在35KV及以上电压等级。 6. 按一次绕组对地运行状态分 一次绕组接地的电压互感器。单相电压互感器一次绕组的末端或三相电压互感器一次绕组的中性点直接接地,末端绝缘水平较低。 一次绕组不接地的电压互感器。单相电压互感器一次绕组两端子对地都是绝缘的;三相电压互感器一次绕组的各部分,包括接线端子对地都是绝缘的,而且绝缘水平与额定绝缘水平一致。 7. 按磁路结构分 单级式电压互感器。一次绕组和二次绕组(根据需要可设多个二次绕组)同绕在一个铁芯上,铁芯为地电位。我国在35KV及以下电压等级均用单级式。 串级式电压互感器。一次绕组分成几个匝数相同的单元串接在相与地之间,每一单元有各自独立的铁芯,具有多个铁芯,且铁芯带有高电压,二次绕组(根据需要可设多个二次绕组)处在最末一个与地连接的单元。我国目前在110KV 及以上电压等级常用此种结构型式。 8. 组合式互感器 由电压互感器和电流互感器组合并形成一体的互感器称为组合式互感器,也

电子式互感器原理与应用概述

电子式互感器原理与应用概述 摘要:电子式互感器是随着现代技术发展新型互感器,因其特殊的技术优势将逐步替代传统的电磁式互感器产品。本文将着重从电子式互感器的原理与应用方面进行深入的分析,以供参考。 关键词:电子式互感器原理应用 1、引言 随着计算机技术和电力设备二次系统测量、保护装置的数字化发展,电力系统对测量、保护、控制和数据传输智能化、自动化及电网安全、可靠和高质量运行的要求越来越高,具有测量、保护、监控、传输等组合功能的智能化、小型化、模块化、机电一体化电力设备,对电网安全、可靠和高质量运行具有重要意义。这已成为国内外著名电力设备生产企业进行产品研发的主流。 传统的电磁式电流电压互感器难以直接完成计算机技术对电流电压完整信息进行数字化处理的要求,难以实现电网对电量参数变化的在线监测,阻碍了电力系统自动化向更高水平发展,因此寻求一种能与数字化网络配套使用的新型电流电压互感器成为电网安全高效运行的迫切需要。 2、电子式互感器 电子式互感器(electronic instrument transformer)是由传感元件和数据处理单元组成的互感器,用以测量和监控电流、电压等参数。由于其传感机理先进,绝缘相对简单,动态范围大,频率响应宽,准确度高,适应电能计量、保护数字化和自动化发展方向,将成为传统电磁式互感器的换代产品。 电子式电流电压互感器,二次输出为小电压信号,无需二次转换,可方便地与数字式仪表、微机保护控制设备接口,实现计量、控制、测量、保护和数据传输的功能,且消除了传统电磁式电流互感器因二次开路、电压互感器二次短路给电力系统设备和人身安全带来的故障隐患。 作为传统电磁式互感器理想的换代产品,电子式互感器可广泛用于中压领域电力监测、控制、计量、保护系统、工矿企业、高层建筑、配、变电等场所,能有效降低变电站(配电所)的建设成本和运行维护成本,提高电网运行质量、安全可靠性和自动化水平,因其几乎不消耗能量、无铁心(或仅含小铁心)、且减少了许多有害物质的使用而使其成为节能和环保产品。电子式电流电压互感器在发达国家已被广泛采用,国内也有越来越多的产品投入使用。 3、电子式互感器的原理 3.1 电子式电流电压互感器原理 电子式电流互感器采用罗哥夫斯基(Rogowski)线圈和轻载线圈的基本原理。Rogowski线圈由于采用非磁性的骨架,不存在磁饱和现象。一次电流通过Rogowski线圈得到了与一次电流I1的时间微分成比例的二次电压E,将该二次电压E进行积分处理,获得与一次电流成比例的电压信号,通过微处理器将该信号进行变换、处理,即可将一次电流信息变成模拟量和数字量输出。轻载线圈它代表着经典感应电流互感器的发展方向。它由一次绕阻、小铁芯和损耗最小化的二次绕组组成。二次绕组上连接着分流电阻Ra,二次电流I2在分流电组Ra两端的电压降U2与一次电流I1成比例,电子式电流互感器比传统的电磁式电流互感器拥有更大的电流测量范围。 3.2 电子式电压互感器采用电阻分压原理

互感器的常见种类

互感器的常见种类: 电子式互感器 变频功率传感器是一种电子式互感器,变频功率传感器通过对输入的电压、电流信号进行交流采样,再将采样值通过电缆、光纤等传输系统与数字量输入二次仪表相连,数字量输入二次仪表对电压、电流的采样值进行运算,可以获取电压有效值、电流有效值、基波电压、基波电流、谐波电压、谐波电流、有功功率、基波功率、谐波功率等参数。[3] 互感器分为电压互感器和电流互感器两大类,其主要作用有:将一次系统的电压、电流信息准确地传递到二次侧相关设备;将一次系统的高电压、大电流变换为二次侧的低电压(标准值)、小电流(标准值),使测量、计量仪表和继电器等装置标准化、小型化,并降低了对二次设备的绝缘要求;将二次侧设备以及二次系统与一次系统高压设备在电气方面很好地隔离,从而保证了二次设备和人身的安全。 电压互感器 测量用电流互感器主要与测量仪表配合,在线路正常工作状态下,用来测量电流、电压、功率等。测量用微型电流互感器主要要求: 1、绝缘可靠; 2、足够高的测量精度; 3、当被测线路发生故障出现的大电流时互感器应在适当的量程内饱和(如500%的额定电流)以保护测量仪表。 保护用电流互感器保护用电流互感器主要与继电装置配合,在线路发生短路过载等故障时,向继电装置提供信号切断故障电路,以保护供电系统的安全。保护用微型电流互感器的工作条件与测量用互感器完全不同,保护用互感器只是在比正常电流大几倍几十倍的电流时才开始有效的工作。 电流互感器 利用变压器原、副边电流成比例的特点制成。其工作原理、等值电路也与一般变压器相同,只是其原边绕组串联在被测电路中,且匝数很少;副边绕组接电流表、继电器电流线圈等低阻抗负载,近似短路。原边电流(即被测电流)和副边电流取决于被测线路的负载,而与电流互感器的副边负载无关。由于副边接近于短路,所以原、副边电压U1和都很小,励磁电流I0也很小。电流互感器运行时,副边不允许开路。因为一旦开路,原边电流均成为励磁电流,使磁通和副边电压大大超过正常值而危及人身和设备安全。因此,电流互感器副边回路中不许接熔断器,也不允许在运行时未经旁路就拆下电流表、继电器等设备。电流互感器的接线方式按其所接负载的运行要求确定。最常用的接线方式为单相,三相星形和不完全星形。 组合互感器 组合互感器是将电压互感器、电流互感器组合到一起的互感器。组合互感器可将高电压变化为低电压,将大电流变化为低电流,从而起到对电能计量的目的。

电子式互感器的功能及应用

电子式互感器的功能 带宽 应该具备合理的带宽,其带宽应能覆盖所需测量的变频电量的基波和关注的谐波的频率。 采样频率 采样频率应该高于带宽的两倍以上,对于变采样频率的变频功率传感器,当采样频率低于传感器带宽2倍时,应当开启适当的防混叠滤波器,限制输入信号的带宽。 精度 作为变频电量测量的传感器/变送器,不仅仅在工频下可以获得准确度指标,而是应该在标称频率范围之内,误差应小于标称准确级对应的误差限值。 由于变频功率传感器用于功率测量,其电压、电流的角差不可忽视。 波峰因数 由于变频器输出PWM波的波峰因数不是固定值,而是电压越低时,波峰因数越大,因此,变频功率传感器应能准确测量较高峰值因数的电压、电流信号、若不具备验证条件时,可以用较低的电压或较小的电流输入传感器,检验其测量准确度,一般而言,若能在较宽的幅值范围内实现高精度测量,即可在较高的波峰因数下实现较高的测量准确度。 电子式互感器的应用 首先,变频功率传感器适用于工频电量测量和计量。其次,变频功率传感器适用于带宽范围内的任意电参量的测量和计量。广泛应用于电力推进、电机、风机、水泵、风力发电、轨道交通、电动汽车、变频器、特种变压器、荧光灯、LED照明等领域的产品检试验、能效评测及电能质量分析。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.sodocs.net/doc/1e13563458.html,/

电子式互感器和电磁式互感器的区别

数字式互感器(又名:光电互感器,智能互感器、电子互感器)与传统的电磁互感器有着本质的区别。数字互感器输出的是数字信号,而电磁互感器是模拟信号(类似数字电视与模拟电视的区别)。它基于光电技术原理(这就是为什么也叫光电互感器了)是国家建设智能化电网的必备产品。传统的电流互感器原理是电磁感应,一次绕组串联在电力线路中,二次绕组外部回路接有测量仪器或继电保护及自动控制装置,利用高、低压绕组之间的电磁耦合,将信息从一次侧传到二次侧。这种结构要求在铁芯与绕组间以及一、二次绕组之间有足够耐压强度的绝缘层,以保证所有的低压设备与高电压相隔离。随着电力系统传输的电力容量的增加,电压等级越来越高,这样互感器的绝缘结构越来越复杂,体积和重量加大,产品的造价也越来越高。例如,常规的油浸式电流互感器,500kV产品的价格要比300kV的价格增加一倍。又因电磁型电流互感器的铁心具有饱和非线性,当电力系统发生短路故障时,高幅值的短路电流使互感器饱和、输出的二次电流严重畸变,造成保护拒动,使电力系统发生严重事故。互感器的饱和引起波形畸变,而且其频带响应特性较差,频带窄,系统高频响应差,而导致新型的基于高频暂态分量的快速保护的实现存在困难等一系列隐患。随着光电子技术的迅速发展,科技人员已研制出利用光学传感技术和电子学原理相结合的电子式电流互感器,简称数字互感器或光电互感器。数字互感器在原理与传统的互感器完全不同,数字互感器是利用光电子技术和光纤传感技术来实现电力系统电压、电流测量的新型互感器。它是光学电压互感器(OVT)、光学电流互感器(OCT)、组合式光学互感器等各种光学互感器的通称。基于晶体材料光电效应的教字式光电互感器,将取代现有基于铜材电磁效应的铁磁式互感器,已经成为业界的共识。我国研制已出220KV全电压、单晶体、纵向调制结构模式的光电互感器原理性样机,为产业化开发奠定了良好的基础。分类:光电互感器:包括有源型电子式电流互感器、无源磁光玻璃电子式电流互感器两种。有源型电子式电流互感器:有源型电子式电流互感器特点是一次传感器为空心线圈,高压侧电子器件需要由电源供电方能工作。其原理如图所示: 有源型电子式电流互感器 无源磁光玻璃电子式电流互感器:无源磁光玻璃型电子式电流互感器特点是一次传感器为磁光玻璃,无需电源供电。其原理如图所示:

电子式互感器及其在智能变电站中应用

电子式互感器及其在智能变电站中的应用 摘要:详细介绍了关于电子式互感器的定义、分类及原理,分析了有源式和无源式电子式互感器的类型、原理及其存在的主要问题,并就其技术特征进行对比,讨论了电子式互感器是如何在智能变电站中起到关键的作用以及未来电子式互感器的发展趋势。 关键词:智能电网智能变电站电子式互感器有源式无源式发展趋势 中图分类号:tm76 文献标识码:a 文章编 号:1674-098x(2012)04(a)-0087-02 application of electronic transformer in smart substation feng yi-xin (college of electrical engineering and automation,fuzhou university,fuzhou 350108,china) abstract:introduction is made to the concepts,classifications of electronic transformer,while analyse is made to the comparison between active type and passive type due to the classifications,axioms and the main problems.the development trend of electronic transformers in the future will play a vital part in the construction of smart substation,even in the smart grid. key words:smart grid;smart substation;electronic transformer;development trend

电子式互感器在电力工程中的应用

电子式互感器在电力工程中的应用 摘要:高压电力互感器的作用主要是对电力系统进行保护、测量、计量,为电 力系统提供电压、电流信号。互感器的安全性和精度,直接影响着电力系统的稳定、安全运行,是电力系统的重要元件。当前,电力系统最高运行电压已达 750kV等级,1000kV也已试运行,高压直流已达到±800kV。电力系统中自动化技 术正努力朝向数字化的方向发展,这代表了电力系统的发展方向。 关键词:电子式互感器;电力工程;应用 一、电子式高压电力互感器研究的意义 (一)传统互感器的缺点 电力系统的安全稳定运行的先决条件是系统中电流、电压的准确测量。对电流、电压的测量精度,直接影响着电力系统的计算分析、系统监测诊断以及电能 计量的准确性。电流互感器以及电压互感器构建成整体的电力互感器,能够维持 电力设备进行继电保护信号的获取以及电能计量。近些年,电力系统不断提升输 变电容量,传统电磁式互感器已经不能满足运行要求,在使用时也出现了较多的 弊端:(1)复杂绝缘结构,笨重的设备体积,较低的性价比,尤其在超高压系统,无法满足其热稳定以及动稳定的要求。传统互感器是通过油浸纸作为设备的 绝缘介质,造成了极大的安全隐患,可能会出现燃爆情况。(2)传统电磁式传 感器在进行稳态电流的测量时,具有较好的线性度,但是暂态电流含有直流分量,容易导致电流互感器饱和,出线非线性失真,较大地影响了测量的准确度。(3)传统电压互感器在运行过程中可能会导致铁磁谐振,对设备造成损坏。(4)传 统互感器的二次侧输出具有严格的负荷限制,如果二次负载太大,误差率会提升。 (二)新型互感器的开发和应用 我国经过多年的探究与研发,在新型互感器方面取得了新的突破,从根本上 推动了新型互感器的应用发展。(1)二次设备微机化,具有较低的功率消耗, 这相应的就降低了互感器的输出容量,但是其对低电平、抗电磁干扰具有较高的 要求。(2)智能化、集成化的开关设备对互感器的类型选择具有较高的要求, 需要使用小体积,较轻质量以及数字化输出的互感器。(3)变电站以及发电厂 已经广泛应用自动化技术,互感器的数字化输出以及网络化接入需求逐年提升。(4)随着通信技术的发展,互感器输出信号转化数字化后,利用光纤进行传输,光纤不导电,能从根本上消除高压设备绝缘安全问题。 (三)电子式互感器的优点 (1)简单的绝缘结构,较小的设备体积,较轻的质量。不用使用绝缘油当绝 缘物质,具有较高的安全性,安装,运输比较方便。(2)不会出现电磁感应器 饱和情况,抗干扰能力强、准确性高。(3)信号处理设备以及传感器具有较小 的外形,能够直接装入成套设备中,为电力系统集成化发展提供了保障。 二、电子式互动感器的技术应用原理 电子式电流互感器,也称为EVT或ECT。其性能改革,也经历了无数次转变,过程更投入了大量的资金与研究精力,现阶段,全球已有大批具有行业资质、专 业制造水准的厂家与销售商家,使它的市场销售率与应用率,不断壮大并走向国 际化。随着社会工业、技术行业对电能的需求量不断加大,以往采用的电磁式电 流互感器,已明显不符合时代要求。人们对它的安全性,也有了较高的要求。如 早年应用电磁式互感器,具有:磁饱和、铁磁谐振、难以测试、精确度较差、动 态测量范围窄的不足;而现代的电子式互感器,具有:设计轻便、方便携带、安

电子式电流互感器工程应用研究

电子式电流互感器工程应用研究 摘要:电子式互感器已逐步在高压输变电工程中得到应用,本文通过对不同原理和结构类型的电子式互感器的优缺点进行了比较研究,并结合工程应用中出现的问题,从设备研制、工程建设和标准制定与完善方面提出了一些建议,以促进电子式互感器的工程应用和发展。 关键词:电流互感器光学电子式电流互感器工程应用 Abstract:The electronic transformer has gradually applied in high-voltage transformation project,this article compares it advantages and disadvantages by different principle and structure types of electronic transformer,and puts forward some Suggestions from equipment development,engineering construction standards and perfect in order to promote the electronic instrument transformer engineering application and development based on the engineering application problems. Key words:current transformer;optical electronic current transformer;the engineering application 近年来据国家有关部门公布的资料,我国电网和电源建设发展迅速,每年与之配套的电流互感器市场需求预计多达40亿元以上,总产量约数万台。虽然目前采用电子式互感器的需求只有很小比例,但是近年来,随着智能化电网推进速度的加快,电子式互感器的应用将得到迅猛发展。为此,对于电子式互感器的技术特点和应用中存在的问题

相关主题